VeloPix Readout and ASIC

Kristof De Bruyn On behalf of the LHCb Velo Upgrade group

9th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (PIXEL)

Taipei – December 12th, 2018

LHCb Velo Upgrade

- \triangleright Vertex Locator (VELO) specialised in identifying secondary decay vertices
- \triangleright Upgrade between 2019 and 2021 to triggerless read-out at 40MHz
- ▶ Replace VELO with new silicon pixel detector

See Also: Talk The LHCb VELO Upgrade (D. Murray, Monday 10th, 14:10) Poster Microchannel CO₂ cooling for the LHCb VELO Upgrade (O. De Aguiar Francisco)

Requirements for the new Read-Out ASIC

 $[\text{mm}]$ 50 40 16 \rightarrow 30 2.6 2.5 $20¹$ 6.2 2.9 2.6 10 15.1 6.2 1.6 15.1 2.5 -10 2.9 -20 -30 -20 20 40 Ω x [mm]

Data rate per ASIC (Gbit/s)

- \blacktriangleright Radiation Hardness
	- \triangleright Closest active element is 5.1 mm from interaction region
	- \blacktriangleright Expected total ionising dose 400 Mrad
	- \blacktriangleright ... and 8×10^{15} 1 MeV neq/cm²
	- ▶ Non-uniform fluency $(\propto r^2)$
	- \blacktriangleright Redundancy against single event effects
	- \triangleright Operate with leakage current of 7nA/pixel at end of life
- \blacktriangleright High Data Rate
	- Average (Peak) rate of 600 (900) MHits/s
	- \blacktriangleright Hottest ASIC has rate of 15.1 Gbit/s
	- \blacktriangleright Timing resolution: 25 ns
	- ^I Fast discharge to baseline: 16k e[−] in 400 ns
- \blacktriangleright Hit efficiency of $> 99\%$
	- ▶ Qualified up to 1000 Volt bias current (in vacuum)
	- \blacktriangleright Signal-to-noise threshold: ≈ 1000 e⁻ (Sensor generates $\approx 7000 e^-$ at end of life)
- \blacktriangleright Power consumption $<$ 3 Watt

Introducing: The VeloPix

- \triangleright Derived from TimePix/MediPix family
- \blacktriangleright 256 \times 256 pixel matrix, with pixel size of 55 \times 55 μ m 2
- Implemented in 130nm CMOS
- Super-Pixel blocks
	- 8 pixels share common functionality
	- \blacktriangleright 30% reduction in data volume
- \blacktriangleright Column-wise read-out of super-pixels
- \triangleright Routed to 4 high speed 5.12 Gbit/s serialisers
- Data-Driven Readout
	- \blacktriangleright Binary mode
	- Hits are time-stamped
	- Output is not time-ordered
- Power consumption ≈ 1.5 Watt

Pixel Block: Analogue Front-End

Main Components:

- \blacktriangleright Preamplifier with Krummenacher feedback loop for leakage current compensation
	- ► Average pixel noise at wafer probing [without sensor]: 83 e⁻ [ENC]
	- ▶ Average pixel noise at tile probing [with sensor]: 94 e⁻ [ENC]
- \triangleright 3-tier cascade signal-to-noise discriminator
	- \blacktriangleright 2 low gain stages $+$ 1 high gain stage
	- Designed to minimise time walk (signal must arrive within 25 ns)

Pixel Block: Digital Front-End

Super Pixel Concept

Super Pixels:

- \triangleright Due to detector layout and pixel size, 55% of tracks have cluster size > 1 pixel
- \triangleright Advantageous to combine information: Super Pixel
	- Groups 8 pixels together in 2×4 grid
	- \triangleright Sharing address and time stamp information saves 30% data volume
	- ▶ 23bit Super Pixel Packet (SPP)

23b SPP $=$ 6b Address 9b Time Stamp 8b Hitmap

 \triangleright Sharing common logic blocks leads to more compact chip design

Column Bus Read-out:

CÉRN

- \triangleright Super pixels are read-out top-down via shared bus
	- \blacktriangleright Node-based architecture
	- It takes at least 64 clock cycles for top SPP to reach End-of-Column
- \blacktriangleright Increased throughput, less power, less time-critical
- \triangleright Increased latency: Readout time depends on position in column
- \triangleright Arbiter allows fair-sharing of column bus
- \triangleright Each super pixel as a FIFO buffer 2 events deep to minimise data loss
- Data transfer rate down the bus is 13.3 Mpackets/s

End-of-Column Fabric

- \triangleright Data from 128 columns needs to be merged into 1 output stream
- ► End-of-Column node adds 7bit column address to 23bit SPP

30b SPP $=$ 7b EoC Address 6b SP Address 9b Time Stamp 8b Hitmap

- \triangleright 8 transfer lines transport SPPs to central router
	- \blacktriangleright Node-based architecture
	- \triangleright A line connects to every 4th EoC node
	- Runs at 160 MHz, or 38.4 Gbit/s per line
- \triangleright Router links all 8 lines to all 4 serialisers
	- \triangleright When full bandwidth is not needed. serialisers can be disabled
- \triangleright Output frame:

128bit = 8bit header + $4 \times$ (30bit SPP)

- \triangleright Custom design "GWT" serialisers
	- \blacktriangleright "Gigabit Wireline Transmitter"
	- \blacktriangleright 5.12 Gbit/s throughput
	- Circuit runs at 320 MHz
	- \blacktriangleright Lower power consumption
	- \triangleright Scramble data to balance 0's and 1's in stream

Data Rate Performance Studies

- \triangleright Hottest ASIC can have local losses up to 1.6% in top of column
- \blacktriangleright Packet latency is less than 1 μ s

(CERN)

- This is less than 512 clock cycles (max 9bit time stamp)
- Steep decline in performance when exceeding maximum bandwidth

Radiation Tests

- \triangleright State registers have triple redundancy against single event upsets (SEU)
	- \blacktriangleright ... but data registers do not
- \triangleright Extensive testing at Louvain [BE] heavy ion facility
- \triangleright Also found single event latch-ups (SEL) in prototype design
	- ▶ Understood and corrected
- \triangleright Total ionising dose tested up to 400 Mrad
	- ▶ No changes in operation observed SEU probability split by register type

SEL in Prototype Design:

Observed SEL (Red points) 3μ m Scan with near-IR laser

SEL susceptibility: CAD prediction based on Distance between contacts

- triggering SEL with near-IR laser
	- \triangleright SEL occurrences match regions with large distances between contacts
		- This has been corrected in final VeloPix design

Production Steps

1 Wafer production

- \blacktriangleright 91 ASICs per wafer
- \blacktriangleright Yield = 60% (on 13 wafers)
- \blacktriangleright 1 wafer tested per day

2 Bump-bonding [Advacam]

- \triangleright 3 ASICs are bump-bonded to single n-on-p sensor [Hamamatsu]
- \blacktriangleright All wafer tests are repeated
- \blacktriangleright Yield = \approx 100% (on 170 Tiles)
- First I/V scan to 1000 Volt (in vacuum)
- \blacktriangleright Yield = $\approx 90\%$
- **3** Tiles are glued onto module and ASICs wire-bonded to hybrids

bump-bonded sensor tile with 3 ASICs

Kristof De Bruyn (CERN) [VeloPix Readout and ASIC](#page-0-0) Pixel 2018 – 12/12/2018 11 / 19

probe station for wafer test

 i ig for I/V scan

Prototype Read-Out Chain at CERN North Area Testbeam

The VeloPix Module

Components:

- \blacktriangleright Silicon microchannel substrate
	- \blacktriangleright Low material budget, match thermal expansion
- \blacktriangleright 4 n-on-p sensor tiles
- \blacktriangleright 12 VeloPix Asics
- \triangleright 2 GBTx Hybrid PCBs for signal fan-out to VeloPix
- \triangleright 2 bidirection slow control links (4.8 Gbit/s)
	- \triangleright Configuration, Monitoring, Timing, Control
- \triangleright 20 unidirectional high speed data links (5.12 Gbit/s)
- \blacktriangleright Double sided

LV HV Control Data

GBTx Hybrid PCB

From Module to Fibre

Vacuum Feedthrough Board (VFB)

- \triangleright Transmits control & high speed signals, temperature monitoring, LV and HV between Module (vacuum side) and OPB (air side)
- \blacktriangleright High speed data tapes connect VFB with module

Opto- & Power Board (OPB)

- \triangleright Provides low voltage to all components in read-out chain
	- ▶ Radiation hard FEASTMP DC/DC converters
- \triangleright Converts signals: Electrical \leftrightarrow Optical
	- \blacktriangleright 3 bidirectional links (VTRx)
	- ▶ 20 unidirectional links ($VTTx$)
- \triangleright Controlled via GBTx and SCA
	- ▶ GigaBit Transceiver and Versatile Link Projects

The PCIe40 Read-Out Card

- \triangleright Common off-detector hardware for data processing of all LHCb subdetectors
- \blacktriangleright Intel Arria 10 FPGA
- \blacktriangleright Two firmware flavours

Slow Control: 1 per 13 Modules (4 total) High Speed DAQ: 1 per Module (52 total)

 \triangleright DAQ: Maximum throughput 100 Gbit/s

The VELO-Specific DAQ Firmware

- \triangleright Unique data protocol (5.12 Gbit/s GWT link, super-pixel packages)
- \triangleright Will do descrambling and time-ordering of SPP (based on LHC bunch crossing ID)

Transmission Line Impedance

Performance of the Data Links

The Need for a CTLE Circuit:

- \triangleright Passive CTLE circuit added on data links to improve transmission quality
- More uniform attenuation up to Nyquist Frequency (2.56 GHz)
- At the cost of reduced differential swing
- Jitter from VeloPix leads to poor eye diagram
	- \blacktriangleright Improved design between prototype and final version
- ► BER on high speed data links lower than few 10^{-14}

CÉRN

First Prototype Modules at CERN North Area Testbeam

Testing the DAQ Chain:

- \triangleright Demonstrate control and configuration of VeloPix
- \triangleright 3 modules running synchronously with TimePix3 telescope
- \triangleright Successful test of the DAQ read-out chain
- \triangleright Correlations in time and space, but further analysis ongoing

Summary

- ▶ VeloPix: Radiation hard, high data rate silicon pixel ASIC for the upgraded LHCb Velo detector
- \blacktriangleright Key numbers:
	- $\stackrel{\textstyle >}{\textstyle \sim}$ 55 \times 55 μ m² pixel size
	- \blacktriangleright 400 Mrad total ionising dose
	- \blacktriangleright 15.1 Gbit/s output rate
	- \blacktriangleright 25ns time-stamping resolution
- \blacktriangleright High speed read-out chain has been validated, ready to start production

Glossary

- CTLE: Continuous Time Linear Equaliser
	- EoC: End-of-Column
- GBTx: Gigabit Transceiver FPGA **and Contact Co**
- GWT: Gigabit Wireline Transmitter (Serialiser)
	- HV: High Voltage
	- LET: Linear Energy Transfer
		- LV: Low Voltage
- OPB: Opto- & Power Board (part of VELO read-out chain)
- PCB: Printed Circuit Board
- PCIe40: Custom 40MHz read-out card based on PCI express transfer bus
	- SCA: GBT Slow Control Adaptor/ASIC **Example 2018** [\[GBT Project\]](https://espace.cern.ch/GBT-Project/default.aspx)
	- SEL: Single Event Latch-up
	- SEU: Single Event Upset
	- SPP: Super-Pixel Packet
	- TOT: Time-over-threshold
- VELO: Vertex Locator
	- VFB: Vacuum Feedthrough Board (part of VELO read-out chain)
- VTRx: Versatile TransReceiver (electrical-optical conversion) [\[Versatile Link Project\]](https://espace.cern.ch/project-versatile-link/public/default.aspx)
- VTTx: Versatile Twin-Transmitter (electrical-optical conversion) [\[Versatile Link Project\]](https://espace.cern.ch/project-versatile-link/public/default.aspx)

