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Abstract. We study the clustering properties of dark matter haloes in real- and redshift-space
in cosmologies with massless and massive neutrinos through a large set of state-of-the-art N-
body simulations. We provide quick and easy-to-use prescriptions for the halo bias on linear
and mildly non-linear scales, both in real and redshift-space, which are valid also for massive
neutrinos cosmologies. Finally we present a halo bias emulator, BE-HaPPY, calibrated
on the N-body simulations, which is fast enough to be used in the standard Markov Chain
Monte Carlo approach to cosmological inference. For a fiducial standard ΛCDM cosmology
BE-HaPPY reproduces the simulation inputs with percent or sub-percent accuracy for the
halo mass cuts it is calibrated on (M > {5× 1011, 1012, 3× 1012, 1013}h−1M�) on the scales
of interest (linear and well into the mildly non-linear regime). The approach presented here
represents a well defined route to meeting the halo-bias accuracy requirements for the analysis
of next-generation large–scale structure surveys. The software BE-HaPPY can run both in
emulator mode and in calibration mode, on user-supplied simulations outputs, and is made
publicly available.
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1 Introduction

To fully take advantage of next generation surveys such as Euclid1, DESI2, WFIRST3, SKA4

EMU5, PSF6, and LSST7 we must improve our modelling of clustering of the tracers of
the dark matter density field. The amplitude and scale dependence of the matter power
spectrum carry important cosmological informations about e.g., the primordial Universe or
the absolute neutrino mass scale, highly complementary to that provided by cosmic microwave
background observations. Galaxy or halo bias, which is the relation between these tracers
and the underlying matter field, is one of the main source of uncertainty preventing us from
achieving this goal. Since galaxies are hosted in dark matter halos, the first step is to model
correctly the bias of the halo field or halo bias. Hereafter when we refer to bias we mean
the halo bias. Accurate modelling of the halo bias is a necessary (although not sufficient)
step to achieve accurate modelling of the observable dark matter tracers. The (halo) bias is
usually approximated by a constant on linear scales and then marginalized over. However the
approximation of scale independence may be insufficient, even on linear scales. This is all the
more true in a cosmological model with massive neutrinos. Indeed, because of their thermal
velocities, neutrinos act as relativistic species during the growth of cosmological perturbations
and therefore can escape region of higher density fluctuations. This phenomenon, known as
the “neutrino streaming" effect, results in suppression of power at small scales. Massive
neutrinos also have an additional effect on the growth of structures. As tiny as their mass
could be, neutrinos modify the shape of the power spectrum and thus the halo bias. Neutrinos
are one of the most mysterious fundamental particles of nature. The value of their masses
remains a mystery today. Constraining their masses is among the goals of upcoming surveys.
In order to achieve this, accurate theoretical predictions are needed. The purpose of this
work is to investigate in detail the shape and amplitude of the halo bias, as a proxy and
a preliminary step for galaxy bias, in cosmologies with massive neutrinos into the mildly
non-linear8 and non-linear regime, and offer a fast way to model it.

While not an issue for present-day surveys, Raccanelli et al. [1] (see also Vagnozzi et al.
[2]), showed that an inaccurate model for the bias in cosmologies with massive neutrinos will
induce a systematic and statistically significant shift in the inferred cosmological parameters
for forthcoming surveys.

A solution proposed by e.g., [1, 3–6] to account for this massive neutrinos effect is to use
the power spectrum of the cold dark matter plus baryons, Pcc, instead of that of the total
matter, Pmm, as the relevant theoretical input. It is therefore Pcc the quantity to be modelled
and thus the one to be used in the definition the tracers bias. On large-scales, in cosmologies
with massive neutrinos, the halo bias defined in this way become effectively scale-independent
and on smaller scales, its scale-dependence, has been found to be neutrino-mass independent

1http://sci.esa.int/euclid/
2http://desi.lbl.gov/etc
3https://wfirst.gsfc.nasa.gov/
4https://www.skatelescope.org/
5https://www.atnf.csiro.au/people/Ray.Norris/emu/index.html
6https://pfs.ipmu.jp
7https://www.lsst.org/
8Here mildly non-linear scales refers to scales where non linear effects arise but low order perturbation-

theory approximations are still valid.
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[4–6] (at least to current precision); a small scale dependence even on linear scales is expected
[7], but it does not affect the results presented here.

In this work, we use a large set of state-of-the-art N-body simulations with massive
and massless neutrinos to study and model the effects induced by massive neutrinos on halo
bias. We establish a simple link between the halo bias in models with massive and massless
neutrinos. The results of this investigation are summarised in a software package which
computes halo bias including its scale dependence, also in the presence of massive neutrinos,
BE-HaPPy: Bias Emulator for Halo Power spectrum in Python. BE-HaPPy provides a
bias emulator, fast enough to be used as a plug-in for standard Markov Chain Monte Carlo
(MCMC) cosmological analyses, which is accurate, easy to implement and signifies only a
small additional computational cost. With BE-HaPPy a standard Boltzmann-MCMC can
quickly compute also the halo power spectrum into the mildly non-linear regime. While
strictly we have calibrated the bias emulator for a fixed set of cosmological parameters, those
of a standard concordance LCDM model, we will argue that current data already constrain
cosmological parameters enough that the BE-HaPPy approach can be used beyond the
specific cosmology used here. Nevertheless BE-HaPPy can also be run in calibration mode
with a user-supplied set of power spectra for arbitrary cosmologies.

Calibration on simulations is not the only approach that has been proposed in the
literature. Recently, Muñoz and Dvorkin [3] also studied the impact of massive neutrinos
in the galaxy bias and, as [1], reached the conclusion that their effect should be included
in any future survey analysis. They developed a code RelicFast, [3] which computes the
large, linear scales Lagrangian and Eulerian biases in the presence of relics that are non-
relativistic today (see [6, 7] for some background on this topic). RelicFast and BE-HaPPy
offer two complementary codes to compute the halo bias in the presence of massive neutrinos.
RelicFast offers quasi-analytical approach to compute the large-scales scale-dependence of
the linear bias through spherical collapse and peak-background split, where BE-HaPPy uses
fitting and interpolating functions calibrated on N-body simulations on linear-to-mildly non-
linear scales. Simulations are less versatile (only a finite set of cosmologies can be explored)
but remain one of the best method to obtain the bias especially in the (mildly)non-linear
regime. The analytical approach offers valuable physics insights but is valid only on fully
linear scales; hence the two approaches are highly complementary. This paper is structured
as follows. After an introduction to notation, definitions and set up in Sec. 2, we briefly present
the tools we used to study and model the halo bias. In Sec. 3 we introduce the methodology
and the choices made towards the development of the emulator, which is designed for both
cosmologies with massive and massless neutrinos. Our emulator works both in real- and
redshift-space. We discuss in detail the extension of our emulator in redshift-space in Sec. 4.
In Sec. 5 we summarize the main properties and features of our emulator and conclude in
Sec. 6.

2 Definitions, set up and methodology

The key idea we build upon is that, in presence of massive neutrinos, halo bias should not
be defined with respect to total matter Pmm(k), but with respect to the cold dark matter
(CDM)+baryons field, Pcc(k):

bmm(k) =

√
Phh(k)

Pmm(k)
⇒ bcc(k) =

√
Phh(k)

Pcc(k)
. (2.1)
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The reason behind this idea is that neutrinos barely cluster on small scales [8], so both the
abundance and clustering of haloes and galaxies will be characterized by the CDM+baryon
density field instead of the total matter field [1, 4, 5]. We note however that it is expected
that the scale-dependent growth rate produced by neutrinos will induce a small linear scale-
dependent bias [6, 7]. We have neglected this small effect because here we are interested
in studying the theoretical templates needed to describe halo clustering on mildly to fully
non-linear scales. This effect can be included a posteriori and on larger scales, since it affects
k . 10−2 h/Mpc (see [7, 9] for details).

At linear order, the two halo bias definitions can simply be related through the linear
transfer functions

bmm(k) =
Tcc(k)

Tmm(k)
bcc(k) (2.2)

where

Tcc(k) =
ΩcTcc(k) + ΩbbTb(k)

Ωc + Ωb
, (2.3)

and the subscripts c, b and m stand for CDM, baryons and total matter (i.e. CDM plus
baryons plus neutrinos) respectively. Ωi represents the energy fraction of each component i
at z = 0. We note that the total matter power spectrum and the different transfer functions
can be easily obtained from Boltzmann solvers such as CLASS and CAMB [10, 11]. Raccanelli
et al. [1] showed that the validity of the above equation extends well into the (mildly) non-
linear regime.

In this paper we will be working under one important assumption: neutrinos only affect
the overall amplitude of the bias (bcc), not its scale-dependence

bcc(k,Mν) ' α bcc(k,Mν = 0) =
bLS
cc (Mν)

bLS
cc (Mν = 0)

bcc(k,Mν = 0) , (2.4)

where we have followed the notation of Ref. [1] and bLS
cc denotes the large-scale bias for

CDM+baryons; bLS
cc is computed on linear scales where bcc becomes scale-independent (bLS

cc

can be interpreted as the limit9 of bcc(k) for k −→ 0).
The above equation relates the halo bias between two models that have the same values

for the parameters h, ns, Ωm, Ωb and As, but different values of Ωc and neutrino mass, where
Ωc = Ωm−Ωb−Ων . Conveniently, the scale dependence of bcc can be computed for massless
neutrino cosmology. This has two immediately obvious advantages: it can be calibrated on
massless neutrino simulations, which are easier to run, and it can be modelled, for example,
by resorting to a perturbation theory description of the power spectrum, which validity has
been studied extensively for massless neutrinos cosmologies and which can be computed given
a set of cosmological parameters.

Equation 2.4 is an approximation that is expected to break down if the neutrino masses
are large and/or if the halo bias is high, see Ref. [1]. Below we will test the performance and
exploit the potential of the above equation.

While we will be focusing our attention on modelling bcc(k) in cosmologies with massive
and massless neutrinos, if, in models with massive neutrinos, the desired quantity is the halo

9If the small effect –evident on scales larger than k ' 10−2h/Mpc– of a scale dependence of the linear bias
of Ref. [6] is to be included in the modelling, then bLS

cc should be computed on large linear scales where the
bias "plateau" is [6, 7, 9].
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bias with respect to the total matter density field, it can easily be obtained from Eqs. 2.2
and 2.4 as

bmm(k,Mν) =
Tcc(k)

Tmm(k)

bLS
cc (Mν)

bLS
cc (Mν = 0)

bcc(k,Mν = 0) . (2.5)

Below we will present two approaches to model bcc: one phenomenological polynomial
model (as in [1]) and one perturbation theory-based; each will be calibrated on simulations.

2.1 N-body simulations

The N-body simulations analyzed in this paper belong to the HADES suite (initially presented
in [12] but extended since). They were run using the TreePM+SPH code Gadget-III, (see
[13] for a description of Gadget-II). The simulations follow the evolution of 16003 CDM and
16003 neutrino particles in a box of size 1000 comoving h−1Mpc. The gravitational softening
of both CDM and neutrinos is set to 15 h−1kpc. All simulations share the value of the
following cosmological parameters, that are in excellent agreement with the latest constraints
from Planck [14]: Ωm = Ωc+Ωb+Ων = 0.3175, Ωb = 0.049, ΩΛ = 0.6825, Ωk = 0, h = 0.6711,
ns = 0.9624 and As = 2.13×10−9. In models with massive neutrinos we set Ωνh

2 = Mν/93.14
eV, where Mν =

∑
imνi . We assume three degenerate neutrino masses in our simulations, as

neutrino mass hierarchy is not relevant to our approach.
We use the classical particle-based method [8, 15] to simulate the evolution of massive

neutrinos in the fully non-linear regime. The initial conditions were generated at z = 99
through the method illustrated in [16], i.e., by rescaling the z = 0 power spectrum and
transfer functions while accounting for the scale-dependent growth factor and growth rate
present in cosmologies with massive neutrinos. We have run simulations for two different
models. A model with massless neutrinos and a model with Mν = 0.15 eV. For each model,
we have run 10 paired fixed simulations10 [17, 18]. As shown in [18], this set up improves
the statistics of all clustering measurements considered in this work. While we do not expect
improvements for the halo bias, a significant reduction on the sample variance of quantities
such as the matter or halo power spectrum can be achieved through this setup (see discussion
in Ref. [17]).

For each simulation we have saved snapshots at redshifts 0, 0.5, 1 and 2. Dark matter
haloes are identified through the Friends-of-Friends algorithm [19] with a value of the linking
length parameter equal to bl = 0.2. Our halo catalogues consists of all haloes with masses
above 5×1011 h−1M�. Smaller halos would not have a sufficient number of particle to provide
a sufficiently converged halo power spectrum. In reality to study the halo-halo correlation
properties at mildly non-linear scales it is customary to consider a minimum number of
particles per halo around few tens because at this level the halo correlation function at large
scales is expected to be sufficiently converged. We are consistent with this convention.

2.2 Halo mass bins and kmax

Since the halo bias depends on halo mass, we consider four different halo mass bins. Instead of
focusing on narrow mass bins, where our statistics will be limited, we consider all haloes above
a certain mass. We work with haloes with masses above 5×1011 h−1M� (M1), 1×1012 h−1M�
(M2), 3 × 1012 h−1M� (M3) and 1 × 1013 h−1M� (M4). The different mass bins are also
shown in Table 1. We do not consider mass bins with a higher mass cut given their very low
number density in both simulations and data.

10Note that each pair of fixed simulations consists of two simulations
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bin name M1 M2 M3 M4
mass range (h−1M�) >5× 1011 >1× 1012 >3× 1012 >1× 1013

Table 1. This table shows the different mass bins we have considered in our analysis.

case I II III

kmax 42(kmax, z) = 42(0.16hMpc−1, z)
42(kmax, z) = 42(0.12hMpc−1, z) 0.15 h/Mpc

& kmax < 0.2 h/Mpc at all z

Table 2. This table shows different criteria used to set kmax.

Another important parameter in our analysis is the minimum scale –maximum wavenumber–
used, kmax. The amount of information that can be extracted from galaxy surveys depends
critically on kmax, however modelling becomes increasingly complicated and less accurate
with increasing k. We explore the performance of our approach as a function of kmax. In
particular, following [1], we also consider the three different cases (I, II and III) for kmax. For
case I the maximum k increases in redshift so that the r.m.s of the density fluctuations is
constant in redshift and has the same value as the one for kmax = 0.16 h/Mpc at z = 0. Case
II is more conservative, having kmax = 0.12 h/Mpc at z = 0; kmax initially grows in redshift
to keep ∆2 (kmax) constant but then it saturates at kmax = 0.2 h/Mpc. Case III is simpler
and conservative, as it keeps kmax = 0.15 h/Mpc, constant in redshift. Table 2 summarizes
the different cases.

2.3 Shot-noise correction

The discreteness of haloes affects their measured clustering. To model the cosmological clus-
tering of these tracers, we need to separate halo discreteness effects from the cosmic signal in
our measurements.

A simple way to do this is by subtracting a Poisson shot-noise 1/n, where n is the tracer
mean number density, from the measured halo auto-power spectrum. In the left panel of
Fig. 1 we show the halo power spectrum for the model with massless neutrinos at z = 0 for
different mass bins. In the same panel we display with dashed lines the expected amplitude
of the shot-noise. As can be seen, on small scales, the halo power spectrum is dominated by
shot-noise, whose amplitude matches well with the expected 1/n value.

In the right panel of Fig. 1 we plot the halo bias; the amplitude of the halo auto-power
spectrum is corrected for shot-noise as explained above. The shot-noise contribution to the
halo power spectrum can become sub-Poissonian for the most massive haloes [20–22]. This
effect can be explained by the fact that the more massive haloes occupy a larger volume,
implying a halo exclusion mechanism that leads to a sub-Poissonian shot-noise. Under these
circumstances, the simple Poissonian shot-noise removal will result in unphysical, negative
values for the halo power spectrum.

In what follows we still subtract a Poisson contribution to correct for the shot-noise11,
but to make sure that sub-Poisson effects do not severely impact our results, we restrict our
analysis to scales where the amplitude of the shot-noise is less than 80% of the total halo
power spectrum. In terms of the widely used nP quantity, where n is the average tracers

11As it will be clearer later when performing parameters fit the shot noise amplitude will be corrected by a
nuisance parameter to be marginalised over, see appendix A.

– 6 –



Figure 1. Left : Halo power spectrum for the massless neutrino model for different mass ranges
at z = 0. We show the mean and the standard deviation of the 10 pairs of different realizations.
The expected Poissonian shot-noise contribution, 1/n is shown with horizontal dashed lines for the
different mass bins. Right : Halo bias after subtracting the haloes shot-noise from their auto-power
spectrum. On small scales the shot-noise becomes sub-Poissonian for the most massive halos. In this
work we restrict our analysis to scales where the amplitude of the shot-noise is smaller than 80% of
the total halo power spectrum (i.e., nP > 0.25, vertical dotted lines).

number density and P the shot-noise subtracted power spectrum, we impose nP > 0.25. The
vertical dotted lines in Fig. 1 indicate the corresponding scale.

This criteria sets a limit on the smallest scale (largest wavenumber klim) we can consider,
which is well into the non-linear regime in all cases: e.g., klim ∼ 0.55h/Mpc for the most
stringent case of mass bin M4 at z = 0. As it will be clear below, the scales of interest for
our emulator satisfy k < klim.

2.4 Perturbation theory

For a given cosmological model our emulator also computes and provides the perturbation-
theory prediction of the halo power spectrum. For this we use FAST-PT [23, 24].

FAST-PT offers a computationally efficient way to compute the power spectrum (both
of dark matter in real and redshift-space and of biased tracers) through perturbation theory
and includes bias up to second order. In our analysis we will also consider third order bias,
so we modified FAST-PT to achieve this. The use of a perturbation theory approach such
as FAST-PT ensures that BE-HaPPy can be used beyond the specific cosmology adopted
here.

We note that care must be taken when comparing predictions from FAST-PT versus
simulation outputs. The FAST-PT input power spectrum must be precisely sampled; uneven
sampling due to a finite number of significant digits will appear as numerical noise [23]. We
apply the same k-binning to both the output of FAST-PT and the simulations. This provides
a fair comparison among the two results and avoid artificial differences due to binning, that
can be important on large-scales.

2.5 Fitting procedure

We calibrate out theoretical model by fitting the model parameters to the outputs of the
N-body simulations. For each halo mass range and redshift the simulations provide the halo
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and the CDM+baryons power spectra; we compute the halo bias as

bcc(k) =

[
(Phh(k)− PSN)

Pcc(k)

]1/2

(2.6)

and estimate its errors from the dispersion of the 10 realizations of each cosmology. We then
fit our results using any of the two bias models we consider: a phenomenological polynomial
model and perturbation theory. The best-fit (i.e., the multi-dimensional maximum of the
posterior) and error bars (actually full posterior distribution) of the theoretical model param-
eters are found by using a Markov Chain Monte Carlo (MCMC) method. The procedure is
detailed in Appendix A.

While to reduce the impact of shot noise it is customary to define the bias as the ratio
between the halo-matter cross power spectrum and the matter auto power spectrum, here we
stick to Eq. 2.6. This is motivated by the fact that beyond a simple linear bias model the
two bias definitions may not coincide. We argue here that the bias obtained from Eq. 2.6 is
closer to the quantity that will be useful to interpret clustering observations. In doing so we
pay the price of a higher shot noise.

Due to the limited number of simulations we have access to, our fits do not account for
the correlation between different k-bins, i.e., our likelihood only accounts for the diagonal
part of covariance matrix. Therefore, the absolute values of the χ2 should be taken as a mere
guide of the quality of the model.

3 Halo clustering in configuration space

We begin by studying in detail the clustering of haloes in real space. We compare and calibrate
with massless neutrino simulations the two bias models adopted and then we quantify the
accuracy of our rescaling Eq. 2.4 to obtain bcc(k,Mν) for the massive neutrinos case from
bcc(k,Mν = 0).

3.1 Halo bias model I: polynomial

It is well known that the linear, scale independent bias approximation is accurate only on
very large-scales [25–28]. On smaller scales, the bias becomes scale-dependent. Following [1],
we use a simple phenomenological model and parameterize the halo bias as:

bcc(k, z) = b1(z) + b2(z)k2 + b3(z)k3 + b4(z)k4 , (3.1)

where the coefficients b1, b2, b3 and b4 are free-parameters whose values depend on redshift,
halo mass, Mν and cosmology. Eq. 3.1 is however unphysical, as isotropy constraints require
the bias to have even powers of k [29]. Nevertheless, we expect that the inclusion of the k3

term improves the quality of the fit. We also use a more physically motivated model with
only even powers of k:

bcc(k, z) = b1(z) + b2(z)k2 + b4(z)k4 . (3.2)

In both models, the value of the linear (large scale) bias is simply given by bLS
cc (z) = b1(z).

We fit the halo bias from the massless neutrinos simulations with the above two models at
different redshifts and for the different mass bins. Because of klim considerations (see section
2.3) we set kmax = {0.55, 0.54, 0.53, 0.42} h/Mpc at z = {0, 0.5, 1, 2}, respectively. We show
our results in Fig. 2.
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Figure 2. The top four panels show the halo bias for the four different mass bins (color lines)
at four different redshifts (different panels) for the model with massless neutrinos. The fits for the
phenomenological models of Eqs. 3.1 (black solid lines) and 3.2 (black dashed lines) only include
k < klim (excluded scales shown as a grey region). The bottom four panels show the ratio between
the halo bias obtained from the simulations and the fit. For clarity we only show the average ratio of
the four different mass ranges. (Individual mass bins are shown in appendix B, in the fitting range
were is not much difference hence justifying showing the mean behaviour). Both models reproduce
the halo bias within ' 1% in the relevant k range at all redshifts for all mass bins.
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Both approaches yield a very good fit (under ∼ 1% until kmax); the presence of the
extra parameter, b3, slightly improves the quality of the fit on large scales. The best-fit values
of the coefficients for all mass bins and redshifts are reported in Appendix D. Because of its
slightly better fit at the largest scales, and for direct comparison with Ref. [1], unless otherwise
stated in what follows our reference “polynomial" bias model is that of Eq. 3.1. The values
of the coefficients for the odd-powers polynomial model are provided by Be-HaPPy. This
polynomial bias model as calibrated here might not perform as well for different cosmologies.
For this reason we introduce below a more flexible bias model that can easily account for
varying cosmological parameters.

3.2 Halo bias model II: perturbation theory

A more physically motivated model is the perturbation theory-based, non-linear bias expan-
sion [30–33]. This approach has the advantage that the dependence on cosmology is naturally
included. Saito et al. [33] showed that a good model to describe the (shot-noise subtracted)
halo power spectrum in N-body simulations in the mildly non-linear regime can be obtained
by including up to third-order nonlocal bias terms:

Phh(k) = b21Pcc(k) + 2b2b1Pb2,cc(k)

+ 2bs2b1Pbs2,cc(k) + 2b3nlb1σ
2
3P

lin
cc (k)

+ b22Pb22(k) + 2b2bs2Pb2s2(k) + b2s2Pbs22(k)

(3.3)

where Pcc(k) is the non-linear CDM+baryons power spectrum, P lin
cc is the linear CDM+baryons

power spectrum, b1 is the linear bias, b2 2nd-order local bias, bs2 2nd-order non-local bias
and b3nl 3rd-order non-local bias12. All other terms represent n-loop power spectra (always
for CDM+baryons) whose exact expressions can be found in the Appendix C or in [31]. The
second-order bias expansion consists of all the terms involving the first and second order
coefficients b1, b2 and bs2, while the third order expansion also includes the b3nl term whose
explicit expression is reported in Appendix E. Since FAST-PT does not incorporate this term,
we have modified it to account for it.

If the bias is assumed to be local in Lagrangian space, then the Eulerian bias is non-local
but the values of bs2 and b3nl are related to b1: bs2 = −4/7(b1 − 1) and b3nl = 32/315(b1 − 1)
[30–34]. Without this constraint, with both bs2 and b3nl as free parameters, one accounts for
a more general case of a non-local Eulerian bias model. In this work we keep b1 and b2 as free
parameters, and consider two possibilities for bs2 and b3nl: 1) set them to −4/7(b1 − 1) and
32
315(b1−1) (local bias in Lagrangian space), respectively, and 2) leave them as free parameters.

Eq. 3.3, either at second or third order, represents thus our model for the halo power
spectrum in configuration space. Note that thanks to Eq. 2.4, this perturbation theory-
based model is only used for the massless neutrinos cases, which is where its validity and
performance has been extensively tested. The halo bias bcc is then obtained from the ratio
between Phh(k) and Pcc(k), which we fit to the N-body simulations with massless neutrinos
for the different mass ranges and redshifts. We show the results in Fig. 3 where we have set
kmax = 0.15 h/Mpc at all redshifts (case III).

The different perturbation theory models reproduce, within ' 1%, the results of the
simulations in all cases. As predicted by Saito et al. [33], we also find that (although not

12This term encompasses various non-local third-order terms. Since it results in a k-dependent factor that
multiplies the linear power spectrum, its contribution become relevant at “large” scales [34] and is therefore
considered here. See also Appendix E.
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Figure 3. The top panels show the halo bias from the simulations with massless neutrinos for
different mass ranges (colored lines) at different redshifts (different panels). We fit these results with
the perturbation theory-base model for halo bias (see Eq. 3.3) up to kmax = 0.15 h/Mpc. We show
the best-fits for the models with second-order bias (dashed), third order bias with bs2 and b3nl as
free parameters (dotted) and third order bias with bs2 and b3nl fixed (dot-dashed). The black solid
lines correspond to the polynomial model fit up to the same kmax. The bottom four panels show
the ratio between the best-fit models and the results of the simulations. For clarity, we only show
the average ratio of the four mass ranges. The models based on perturbation theory work as well as
the polynomial model Eq. 3.1 (within 1% for the fitted k-range) but perform better on extrapolation
beyond kmax.
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Figure 4. Reduced chi square, χ2/dof, as a function of kmax for the halo bias fit for the mass range
M4 (similar results hold for the other mass ranges) from the massless neutrino simulations: polynomial
model (blue line) and the different perturbation theory models (orange, green and red; see legend) at
different redshifts. While the absolute χ2 amplitude is not meaningful, a sharp increase in χ2 with
kmax denotes breakdown of the model. In general, the perturbation theory model that performs better
is the third order bias with free bs2 and b3nl.

easily apparent from the figures) the model where bs2 and b3nl are left as a free parameters
performs slightly better than the model where they are fixed, in particular on large-scales.

For comparison we also show the polynomial bias model fitted to the same kmax. The
models based on perturbation theory work as well as the polynomial model (within 1% for
the fitted k-range) but perform better on extrapolation beyond kmax.

The best-fit values of the bias coefficients for the different perturbation theory models
of this section, for all the mass bins and redshift snapshots are reported in Appendix F.

3.3 Performance as a function of kmax and discussion

Above we adopted kmax = 0.15 h/Mpc when fitting the perturbation theory models to the
results of the simulations, finding excellent agreement. This is not surprising since these are
mildly-non linear scales. Given the extra information present on smaller scales we explore
performance of the model as a function of kmax.

In Fig. 4 we show the value of the reduced chi square, χ2/dof, as a function of kmax

at different redshifts for the massless neutrino case and for mass bin M4. Since in the fit
we do not account for the correlations between k-bins, the absolute value of the χ2 is not
meaningful, but relative values can be used to compare models. As expected, perturbation
theory works very well on large scales, but it fails on small scales: perturbation theory-based
halo bias models breaks down at k ∼ {0.15, 0.2, 0.25, 0.3} h/Mpc at redshifts z = {0, 0.5, 1, 2}.
Of the perturbation theory based models, the one with more free parameters, 3rd order bias
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with free bs2 and b3nl, always performs better. For comparison we also show the performance
of the polynomial model. Very similar results hold for the other mass ranges.

BE-HaPPy implements both the polynomial and the perturbation theory models. The
polynomial model is very accurate on small scales and very fast to evaluate, but its cosmology-
dependent part is very approximate and the model itself is not physically well motivated. The
perturbation theory models are on the other hand well motivated theoretically, correctly in-
corporate the dependence on cosmology but its range of validity is smaller than the polynomial
model and is more computationally expensive to evaluate. Depending on the requirement of
the problem, the user has the freedom to choose between the two approaches.

Inspection of the reported errors on the best fit bias parameters in Appendix D and F,
indicates that the perturbative expansion coefficients are much better constrained than the
polynomial fit coefficients. Not surprisingly, the bias coefficient that more closely determines
the large-scale bias is the best constrained parameter, with similar errors across the different
models.

This is in large part because we report marginalised errors, and in the polynomial model
the parameters are much more correlated than in the perturbation theory-based approach.
The parameters of the perturbation theory-based approach are reasonably well constrained,
even the third order bias. Our interpretation is that the parameters in the perturbative
expansion are "physical" parameters and as such have well defined and roughly independent
effects on the observables. While the coefficients in the polynomial expansion are effective
parameters, which, taken individually, do not correspond to a specific physical effect. As a
result they are more correlated. We thus conclude that the the perturbation theory approach
represent a better "basis" to retrieve information on bias and cosmology.

We envision that these considerations may be useful even for application beyond the
scope of this paper.

3.4 Massive neutrinos

We now discuss how to connect the real-space halo-bias for the massless neutrino case to
that in the massive neutrino case; in other words we estimate the performance of Eq. 2.4. In
analyses where the overall bias amplitude is a nuisance parameter, the correct calibration of
bLS
cc becomes unimportant.

The approach of Eq. 2.4 requires the value of the linear bias in the massive neutrinos
case. We will assume that analytical bias models, while not accurate enough to reproduce
the linear bias from simulations at percent-level, can reproduce the ratio of the linear bias to
the required accuracy:

bLS
cc (Mν 6= 0)

bLS
cc (Mν = 0)

=
bLS
cc,model,Mν 6= 0)

bLS
cc,model(Mν = 0)

, (3.4)

where bcc refers to the value of the simulations’ bias (i.e., the square root of the ratio between
Phh and Pcc) while bcc,model stands for the analytic value of the large-scale bias, which can be
calculated as:

bLS
cc,model(z,Mbin) =

∫Mmax

Mmin
n(M, z) b(M, z)dM∫Mmax

Mmin
n(M, z)dM

, (3.5)

where n(M, z) and b(M, z) are the analytic halo mass function and linear (scale-independent)
halo bias at redshift z for haloes of mass M . The right-hand side of Eq. 3.4 can then be
computed numerically without running expensive simulations. In our calculations we have
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Figure 5. The top panels show the halo bias of the massive neutrino model for different mass ranges
at different redshifts. The solid lines represent the results of the N-body simulations, while the dashed
lines correspond to our prediction through Eq. 3.6. For clarity we do not show the scatter of the
simulations results (they are very similar to those of the massless neutrino model). The bottom
panels show the ratio between simulations outputs and the model fit. In all cases, we only fit up to
kmax = 0.15 h/Mpc. The lines show the mean among the four different mass ranges. We find that
our model to relate the bias of massive neutrino models to massless neutrinos models works very well
down to the smallest scale we consider. Our perturbation theory model is also able to accurately
describe the results of the simulations up to kmax.
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made use of the Crocce et al. halo mass function [35] while we use the fitting formula of Tinker
et al. [36] to estimate the halo bias13. We emphasize that in order to compute bLS

cc,model(Mν)
we have used the CDM+baryons power spectrum and not the total matter power spectrum.
We show below that the above formula works very well.

We can finally express the halo bias in models with massive neutrinos as a simple function
of the halo bias in the model with massless neutrinos (see Eq. 2.4):

bcc(k,Mν) = bcc(k,Mν = 0)αmodel = bcc(k,Mν = 0)
bLS
cc,model(Mν)

bLS
cc,model(Mν = 0)

. (3.6)

As discussed around Eq. 2.4, supported by Refs. [1, 2, 4–6] here we assume that the
definition of the bias with respect to cold dark matter + baryons removes all scale dependence
due to neutrino mass on linear and mildly non-linear scales. As a consequence the only effect
of massive neutrino is a change of overall amplitude. Values of the α coefficients as a function
of mass bin and redshift are shown in Appendix J. In practice this means that all the bias
coefficients (b1, b2, bs2 and b3nl) must be rescaled by αmodel to achieve Eq. (3.6) for bcc. The
above equation is expected to hold when the models with massive and massless neutrinos
share the value of Ωm, Ωb, h, ns and As. In the top panels of Fig. 5 we show with solid lines
the halo bias of the massive neutrino model at different redshifts for different halo masses.
The dashed lines in the top panels display our prediction using Eq. 3.6. As can be seen, the
agreement is excellent in all cases; under 1% for the scales of interest and below 5% all the
way to k = 1 h/Mpc at z = 2.

On small scales, for very massive haloes and at high-redshift some differences appear be-
tween the simulations and our rescaling procedure. This is somewhat expected (see discussion
after Eq. 2.4) since massive haloes are highly biased (see appendix B for a figure with mass-bin
dependence of the fit residuals.) Note that most deviations happen beyond the interesting
k-range used for the fit, making this issue not too crucial. However it is expected that σ8 will
affect the bias coefficients. The massive and massless neutrinos simulations despite having
the same As have different σ8. Interestingly, Appendix I shows that large part of the effect is
due to the different σ8 between the massless and massive simulations, indicating that Eq. 2.4
holds when σ8 is kept constant and not the primordial amplitude As. A detailed discussion
on this point has been presented in Refs [37–39], therefore a more thorough discussion goes
beyond the scope of this paper.

To highlight the accuracy of the fitting and rescaling procedure, we compare the massive
neutrinos simulations’ bias with our bias models in the bottom panels of Fig. 5 (see caption
for details). We find that these models are able to describe very accurately, ' 1% level, the
massive neutrinos simulations’ outputs. Similarly to what is shown in Fig. 4, in Fig. 6 we
show the value of the reduced chi square, χ2, as a function of kmax for the massive neutrinos
case. The sharp increase in χ2 with kmax denoting breakdown of the model happens at very
similar scales as in Fig. 4 for the massless neutrinos case.

13The use of the Crocce mass function is motivated by the fact that we find halos in our simulations
with the friends-of-friends algorithm. The Tinker mass function is accurate for halos found via the spherical
overdensities method. Note that we use the Tinker halo bias fitting formula, not the peak background-
split halo bias derived from the Tinker mass function. While in principle one could have derived the peak
background-split halo bias from the Crocce mass function, this has not been presented in the literature and
it goes beyond the scope of this paper.

– 15 –



Figure 6. Reduced chi square, χ2/dof, as a function of kmax for the halo bias fit for the mass range
M4 (similar results hold for the other mass ranges) from the massive neutrino simulations: polynomial
model (blue line) and the different perturbation theory models (orange, green and red; see legend)
at different redshifts. While the absolute χ2 normalisation is not meaningful, a sharp increase in χ2

with kmax denotes breakdown of the model. In general, the perturbation theory model that performs
better is the third order bias with free bs2 and b3nl.

4 Halo clustering in redshift-space

Peculiar velocities induce clustering anisotropies along the line of sight called redshift-space
distortions (RSD). RSD if accurately modelled, can be used to to retrieve cosmological infor-
mation, such as the growth rate of matter perturbations. Here we build on [12, 40] to model
the effects of massive neutrinos on halo bias in redshift-space.

Below we present the four different models we consider to describe redshift-space distor-
tions before quantifying the accuracy of our models against the simulations’ results.

4.1 RSD model I: Linear theory, Kaiser

Villaescusa-Navarro et al. 2018 [12] showed that, at linear level –Kaiser RSD [41]–, the (shot-
noise subtracted) halo power spectrum in redshift-space (indicated by the s superscript) in
models with massive and massless neutrinos is given by

P shh(k, µ) = (bcc + fcc µ
2)2Pcc(k) , (4.1)

where Pcc(k) is the CDM+baryons power spectrum, µ the cosine of the angle with respect
to the line of sight and fcc is the linear CDM+baryons growth rate (d ln

√
Pcc(k, a)/d ln a,

with a the scale factor) of the CDM+baryons component. While in the original Kaiser [41]
formulation the configuration space power spectrum should be the linear one, in what follows
we will use a non-linear Pcc(k) in Eq. 4.1 as well as the full scale-dependent bcc(k). In the
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figures below we will use Pδδ computed with FAST-PT (see Appendix G) from a CDM +
baryons linear power spectrum for Pcc(k) and our model (see captions) for bcc(k).

4.2 RSD model II: Scoccimarro

Scoccimarro [42] was among the firsts to propose a non-linear extension of the large-scale,
linear Kaiser model for RSD:

P s(k, µ) = Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k) (4.2)

where P s(k, µ) is the matter power spectrum in redshift-space14, Pδδ(k), Pδθ(k) and Pθθ(k)
are the density, density-velocity and velocity power spectrum, respectively.

For our purposes, in models with massive neutrinos, the density and velocities and
therefore the power spectra are the ones of the CDM+baryons field, not of the total matter
field. Pδθ and Pθθ have the same shape as Pδδ, and thus can be computed with FAST-PT in
the same fashion. As an example we take Eq. 64 of [42]:

Pθθ(k) = P (k)︸ ︷︷ ︸
linear part

+ 2

∫
[G2(p, q)]2P (p)P (q)d3q︸ ︷︷ ︸

P22(k)

+ 6P (k)

∫
G3(k, q)P (q)d3q︸ ︷︷ ︸
P33(k)

(4.3)

where G2(p, q) and G3(k, q) are perturbation theory kernels. The P22 convolution integrals
are computed using spherical harmonics after the kernel is expanded in Legendre polynomials
(cf. section 2.2 of [23]). The P13 integrals are more difficult because the wavenumber structure
is different and the kernels are more complicated. It also requires regularization to correct
for IR divergence (see Sec. 2.3 and 2.4 of [23]). As a cross check of our implementation, we
compare the results of Scoccimarro et al. [42] with our calculations, obtained using similar
cosmological parameters to theirs, finding a good agreement (see Fig. 15 in Appendix G). To
generalise Eq. 4.2 to haloes we use

P shh(k, µ) = b2cc(k)Pδδ(k) + 2bcc(k)fµ2Pδθ(k) + f2µ4Pθθ(k) . (4.4)

4.3 RSD model III: TNS

The above model is the basis for one of the most popular models of redshift-space distortions:
the Taruya, Nishimichi and Saito (TNS) model [43] where several coefficients were added to
the Scoccimarro model to account for the mode coupling between the density and velocity
fields. In summary TNS adds two “coefficients”, A and B, that depend on k, µ and f to
Eq. 4.2.

FAST-PT incorporates routines to compute these coefficients for the matter power spec-
trum. If we apply a linear bias to the matter fluctuation δg −→ b1δ(x), it is easy to show
that expressions for the A and B coefficients for the halo power spectrum become15:

A(k, µ, f)⇒ b31A(k, µ, β) (4.5)

B(k, µ, f)⇒ b41B(k, µ, β) (4.6)
where b1 is the linear bias, β = f/b1. While a linear bias approximation is not sufficient

for this model, as indicated in [31, 33, 43] the bias coefficient in front of the A and B functions,
which are higher-order corrections, is the linear one i.e., b1.

14In what follows in order not to carry too many subscripts when in redshift space and when not ambiguous
we will drop the mm subscript from the matter power spectrum symbol.

15A and B are in fact proportional to b2, the other powers of b come from the kµf factor in the integrals of
A(k, µ, f) and B(k, µ, f).
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4.4 RSD model IV: eTNS

To go beyond linear bias, we consider the so-called eTNS bias model [31, 33].

P shh(k, µ) = Phh(k) + 2fµ2Ph,δθ(k) + f2µ4Pθθ(k) + b31A(k, µ, β) + b41B(k, µ, β) (4.7)

where b1 is the linear bias, β = f/b1 and it is assumed that there is no velocity bias. Phh(k)
is given by Eq. 3.3 and the expression of Ph,δθ(k) is given by [31]

Ph,δθ(k) = b1Pδθ(k) + b2Pb2,δ(k) + bs2Pbs2,δ(k) + b3nl σ
2
3 P

lin(k) . (4.8)

We limit ourselves to the linear bias term when computing the A and B correction terms
in Eq. 4.7. Of course, for models with massive neutrinos, the above quantities need to be
computed by using the CDM+baryons power spectrum, not the total matter power spectrum.

4.5 Fingers of God

The motions of particles/galaxies inside haloes induce a characteristic feature in redshift-
space: the so-called Fingers-of-God (FoG). When modeling redshift-space distortions, it is
important to account for this effect, as it dominates the amplitude and shape of the power
spectrum on small scales but can also propagate to large scales.

Here we characterize the FoG as:

F (k, µ) = exp
[
−k2f(z)σv(z)

2µ2
]

(4.9)

where σv(z) = D(z)σ0, D(z) is the linear growth rate of perturbations normalised to unite
at z = 0 and σ0 is a free parameter representing the effective velocity dispersion of parti-
cles/galaxies inside halos. This approach goes under the "streaming" models category i.e.,
the FoG term is treated independently of the linear and mildly non-linear effects. The effect
of FoG on the clustering of haloes should be small if not negligible, but BE-HaPPy allows
the user to optionally include it16.

4.6 Comparison to massless neutrinos simulations

From the massless neutrino simulations, we computed the monopole of the halo redshift-space
power spectrum for different mass ranges at different redshifts. To improve the statistics, we
have taken the average of RSD along the three cartesian axes. The simulation outputs are
used to study the accuracy of our theoretical models: the Kaiser (Sec. 4.1, with non-linear
rather than linear power spectrum– hereafter non-linear Kaiser), Scoccimarro (Sec. 4.2), TNS
(Sec. 4.3) and eTNS (Sec. 4.7).

For each of the above models, we fit the massless neutrinos simulations’ redshift-space
power spectrum monopole at different redshifts and for different mass ranges and kmax = 0.15
h/Mpc. In this case we do not fit for the value of the bias parameters, but use the values we
obtained from the real space fit. Thus, the only free parameter is σ0. We show the results in
Fig. 7. The best fit σ0 is in the range 6 − 8 Mpc/h which is consistent with the findings of
e.g.,[44].

All models are able to describe the clustering of haloes in redshift-space [LV: as observed
in the HADES simulations] up to kmax, with percent accuracy. As expected, the model that

16 A small but possibly non-negligible value for σ0 for halos has been found in the literature before [44]. It
can be argued that this extra degree of freedom absorbs high k residuals in the fit arising from limitations of
the modelling.
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Figure 7. The top panels show the massless neutrinos N-body simulations’ redshift-space power
spectrum monopole for different mass ranges at different redshifts. We then fit these results using our
four different theoretical models: non-linear Kaiser 4.1 with polynomial bias (solid black), Scoccimarro
4.2 with polynomial bias (dashed black), TNS 4.3 with polynomial bias (dotted black) and eTNS 4.7
(dot-dashed black). In all cases we set kmax = 0.15 h/Mpc for the fit (case III). The bottom panels
display the ratio between the fits and the simulations outputs. For clarity, we show the average results
of the four different mass ranges. The models reproduce accurately the results of the simulations,
with the eTNS performing better in all cases.
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Figure 8. Reduced chi square, χ2/dof, as a function of kmax for the halo power spectrum fit for the
mass range M1 (similar results hold for the other mass ranges) from the massless neutrino simulations
in redshift-space: eTNS model at different redshifts. While the absolute χ2 normalisation is not
meaningful, a sharp increase in χ2 with kmax denotes breakdown of the model.

performs better is eTNS, with sub-percent accuracy on a wide k-range. The deviations of
the model at the largest scales (top left panel of the bottom half of Fig. 7) are probably due
to sample variance. In fact, to reproduce more closely a realistic analysis, we have used the
FAST-PT non-linear Pcc(k), instead of the simulations outputs. We have checked that using
the simulations outputs for Pcc(k) instead, the deviation effectively disappears.

To qualitatively assess the (small scales) breakdown of the modelling in redshift-space,
in Fig. 8 we show the reduced chi square, χ2/dof, as a function of kmax for the eTNS model.
The behaviour (the χ2 dependence on the the redshift and different bias models but weak
dependence on the mass bins is expected from perturbation theory.).

4.7 Comparison to Massive neutrinos simulations

We finally quantify the performance of our approach for the redshift-space massive neutrinos
case. The massless to massive neutrinos models re-scaling Eqs. 2.4 and 3.4 for the Kaiser
Eq. (4.1) and Scoccimaro Eq. (4.2) models is straightforward, since the full expression of the
bias bcc(k) appear explicitly in the equations. For the other models, all the perturbation
theory bias coefficients b1, b2, bs2 etc. (calibrated in real space and for massless neutrinos)
must be rescaled according to Eq. 3.6 and related discussion.

We use the halo bias bcc model (or alternatively the αmodel for the bias parameters in TNS
and eTNS) calibrated in real space for massless neutrinos, leave σ0 as a free parameter (in the
spirit that in any analysis it will be a nuisance parameter to be marginalised over) re-scale
the bias coefficients in the presence of massive neutrinos (eq. 3.6) and apply the redshift-
space mapping of Sec. 4.1, 4.2, 4.3, 4.4 with the FoG modelling of Sec. 4.5. To quantify the
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Figure 9. Residuals between bcc(k) in redshift-space from BE-HaPPy and bcc(k) calibration done
for (configuration space) massive neutrinos simulations. See Tab. 3 for details. The > 1% deviations
at high k and high z arise from the σ8 mis match, see Appendix I.

performance of this approach (calibration on massless neutrino simulations and rescaling) we
compare this (benchmark) to a fit to bcc (or the perturbation theory bias parameters) done
directly on the massive neutrino simulations outputs (in real space). A summary is reported
in Tab. 3. The comparison is shown in Fig. 9.

fit of Mν 6= 0 sims BE-HaPPy
bias coefficients fitted on bcc(k,Mν = 0.15) fitted on bcc(k,Mν = 0.0)

linear bias b1 input for
A 4.5 and B 4.6 coefficients fitted on bcc(k,Mν = 0.15) fitted on bcc(k,Mν = 0.0)

velocity dispersion free parameter free parameter
rescaling no yes

Table 3. Benchmark of Be-HaPPY performance in Fig. 9. BE-HaPPy (third column) uses only
massless neutrino simulations to calibrate the fit and obtains bcc via rescaling. The performance of
this is quantified by comparing it to a bcc fit done on massive neutrino simulations (second column).

The performance is qualitatively similar to that of the massless neutrinos case except
for the highest redshift panel. The > 1% mis match at high k and high z arises from the σ8

mis match (See discussion below Eq. 3.6 and Appendix I).
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5 BE-HaPPy

BE-HaPPY, that stands for Bias Emulator for Halo Power spectrum Python is a plug-in
designed to be implemented in MCMC softwares17. The primary goal of BE-HaPPY is to
accurately predict the halo power spectrum in real- and redshift-space in a very computation-
ally efficient manner. Explanations on the installation of the code, its usage and its various
components are available on the author github account18.

BE-HaPPY as a plug-in for MontePython [45] can be ran in two modes: calibration
mode and emulator mode.

In the calibration mode the code goes through all the calibration steps described in
this paper. It provides our modified FAST-PT and the calibration procedure. The user must
supply the necessary simulations outputs. In this way cosmologies different from the fiducial
one used here (and different mass ranges, redshifts snapshots etc.) can be explored. While
we expect that for cosmologies consistent with current data, and for the expected precision of
forthcoming surveys the provided calibration is good enough , it may be of interest to explore
detailed dependence of calibration for other cosmological models to adjust to the required
precision of next generation surveys.

The good performance of the rescaling Eq. 3.6 implies that only calibration on massless
neutrinos simulations is really necessary, provided that the corresponding massive neutrinos
case of interest has the same values for the other cosmological parameters and in particular
the same value for the σ8 parameter. Of course, if the user envisions marginalising over the
overall bias amplitude, calibration is also only necessary on massless neutrinos simulations.
However, as long as the other cosmological parameters do not vary much, we expect our
modelling to still perform well.

In the emulator mode, BE-HaPPY uses the templates, bias coefficients and RSD
modelling calibrated for our fiducial cosmology (or user supplied as a result of a previous
calibration mode run) to provide an emulator for the halo bias. This is then used in the
standard MCMC run. The implicit approximation done here is that in the MCMC exploration
of parameter space, the cosmology does not deviates too drastically from the fiducial one as
to invalidate the calibration. This is more of a concern for the polynomial bias modelling
than for the perturbation theory-based one. Note that marginalisation over bias parameters
(with user-supplied priors) is also an option of the code, thus making this mode (emulator+
bias parameters marginalisation) very robust to the choice of cosmology. Although beyond
the scope of this paper, one could envision sampling the (cosmological) parameter space also
for other parameters than neutrino mass and use techniques such as Gaussian processes to
extend our modelling beyond the fiducial cosmology adopted here. BE-HaPPY would still
provide the workhorse for such an effort. It could provide calibration in several regions in
parameter space around specific sets of cosmological parameters. The the Gaussian processes
approach (or similar) would smoothly interpolate across these regions.

Below we summarise the features of BE-HaPPY, more info can be found in the code
repository.

1. Four cumulative mass bins are available (see Table 1).

17Our current implement supports only MontePython [45]
18https://github.com/Valcin/BE_HaPPy.The code in emulator mode and calibration mode will be made

available on the same repository. In this modality the code relies on our extension of the FAST-PT software,
so any public release must be coordinated across different collaborations.
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2. Results for four different kmax values; cases I, II and III (see Table 2).

3. Outputs between z = 0 and z = 2; calibrations at redshifts 0, 0.5, 1 and 2 and interpo-
lations in between.

4. Three models of bias are available: 1) linear, 2) polynomial (Sec. 3.1), and 3) pertur-
bation theory expansion up to third order (Sec. 3.3).

5. Four RSD models are available: (non-linear) Kaiser (Sec. 4.1), Scoccimarro (Sec. 4.2),
TNS (Sec. 4.3) and eTNS (Sec. 4.4).

6. The user has the option to include the Fingers of God term (Sec. 4.9) with σ0 as a free
parameter.

7. Text files of bias coefficients and PT terms. User has the option to substitute these
with those for a different model/calibration.

BE-HaPPy is designed to work with both models with massless and massive neutrinos.
Importantly, the output for the massive neutrinos models is obtained through our proposed
rescaling of the bias for massless neutrinos. This reduces the dimensionality of the parameter
space, enabling a faster calculation. BE-HaPPy allows the user to output halo bias results
with respect to CDM+baryons or total matter (Eq. 2.5).

We calibrated the emulator so BE-HaPPy achieves percent or sub-percent precision
on the scales of interest (see Figs. 3, 5 (bottom panel), 7 and 9 (bottom panel)). This is
the precision level achieved in fitting the relevant quantities from the HADES simulations.
This is not necessarily the accuracy level achieved in fitting the relevant quantities in the
real Universe. Moreover this calibration may not work as well for cosmologies that differ
significantly from our fiducial one and used in the simulations.

We designed the code to be as modular as possible, providing text files for the required
quantities (bias and perturbation theory coefficients). While we use FAST-PT to compute
the non linear density spectrum Pcc(k) this can be substituted by another cosmic emula-
tor (e.g.,[46]) or Halofit [47]. It is also possible to use softwares like RelicFast to include
large-scales linear effects not included here. BE-HaPPy may also be used with a different
cosmological model as a test. To keep track of the impact of any deviations from our settings,
we added an "error" feature in the code where the user can access the relative error (value
and percentage) at each k of the selected arrays between the power spectra computed by
BE-HaPPy and those obtained from the original suite of N-body simulations we used for
the calibration. This feature is only available for the cosmology and neutrino masses (Mν = 0
and Mν = 0.15 eV) models of the simulations considered here.

6 Conclusions

We have presented fast and accurate modelling of the halo bias in Fourier space which includes
the effect of massive neutrinos and applies to both real and redshift-space. The modelling has
been calibrated on a suite of state-of-the-art N-body simulations (the HADES simulations).

Our approach relies on the fact that, unlike that defined with respect to the total matter,
the halo bias with respect to the CDM+baryons, bcc, does not show extra scale dependence
induced by –and dependent on– neutrino masses. Hence we have provided a detailed cal-
ibration and analytic expression of bcc(k) which holds into the mildly non-linear and even
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non-linear regime. We have used two approaches: one phenomenological, where the halo bias
takes a polynomial form in k, and a perturbation-theory based.

The bcc(k) model so calibrated on massless neutrinos simulations can then be converted
to that for massive neutrinos models by a simple (analytic) amplitude rescaling. While we have
carefully quantified how this rescaling works, and tested its performance with massive neutri-
nos N-body simulations, it is important to keep in mind that in most cosmological analyses
the (scale-independent) bias amplitude is treated as a nuisance parameter and marginalised
over. The scale dependence of the halo bias however is important and must be accurately
modelled as it has been shown that if neglected can induce statistically significant systematic
shifts in the recovered cosmological parameters from forthcoming surveys.

The polynomial bias model reaches percent to sub-percent accuracy into the non-linear
regime, the perturbation theory based model achieves the same accuracy only in the mildly
non-linear regime. The modelling of redshift-space distortions, being also perturbation theory-
based, reaches percent to sub-percent accuracy in the mildly non-linear regime. This is the
accuracy level at which the relevant quantities of the input simulations are being recovered
by BE-HaPPy. This reported accuracy level does not take into account that the input
simulations may not be a sub-percent description of the Universe. For example only specific
halo mass bins were considered, the mass resolution of the simulations is set as well as the
fiducial cosmology. With the advent of more accurate simulations BE-HaPPy should be
re-calibrated.

Observable tracers such galaxies are are likely to reside in dark matter halos, so while
the model we provide here for the halo bias might not be sufficient to interpret future galaxy
surveys, it is a necessary preliminary ingredient.

We provide a fast emulator for the halo bias (BE-HaPPy). BE-HaPPy returns the
halo bias as function of scale, redshift and halo mass, in real or redshift-space for both mass-
less and massive neutrino cosmologies, as well as the perturbation theory-based non-linear
redshift-space halo power spectrum. The user can select which modelling to use, the scales of
interest and other option about e.g., redshift-space distortions implementation. BE-HaPPy
is fast enough to be included in standard Markov chain Monte Carlo runs at only small ad-
ditional computational cost. Since we have calibrated BE-HaPPy on a concordance ΛCDM
set of cosmological parameters, the polynomial bias model might be less robust to change
of cosmology than the perturbation theory approach. For cosmological models significantly
different from the concordance ΛCDM we recommend the users to check the BE-HaPPy
performance and if needed to re-calibrate it.

The next-generation large-scale structure surveys will provide unprecedented wealth of
information about the clustering properties of the Universe provided that the modelling tools
used reach the required accuracy. BE-HaPPy aspires to be one of them. It provides an easy
solution to compute the halo power spectrum in massive and massless neutrinos cosmologies
taking into account crucial effects such as scale-dependent bias, neutrino bias or redshift-space
distortions. It can be easily re-calibrated on user-supplied simulation outputs which accuracy
should match the required accuracy of the model, set, in turn, by the expected precision
achievable from the data set of interest. The design of the code makes it possible to use as
a complement to other cosmological codes or even to add other cosmological phenomena like
Alcock-Paczynski, wide-angle or GR corrections. We envision it will be useful for the analysis
of next-generation surveys such as Euclid, DESI, WFIRST, SKA, PFS, EMU and LSST.
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A MCMC fitting

We used the MCMC ensemble sampler emcee [48] to fit the bias coefficients and quantify
their error using least squares results as initial guesses.

The errors on the bias as a function of wavenumber k is given by the standard deviation
of the 10 pairs of realizations. Covariance between different k-bins is ignored, given the limited
number of available simulations. This is justified by simplicity and by the fact that we work
in the linear and mildly-non-linear regime. The likelihood is taken to be Gaussian. This is a
standard assumption widely used in the literature. In reality, even if the over-density field is
Gaussian (which is not because of bias and gravitational instability), its power spectrum does
not follow a Gaussian probability distribution. However for band powers, especially those
populated by many modes and therefore with better signal to noise, the central limit theorem
ensures that the the Gaussian approximation holds well. The parameters to fit are the set
of the bias parameters of the model, for each of the four redshift snapshots (nz) and each of
the four mass bins (nM ) . Hence the total number of parameters nparams is nz ×nM ×nmodel

where nmodel is 4 for the polynomial model, 3 for the polynomial model with only even powers
of k, and 4 or 5 in the perturbation theory-based fits. We use uniform improper priors for all
the parameters.

Emcee used 300 walkers and 1000 steps for each walker. Illustrative cases for the
posteriors for the bias parameters of the models considered are shown in Figs.10-11 (see
figure caption for details).

The best fits of each bias parameter, and errors marginalised over all other parameters,
as function of the mass bins and redshift snapshots are reported in tables Appendix D and
F. We introduced a shot noise correction parameter, to account for non-Poisson behaviour
of shot noise, which is marginalised over. The value of this parameter is not reported here
because it is kept as a nuisance parameter in BE-HaPPy.

B Fit to the halo bias, dependence on mass bin

For completeness we report the ratio between the halo bias obtained from the simulations
and the fit (Fig 2.) for each mass bin. We also report the mass deendenve of the residuals to
the bias fit for (Fig 5), only for z = 1 which is where the effect we discuss becomes evident.
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Figure 10. Posteriors for the bias coefficients for the polynomial model, mass bin M1, z =0, kmax =
0.12 h/Mpc, case II

C PT terms

For completeness we report here the expression for the perturbation theory terms used the
main text.

Pb2,δ(k) =

∫
d3q

(2π)3
P lin(q)P lin(|k − q|)F (2)

s (q, k − q) (C.1)

Pb2,θ(k) =

∫
d3q

(2π)3
P lin(q)P lin(|k − q|)G(2)

s (q, k − q) (C.2)

Pbs2,δ(k) =

∫
d3q

(2π)3
P lin(q)P lin(|k − q|)F (2)

s (q, k − q)S(2)
s (q, k − q) (C.3)

Pbs2,θ(k) =

∫
d3q

(2π)3
P lin(q)P lin(|k − q|)G(2)

s (q, k − q)S(2)
s (q, k − q) (C.4)

Pb22(k) =
1

2

∫
d3q

(2π)3
P lin(q)

[
P lin(|k − q|)− P lin(q)

]
(C.5)

Pb2s2(k) = −1

2

∫
d3q

(2π)3
P lin(q)

[
2

3
P lin(q)− P lin(|k − q|)S(2)

s (q, k − q)
]

(C.6)

Pbs22(k) = −1

2

∫
d3q

(2π)3
P lin(q)

[
4

9
P lin(q)− P lin(|k − q|)S(2)

s (q, k − q)2

]
(C.7)

where F (2)
s , G(2)

s and S(2)
s are 2nd order Perturbation Theory kernels.
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Figure 11. Posteriors for the bias coefficients for the perturbation theory-based 2nd order expansion
model. Mass bin M1, z =0, kmax = 0.12 h/Mpc, case II

D Bias coefficients: polynomial fit

In Tab.4,5,6 and 7 we report the best fit bias coefficients and their marginal errors for the
polynomial model of Sec. 3.1.

Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 b3 – err b3 + err b3 b4 –err b4 + err b4
M1 0.845 0.005 0.005 -0.898 3.833 3.81 -6.75 53.83 54.688 12.125 205.818 203.14
M2 0.888 0.006 0.006 0.893 4.916 4.924 -21.222 69.02 68.804 42.956 254.91 256.332
M3 1.023 0.008 0.008 5.545 6.222 6.225 -79.71 86.735 87.672 245.958 326.821 322.981
M4 1.29 0.012 0.012 1.655 10.178 10.163 -38.373 145.538 144.508 102.042 545.552 555.432

Table 4. Polynomial model coefficients of bcc; kmax = 0.15 h/Mpc, z = 0.0.

Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 b3 – err b3 + err b3 b4 –err b4 + err b4
M1 1.04 0.006 0.006 2.919 4.711 4.682 -38.52 65.679 67.014 108.898 253.156 245.006
M2 1.127 0.008 0.008 6.157 6.454 6.554 -77.288 91.978 91.83 242.857 347.767 346.377
M3 1.366 0.009 0.009 6.914 7.61 7.686 -86.903 108.453 109.369 279.133 415.68 410.437
M4 1.792 0.013 0.013 1.792 10.659 10.54 -32.749 155.715 156.452 106.696 612.877 616.677

Table 5. Polynomial model coefficients of bcc ; kmax = 0.15 h/Mpc, z = 0.5.

E Third-order bias

We compute the coefficient of the 3rd-order non local bias term using Eq. 53 of [31]. As
introduced and explained in McDonald & Roy [34], in the expansion of the power spectrum,
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Figure 12. Ratio between the halo bias obtained from the simulations and the fit split by mass bin,
see Fig. 2

Figure 13. Fig 5, bottom panel at z = 1 but now also showing the dependence on the mass bin.

Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 b3 – err b3 + err b3 b4 –err b4 + err b4
M1 1.332 0.007 0.007 2.15 5.736 5.676 -15.717 78.401 79.434 24.882 293.963 287.496
M1 1.487 0.008 0.008 3.348 6.889 6.695 -34.19 93.048 97.687 107.953 367.823 346.865
M1 1.868 0.012 0.012 1.282 9.469 9.532 -1.931 136.007 134.97 -13.002 512.986 517.966
M1 2.503 0.019 0.019 8.383 17.182 17.466 -61.065 260.602 254.053 131.255 990.305 1022.662

Table 6. Polynomial model coefficients of bcc; kmax = 0.15 h/Mpc, z = 1.0.
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Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 b3 – err b3 + err b3 b4 –err b4 + err b4
M1 2.199 0.009 0.009 3.825 7.197 7.158 -21.639 101.805 102.2 77.61 388.068 387.347
M2 2.531 0.013 0.012 2.094 9.894 9.993 25.194 141.411 141.223 -113.229 539.035 535.428
M3 3.297 0.029 0.029 7.211 22.679 22.397 67.113 317.97 324.107 -398.872 1244.717 1206.446
M4 4.664 0.086 0.085 45.85 70.202 70.9 -147.646 1025.801 1017.184 96.813 3901.527 3973.001

Table 7. Polynomial model coefficients of bcc; kmax = 0.15 h/Mpc, z = 2.0.

the three integrals involving the third-order nonlocal terms are exactly proportional to each
other after renormalization, and can be encompassed in a single third order bias term b3nl,
simplifying significantly the resulting expressions. Thus we just need to compute the quantity
σ2

3:

σ2
3 =

105

16

∫
d3q

(2π)3
P lin(q)

[
D(2)(−q, k)S(2)(q, k − q) +

8

63

]
(E.1)

Through a change of variable we can rewrite the expression σ2
3 × P lin(k) as

σ2
3P

lin(k) =
105

16
P lin(k)

∫
d3q

(2π)3
P lin(q)

[
D(2)(−q, k)S(2)(q, k − q) +

8

63

]
=

105 k3

16 (2π)2
P lin(k)

∫
dr r2P lin(kr)IR(r)

(E.2)

where

IR =

∫ 1

−1

[
D(2)(−q, k)S(2)(q, k − q) +

8

63

]
dµ

and r = q/k; µ = ~k . ~q/(kq).
The second line of Eq. (E.2) is very similar to a P13 convolution integral (see section

2.3 of [23]) simplifying the implementation in FAST-PT.
The relevant terms appearing in Eq. 3.3 –σ2

3P
lin(k), the non linear matter power spec-

trum from simulation Pδδ, the second-order local bias term Pb2,δ and the second-order nonlocal
bias term Pbs2,δ– are shown in Fig. 14. Like Ref. [33] we see that the third-order nonlocal term
dominate over the second-order local and nonlocal terms, as long as the b2 term is sufficiently
small.

F Bias coefficients: perturbation theory-based fit

Here we report the the best fit bias coefficients and their marginal errors for the perturbation
theory-based model of Sec. 3.2.

Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 bs2 – err bs2 + err bs2
M1 0.838 0.006 0.008 -0.328 0.086 0.095 0.038 0.143 0.08
M2 0.849 0.019 0.018 -0.227 0.084 0.158 1.696 0.481 0.436
M3 0.98 0.024 0.024 -0.198 0.082 0.141 1.907 0.531 0.493
M4 1.277 0.017 0.02 -0.474 0.196 0.253 -0.175 0.295 0.171

Table 8. Coefficients of bcc, 2nd order expansion model, kmax = 0.15 h/Mpc, z= 0.
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Figure 14. Comparison of terms in the 3rd order expansion. This figure can be compared directly
with Fig. 1 of Ref. [32], bearing in mind that here the power spectra are in units of Mpc/h.

Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 bs2 – err bs2 + err bs2
M1 1.032 0.01 0.012 -0.362 0.152 0.19 -0.374 0.221 0.124
M2 1.118 0.015 0.016 -0.37 0.22 0.279 -0.577 0.297 0.153
M3 1.344 0.024 0.03 -0.044 0.083 0.171 1.948 0.992 1.058
M4 1.79 0.01 0.022 -0.302 0.235 0.439 -0.286 0.884 0.44

Table 9. Coefficients of bcc, second order expansion model, kmax = 0.15 h/Mpc, z= 0.5

Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 bs2 – err bs2 + err bs2
M1 1.321 0.012 0.019 0.093 0.058 0.096 1.455 0.966 1.012
M2 1.488 0.005 0.012 0.001 0.158 0.27 -0.753 0.837 0.483
M3 1.869 0.007 0.014 0.094 0.164 0.317 -0.696 1.39 0.808
M4 2.481 0.03 0.041 -0.231 0.653 0.968 -2.719 1.334 0.61

Table 10. Coefficients of bcc, second order expansion model, kmax = 0.15 h/Mpc, z= 1.0.

Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 bs2 – err bs2 + err bs2
M1 2.201 0.005 0.011 0.983 0.137 0.283 -1.45 2.049 1.674
M2 2.532 0.007 0.013 1.4 0.204 0.424 -2.437 2.557 1.91
M3 3.264 0.029 0.067 1.995 0.794 1.364 -9.241 3.797 1.872
M4 4.611 0.093 0.236 7.502 0.759 1.452 -1.539 12.318 10.691

Table 11. Coefficients of bcc, second order expansion model, kmax = 0.15 h/Mpc, z= 2.0.

G redshift-space checks

We have performed a cross check of our implementation of redshift-space distortions in FAST-
PT with the original results by Scoccimarro et al. [42].
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Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 bs2 – err bs2 + err bs2 b3nl – err b3nl + err b3nl
M1 0.826 0.009 0.013 -0.315 0.158 0.183 1.368 0.352 0.353 0.026 0.02 0.03
M2 0.855 0.015 0.016 -0.444 0.222 0.206 1.879 0.462 0.403 0.041 0.026 0.033
M3 0.989 0.017 0.022 -0.552 0.26 0.273 2.211 0.541 0.535 0.068 0.028 0.037
M4 1.266 0.015 0.025 -0.698 0.368 0.361 2.211 0.759 0.78 0.093 0.027 0.047

Table 12. Coefficients of bcc, third expansion model with b3nl kept as free parameter, kmax = 0.15
h/Mpc, z = 0.

Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 bs2 – err bs2 + err bs2 b3nl – err b3nl + err b3nl
M1 1.029 0.007 0.011 -0.562 0.284 0.293 1.848 0.556 0.585 0.097 0.023 0.041
M2 1.118 0.007 0.014 -0.925 0.407 0.396 2.339 0.851 0.773 0.136 0.03 0.051
M3 1.358 0.008 0.014 -0.634 0.388 0.439 1.907 1.011 1.011 0.155 0.035 0.067
M4 1.788 0.012 0.012 -0.466 0.544 0.59 1.061 1.337 1.345 0.094 0.074 0.138

Table 13. Coefficients of bcc, third order expansion model with b3nl kept as free parameter, kmax =
0.15 h/Mpc, z = 0.5.

Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 bs2 – err bs2 + err bs2 b3nl – err b3nl + err b3nl
M1 1.329 0.006 0.006 -0.354 0.382 0.417 0.799 1.008 0.927 0.136 0.06 0.11
M2 1.488 0.008 0.008 -0.116 0.397 0.442 0.218 1.105 1.141 0.087 0.116 0.152
M3 1.866 0.011 0.011 -0.091 0.56 0.591 0.367 1.588 1.591 0.105 0.169 0.21
M4 2.5 0.017 0.017 -0.551 1.146 1.286 1.261 2.919 2.685 0.358 0.167 0.323

Table 14. Coefficients of bcc, third order expansion model with b3nl kept as free parameter, kmax =
0.15 h/Mpc, z = 1.0.

Mass bins b1 –err b1 +err b1 b2 – err b2 + err b2 bs2 – err bs2 + err bs2 b3nl – err b3nl + err b3nl
M1 2.202 0.009 0.009 1.085 0.738 0.728 -1.57 1.898 1.818 -0.054 0.338 0.419
M2 2.533 0.013 0.013 1.516 0.863 0.984 -2.665 2.566 2.254 -0.074 0.513 0.556
M3 3.273 0.036 0.05 3.175 1.781 2.094 0.042 4.611 4.333 -0.006 1.158 1.347
M4 4.624 0.085 0.123 6.026 4.376 5.034 -1.637 11.736 9.845 1.528 2.591 3.921

Table 15. Coefficient of bcc, third order expansion model with b3nl kept as free parameter, kmax =
0.15 h/Mpc, z = 2.0.

Figure 15 shows excellent agreement with only a little residual discrepancy at small
scales, which is probably due to the fact that we do not know exactly (and therefore may not
have matched perfectly) all the cosmological parameters used in [42] to initialize the input
linear power spectrum.

H Multipole expansion

redshift-space power spectra are often plotted in terms of their so-called multipoles. Both
Eqs. 4.2 and 4.7 depend on k and µ. Instead of working with these 2-dimensional functions,
we expand them into Legendre polynomials, L`, following the traditional approach:

P sl (k) =
2l + 1

2

∫ 1

−1
dµ P s(k, µ)Ll(µ) (H.1)

In order to isolate the µ dependence of the A and B coefficients of the TNS and eTNS models,
we write
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Figure 15. Comparison of FAST-PT modifications (red) vs Scoccimarro [42] (blue) at z = 0. For
this figure we use a flat ΛCDM model with Ωm = 0.26, σ8 = 0.9, Ωb = 0.04 and h = 0.7 as in [42]

A(k, µ, f) = Ā(k, µ, f)× kµf

B(k, µ, f) = B̄(k, µ, f)× (kµf)2

The Ā and B̄ integrals can be decomposed as a summation of convolution integrals (see
Appendix C of [23]) which in turn can be written as Legendre expansions.

Ā(k, µ, f) =
∑
i=0

Ai(k, f)µi

B̄(k, µ, f) =
∑
i=0

Bi(k, f)µi

We can this finally express A and B as

A(k, µ, f) = kf ×
∑
i=0

Ai(k, f)µi+1

B(k, µ, f) = (kf)2 ×
∑
i=0

Bi(k, f)µi+2.

For biased tracers in the above equations f −→ β. In BE-HaPPy the integration of µ
is split in the same way as Cole et al. [49]:

P sl (k) =
2l + 1

2

∫ 1

−1
dµ P sg (k, µ)Ll(µ)

=
2l + 1

2

∫ 1

−1
dµ K(k, µ)F (k, µ2)Ll(µ) ,

(H.2)
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Figure 16. Influence of σ8 in the performance of the rescaling of equation 3.4. To enhance the
effect, the figure corresponds to haloes with masses > 5× 1013M�. We applied the rescaling method
of Eq. 3.4 to simulations with the same cosmological parameters Ωm = Ωc + Ωb + Ων = 0.3175,
Ωb = 0.049, ΩΛ = 0.6825, Ωk = 0, h = 0.6711, ns = 0.9624 and Mν = 0.0 eV but with different σ8

(0.819 for the blue curve and 0.834 for the red one). The improvement at small scales for the lower
σ8 confirms our hypothesis about the scale dependence seen in Fig. 5.

where Ll(µ) are the first even Legendre polynomials, and K(k, µ) can be the Kaiser, Scocci-
marro or TNS models, and F (k, µ2) is the FoG term. BE-HaPPy allows the user to choose
among all these different models.

I σ8 scale-dependence

In Figure 5 we rescaled the amplitude of the bias calibrated with a massless neutrinos simula-
tion and compare with the bias of a massive neutrinos simulation (Mν =0.15 eV). If the bias
is calibrated with respect to CDM + baryons bcc, we expect that all the scale dependence
is encompassed in the massless case and that the only effect of massive neutrinos would be
on the amplitude of the bias. However in Figure 5, we observe an extra scale dependence.
This scale dependence becomes more pronounced with increasing linear bias. Because of the
degeneracy between Mν and σ8, we argue that this scale dependence is not due neutrinos but
to a difference of σ8 between the massless and massive simulation. To test this we compared
our rescaling procedure with another simulation (with massless neutrinos) where σ8 is closer
to that of the massive neutrinos simulation. All other parameters (Ωm, Ωb, ΩΛ, ns, h) are
identical. This is shown in Figure 17. One can appreciate that the extra scale dependence
decreases for a better matched σ8 (blue line). The blue line is only plotted to larger scale
(smaller k) because of the different (lower) resolution of the simulation. Unfortunately we are
limited by the simulations available at this time and this could not be investigated further.
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Figure 17. Value of the rescaling coefficients α as a function of mass bins and redshift. We can see
here that the relation between the rescaling and the mass of the neutrinos is quasi linear.

J Rescaling coefficient α

For completeness here we show the dependence of α values (Eq. 3.6) on neutrino mass and
redshift.
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