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1 Introduction

Since the discovery of neutrino oscillations, the field of precision neutrino physics has

experienced a formidable rate of progress. Assuming the standard 3-flavor picture, the

mass squared differences between the neutrino eigenstates and all three angles in the mixing

matrix have been determined with a good precision, see ref. [1] for a recent update. The

standard parameters are now overconstrained by multiple independent measurements, with

overall a good consistency. In a way, the situation is similar to that in electroweak precision

physics in the 1990s when, given the wealth of precise and theoretically clean information

from LEP-1, the initial focus on measuring the parameters of the Standard Model (SM)

could be extended to constraining hypothetical phenomena (technicolor, supersymmetry,
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etc.). By the same token, neutrino experiments now have a potential to systematically

explore new physics beyond the neutrino masses and mixings.

One such area of exploration are the so-called non-standard interactions (NSI). Oscil-

lation experiments are sensitive not only to neutrino masses and mixing, but also to how

neutrinos interact with matter. The SM makes precise predictions about these interac-

tions, which however can be perturbed by physics beyond the SM (BSM). In particular,

new effective 4-fermion interactions between leptons and quarks may give observable effects

in neutrino production, propagation, and detection, and thus they can be constrained by

experiment. These studies have a long history in the literature, see e.g. [2–19] and [20] for

a recent review.

Previous works were contended with an ad-hoc parametrization of NSI, using the ef-

fective couplings εs,d,m to describe the non-standard effects in production, detection, and

propagation of neutrino states (see appendix B for more details). There has been little

emphasis on connecting these couplings to parameters of concrete BSM models, or to Wil-

son coefficients of a well-defined and systematic framework of effective field theory (EFT).

Consequently, full attention has not been paid to such issues as power counting of NSI

effects, extraction of the mixing angles in the presence of general new physics, or compari-

son between the sensitivity of oscillation and other experiments. We argue here that there

are distinct advantages in embedding NSI in a solid EFT. First, consistent EFTs come

with an expansion parameter, and the Lagrangian, amplitudes, and observables can be

systematically constructed order by order in that expansion. This allows one to compare

different NSI effects in neutrino oscillations, and unambiguously identify the leading order

contributions. Moreover, EFTs may predict correlations between the magnitude of effects

in neutrino oscillation and in other precision experiments, such as nuclear beta transitions,

meson decays, Drell-Yan production at the LHC, etc. In this picture, oscillation experi-

ments become an ingredient in the broad program of precision measurements. Moreover,

sensitivities of the different precision probes can be meaningfully compared.

In this paper we propose a systematic EFT approach to neutrino oscillations. We focus

on short-baseline reactor neutrino experiments, however the formalism can be readily ap-

plied to experiments with longer baselines and for different neutrino production and detec-

tion processes. Our point of departure is the so-called SMEFT, where higher-dimensional

interactions invariant under the local SU(3)C × SU(2)L × U(1)Y symmetry are added to

the SM. They are organized in an expansion in 1/Λ, where Λ can be interpreted as the

BSM scale suppressing the higher-dimensional operators. Given the SMEFT Lagrangian,

we derive the effective charged-current interactions between neutrinos, charged leptons,

and nucleons in the low-energy EFT relevant for reactor experiments. This allows us to

calculate the survival probability of an electron antineutrino in short-baseline experiments

in the presence of general dimension-6 (order Λ−2) SMEFT interactions. We point out that

these experiments offer a unique opportunity to probe, at the linear level, certain SMEFT

operators that are off-diagonal in the lepton-flavor space. We identify the linear combina-

tions of Wilson coefficients that are constrained by reactor experiments at the leading order

in the SMEFT expansion. We then proceed to obtain numerical constraints on these com-

binations using the most recent data from the Daya Bay [21] and RENO [22] experiments.

– 2 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
3

Our systematic approach puts into perspective some of the conclusions reached in the

prior NSI literature. We will argue that, at the leading order in the SMEFT expansion,

NSI interactions diagonal in the lepton-flavor space are currently not probed by oscillation

experiments. More precisely, any modifications of diagonal V±A interactions are fully

absorbed in the phenomenological extraction of SM parameters (the CKM element Vud
and the neutron axial charge gA), while for the scalar and tensor ones stringent model-

independent constraints from nuclear beta decays exclude observable signals in reactor

experiments, given the current precision of the latter. As for NSI off-diagonal in the

lepton-flavor indices, those involving only left-handed leptons and quarks (V-A type) cannot

be constrained by the reactor experiments alone, as they merely renormalize the a-priori

unknown mixing angle θ13. Off-diagonal NSI with right-handed quarks (V+A) are in

principle observable in the reactor oscillation experiments, however they do not arise at

O(Λ−2) from dimension-6 SMEFT operators. On the other hand, reactor experiments

show an interesting sensitivity to off-diagonal tensor and scalar NSI, which were actually

neglected in most prior studies.

This paper has the following structure. In section 2 we review the formalism of the

SMEFT and the resulting EFT below the weak scale. In section 3 we derive the dependence

on the SMEFT parameters of the anti-neutrino survival probability in reactor experiments.

The constraints on these parameters from the Daya Bay and RENO observations are pre-

sented in section 4, and compared in section 5 to the constraints from other precision

experiments. We summarize our findings in section 6 and comment on the significance of

our results on the NSI program in oscillation experiments.

2 EFT ladder

As mentioned above, the oscillation pattern of neutrinos depends not only on their mass

differences, but also on their interactions with other particles. We are interested in the

situation where these interactions deviate from the SM predictions. Our goal is to derive

new constraints on fundamental theories with heavy BSM particles, without referring to a

specific model. For that reason we will use the language of EFT. In this section we review

the crucial elements of EFTs relevant for our analysis.

2.1 SMEFT

If new particles beyond the SM are much heavier than the Z boson and the electroweak

symmetry breaking is linearly realized, then the relevant effective theory above the weak

scale is the so-called SMEFT [23, 24]. It has the same local symmetry and particle con-

tent as the SM, which in particular entails the absence of right-handed neutrinos. But the

SMEFT differs from the SM by the presence of higher-dimensional (non-renormalizable)

interactions in the Lagrangian, which provide an effective description of physical effects of

heavy BSM particles. They are organized in a systematic expansion in operator dimen-

sions, with each consecutive terms suppressed by a higher power of the new physics scale Λ.

Dimension-5 operators are essential as they give rise to Majorana masses of the SM neutri-

nos. The formulas presented in this work assume the normal ordering of neutrino masses,
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but the changes in the case of inverse ordering are trivial, as we will explicitly discuss. Due

to the smallness of the neutrino masses, dimension-5 operators have negligible effects on

production and detection amplitudes of relativistic neutrinos. On the other hand, these can

be significantly affected by dimension-6 operators suppressed by Λ−2. In particular, some

dimension-6 operators lead to deviations of the couplings of the SM quarks and leptons to

the W boson from the SM prediction; others introduce new contact interactions between

quarks and leptons. In our study we will ignore the effects of operators with dimensions

higher than six, which are suppressed by more than two powers of Λ. Consequently, we will

only trace new physics corrections linear (order Λ−2) in Wilson coefficients of dimension-6

operators, and ignore the quadratic effects that are O(Λ−4).

2.2 WEFT

The SMEFT is a convenient tool when it comes to studying high-energy physics above the

weak scale. However, neutrino oscillation experiments are performed at energies well below

the weak scale. At the scale µ . mW , the W and Z bosons, as well as the Higgs boson

and the top quark, can be integrated out from the SMEFT, leading to another effective

theory that we refer to as the weak EFT (WEFT).1 It has a smaller particle content and

different interactions than the SMEFT. Below we focus on the charged-current 4-fermion

interactions between the up and down quarks and the 3 generations of charged leptons and

neutrinos. At the leading order in the WEFT we can parametrize them as

LWEFT ⊃ −
2Vud
v2

{
[1 + εL]αβ (ūγµPLd)(¯̀

αγµPLνβ) + [εR]αβ(ūγµPRd)(¯̀
αγµPLνβ)

+
1

2
[εS ]αβ(ūd)(¯̀

αPLνβ)− 1

2
[εP ]αβ(ūγ5d)(¯̀

αPLνβ)

+
1

4
[ε̂T ]αβ(ūσµνPLd)(¯̀

ασµνPLνβ) + h.c.

}
, (2.1)

where v is the VEV of the Higgs doublet, Vud is a CKM matrix element, `α = e, µ, τ

is a charged lepton field, σµν = i[γµ, γν ]/2, and PL,R are the usual chirality projectors

(1 ∓ γ5)/2.2 Above, the fields u, d, `α are written in the basis where their mass terms

are diagonal. The flavor neutrino states να are connected to the mass eigenstates by

να = UαJνJ , where α = e, µ, τ , J = 1, 2, 3, and U is the unitary PMNS matrix parametrized

by three mixing angles (θ12, θ13, θ23) and one CP-violating phase δCP:

U =


c12c13 s12c13 e−iδCPs13

−s12c23 − eiδCPc12s13s23 c12c23 − eiδCPs12s13s23 c13s23

s12s23 − eiδCPc12s13c23 −c12s23 − eiδCPs12s13c23 c13c23

 , (2.2)

1In this work we consider the WEFT as the low-energy theory of the SMEFT. However, the WEFT is

a consistent EFT in its own right, which can be valid even if it is not completed by the SMEFT at higher

energies. See appendix A for the discussion of such a set-up.
2The hat over ε̂T indicates that the normalization differs by a factor of 4 from εT used e.g. in [25].

The present normalization is more natural in the sense that typical new physics models generating tensor

interactions will give comparable contribution to ε̂T and εS,P , see e.g. [26].
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and sij ≡ sin θij , cij ≡ cos θij . As mentioned earlier, the neutrinos have only the left-handed

components, while right-handed neutrinos are absent in this effective theory. The leading

NSI corrections to the standard neutrino interactions are summarized by the parameters εX
in eq. (2.1), which are 3× 3 matrices in the lepton flavor space. In the neutrino literature

these are customarily referred to as the NSI. Apart from the SM-like V-A interactions

(1 + εL), right-handed (εR), scalar (εS), pseudoscalar (εP ), and tensor (ε̂T ) interactions

between leptons and quarks are allowed at the same order of the WEFT expansion. The

matching between εX and the Wilson coefficients of dimension-6 operators in the Warsaw

basis [24] of the SMEFT at the renormalization scale µ ∼ mW is given by [27–30]

[εL]αβ ≈
v2

Λ2Vud

(
Vud[c

(3)
Hl ]αβ + Vjd[c

(3)
Hq]1jδαβ − Vjd[c

(3)
lq ]αβ1j

)
,

[εR]αβ ≈
v2

2Λ2Vud
[cHud]11δαβ ,

[εS ]αβ ≈ −
v2

2Λ2Vud

(
Vjd[c

(1)
lequ]∗βαj1 + [cledq]

∗
βα11

)
,

[εP ]αβ ≈ −
v2

2Λ2Vud

(
Vjd[c

(1)
lequ]∗βαj1 − [cledq]

∗
βα11

)
,

[ε̂T ]αβ ≈ −
2v2

Λ2Vud
Vjd[c

(3)
lequ]∗βαj1 , (2.3)

where SMEFT operators are defined in the flavor basis where the up-quark Yukawa matrices

are diagonal. There are three important conclusions from this matching exercise. Firstly,

all the εX parameters in eq. (2.1) arise at O(Λ−2) in the SMEFT, thus a priori they are

equally important. Secondly, the right-handed interactions are proportional to the unit

matrix in the lepton flavor space, up to corrections from dimension-8 and higher SMEFT

operators [27]. Indeed, at the dimension-6 level εR can originate only from the operator

OHud = iHTDµH(ūRγ
µdR) and its conjugate, which induce the W boson coupling to

right-handed quarks. Integrating out the W exchange between the quarks and leptons

generates εR in eq. (2.3). Since the SM W couplings to leptons are diagonal and flavor

universal, so is εR at O(Λ−2). Off-diagonal and flavor non-universal contributions to εR
can appear only at O(Λ−4), either from the W exchange (if the W couples to right-handed

quarks and non-universally to leptons at order Λ−2), or from dimension-8 contact operators

such as e.g (L̄αHγµLβH)(ūRγ
µdR), where Lα = (νL, `L)α are the lepton doublets, and

H is the Higgs doublet. On the other hand, εL,S,P,T do contain off-diagonal and non-

universal terms already at the dimension-6 level, in general. Finally, εL is approximately a

Hermitian matrix in the lepton flavor space, up to corrections suppressed by off-diagonal

CKM matrix elements. This directly follows from the hermiticity properties of the SMEFT

Wilson coefficients: [c
(3)
Hl ]
∗
αβ = [c

(3)
Hl ]βα, [c

(3)
Hq]
∗
jk = [c

(3)
Hq]kj , and [c

(3)
lq ]∗αβjk = [c

(3)
lq ]βαkj .

2.3 Lee-Yang

At the energy scale characteristic for reactor neutrino experiments the relevant degrees of

freedom are not quarks, but rather their bound states such as nucleons and nuclei. There-

fore, it is advantageous to descend one more step in the EFT ladder, into an effective theory

– 5 –
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of protons and neutrons interacting with charged leptons and neutrinos. Matching this EFT

to the WEFT Lagrangian in eq. (2.1) we obtain the so-called Lee-Yang Lagrangian [31]:

LLY ⊃ −
Vud
v2

{
gV [1 + εL + εR]αβ (p̄γµn)(¯̀

αγµPLνβ)

− gA [1 + εL − εR]αβ (p̄γµγ5n)(¯̀
αγµPLνβ)

+ gS [εS ]αβ(p̄n)(¯̀
αPLνβ)− gP [εP ]αβ(p̄γ5n)(¯̀

αPLνβ)

+
1

2
gT [ε̂T ]αβ(p̄σµνPLn)(¯̀

ασµνPLνβ) + h.c.

}
, (2.4)

where p, n are relativistic proton and neutron fields. The couplings gV,A,S,P,T are vector,

axial, scalar, pseudoscalar, and tensor charges of the nucleon, which can be calculated on

the lattice or from symmetry considerations. For the vector coupling, one can prove that

gV = 1 up to quadratic corrections in isospin-symmetry breaking [32]. For the remaining

charges we use the numerical values collected in table 1 of [33] (which are taken from

refs. [34, 35]), except for gA, which is taken from the fit in eq. (84) of [33]:

gA = 1.2728± 0.0017, gS = 1.02± 0.11, gP = 349± 9, gT = 0.987± 0.055, (2.5)

at µ = 2 GeV in the MS scheme, a choice of scale and scheme that will apply as well to the

εX bounds obtained in this work. For our purpose, the charges are known with sufficient

precision, and we will use their central values ignoring the errors.

The processes relevant for neutrino production and detection in reactor experiments

are (inverse) beta decays. While in these reactions neutrinos and electrons are typically rel-

ativistic, the exchanged momenta are much smaller than the masses of nucleons. Therefore,

one can describe the latter using non-relativistic fields ψ in an effective theory expanded in

powers of the spatial derivatives ∇kψ. At the leading (zero-derivative) order, the Lee-Yang

Lagrangian in eq. (2.4) reduces to

LNRLY ⊃ −
Vud
v2

(ψ̄pψn)
{

[1 + εL + εR]αβ (¯̀
αγ

0PLνβ) + gS [εS ]αβ(¯̀
αPLνβ)

}
+
Vud
v2

(ψ̄pσ
kψn)

{
gA [1 + εL − εR]αβ (¯̀

αγ
0ΣkPLνβ)

−gT [ε̂T ]αβ(¯̀
αΣkPLνβ)

}
+ h.c., (2.6)

where ψp and ψn are non-relativistic fields annihilating protons and neutrons, respectively,

and Σk =
(

0 σk

σk 0

)
with σk being the Pauli matrices. Note that εP does not appear in

eq. (2.6), hence the pseudoscalar interactions do not affect beta transitions at the lead-

ing order. Moreover there are only two independent hadronic structures at this order:

ψ̄pψn and ψ̄pσ
kψn, which mediate the Fermi and Gamow-Teller nuclear transitions, respec-

tively. Continuing the non-relativistic expansion, at the next order one would obtain the

interactions with one derivative acting on ψ, which lead to the so-called first-forbidden

beta transitions.

It is worth noting that the same effective interactions parametrized by εX that can be

probed in neutrino oscillation experiments also affect the phenomenological extraction of

– 6 –
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Vud and gA from nuclear and neutron decays, respectively [33]. Since the latter quantities

are needed to calculate the predicted number of produced and detected neutrino events in

oscillation experiments (see section 4.1 for more details), these effects have to be taken into

account consistently at the chosen order in the EFT expansion. Such a consistent analysis

has never been done in previous NSI literature, to the best of our knowledge. In particular,

it can be shown that neutrino oscillation data does not depend on the flavor-diagonal

vector EFT couplings [εL]ee and Re [εR]ee at any order. This is so because their direct

effect is completely cancelled by the indirect effect entering through the phenomenological

determination of Vud and gA. This can be shown at the Lagrangian level, since these

nonstandard contributions only appear in the following two combinations [33]

Vud (1 + [εL]ee + [εR]ee) , gA Re
1 + [εL]ee − [εR]ee
1 + [εL]ee + [εR]ee

. (2.7)

Precision experiments that provide the numerical values of Vud and gA in fact measure

the above combinations of the SM and NSI parameters, when interpreted in the EFT

context.3 For this reason the effects of [εL]ee and [εR]ee are completely absorbed into the

phenomenological values of Vud and gA, and thus cannot be accessed in neutrino oscillation

experiments. These observations invalidate bounds on [εL,R]ee obtained from oscillation

experiments in previous literature (see e.g. table 4 in ref. [20]). Let us note that the

[εL,R]ee coefficients can be probed in precision beta decay measurements, through a (first-

row) CKM unitarity test and through the comparison of lattice and experimental values

of gA. The resulting bounds are below the permil and percent level, respectively [33].

In the following we will use the Lagrangian in eq. (2.6) to calculate amplitudes of

beta decay processes relevant for reactor neutrino oscillations. We will treat εX as small

parameters of order Λ−2, as derived from the matching to the SMEFT, and we will ignore

any contributions to observables that are O(Λ−4) or smaller.

3 Oscillations in EFT

In this section we review the theory of neutrino oscillations in the presence of NSI. We focus

on providing a systematic EFT description of new physics effects in neutrino production

and detection in short-baseline reactor experiments. We neglect matter effects in neutrino

propagation, which would be relevant for long-baseline experiments.

Consider an antineutrino produced with energy Eν in the process XP → `−α ν̄Y
P and

detected in the process ν̄XD → `+αY
D, where `α is a charged lepton: electron, muon, or

tau. Given a neutrino produced in association with `−α , the survival probability is defined

as the probability of it being detected at the distance L from the source in association

with `+α of the same lepton flavor. Quite generally, the survival probability is given by the

formula [36]:

Pν̄α→ν̄α(L,Eν) =
∑
JK

CαJK exp

(
−i

∆m2
JKL

2Eν

)
, CαJK ≡

(
∫
APαJA

P ∗
αK)(

∫
ADJαA

D ∗
Kα)(∑

I

∫
|APαI |2

) (∑
I′
∫
|ADI′α|2

) ,
(3.1)

3In particular, the gA value in eq. (2.5) is extracted from experiment and does include such effects

of [εL,R]ee.
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where the indices J,K, . . . label neutrino mass eigenstates νJ , ∆m2
JK ≡ m2

νJ
−m2

νK
, and

APαJ and ADJα denote the amplitudes for the production and detection of νJ :

APαJ ≡M(XP → `−α ν̄JY
P ), ADJα ≡M(ν̄JX

D → `+αY
D). (3.2)

In neutrino oscillation experiments, polarization of particles involved in production and

detection is not measured, therefore summation over spins (and any other internal indices)

is implicit in each bracket in eq. (3.1). Likewise, there is an integration over all kinematic

variables (except the neutrino energy), as indicated by
∫

in eq. (3.1).

We now derive a general expression for the coefficients CαJK as a function of the Wilson

coefficients εX in the WEFT Lagrangian eq. (2.1). The amplitudes in eq. (3.2) can be

decomposed as

APαJ = UαJM
P
L +

∑
X=L,R,S,P,T

[εXU ]αJM
P
X , ADJα = U †JαM

D
L +

∑
X=L,R,S,P,T

[U †ε†X ]JαM
D
X .

(3.3)

Here MP
X and MD

X are independent of the mass index of the emitted/absorbed antineutrino,

up to totally negligible corrections due to the neutrino masses. Then, keeping only the

linear effects in εX , we can approximate

CαJK = UαJU
†
KαUαKU

†
Jα

+UαKU
†
Jα

∑
X=L,R,S,P,T

∑
γ 6=α

{
pX [εX ]αγUγJU

†
Kα + p∗XUαJU

†
Kγ [ε†X ]γα

}
(3.4)

+UαJU
†
Kα

∑
X=L,R,S,P,T

∑
γ 6=α

{
d∗X [εX ]αγUγKU

†
Jα + dXUαKU

†
Jγ [ε†X ]γα

}
+O(ε2X) ,

where

pX ≡
∫
MP
XM

P ∗
L∫

|MP
L |2

, dX ≡
∫
MD
XM

D ∗
L∫

|MD
L |2

. (3.5)

The first line in eq. (3.4) encapsulates the standard oscillations in the absence of BSM effects

other than the neutrino masses. The second and third lines in eq. (3.4) describe corrections

to the survival probability due to NSI affecting, respectively, the neutrino production and

detection processes. The coefficients pX and dX depend on the processes in which neutrinos

are produced and detected, and in general they may be functions of the neutrino energy.

Note that the diagonal elements εX do not enter eq. (3.4); in fact they cancel out between

the numerator and denominator of eq. (3.1). Therefore, only the off-diagonal (in the

charged-lepton flavor basis) Wilson coefficients of the effective Lagrangian eq. (2.1) affect

the survival probability at the leading order. Recall that if the WEFT Lagrangian is derived

from the underlying SMEFT (that is, if new physics is heavier than mW and respects the full

SM local symmetry) then εR is a diagonal matrix, leading to the conclusion that the charged

currents involving right-handed quarks do not affect neutrino oscillations at O(Λ−2).

Specializing to reactor experiments such as Daya Bay and RENO, neutrinos are de-

tected via inverse beta decay on water (practically, proton) targets, with a positron and a
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neutron in the final state: ν̄p → ne+. Calculating the amplitude for this process starting

from the non-relativistic effective Lagrangian in eq. (2.6) we find the following detection

coefficients

dL ≡ 1, dR = −
3g2
A − 1

3g2
A + 1

, dS = − gS
3g2
A + 1

me

Eν −∆
, dT =

3gAgT
3g2
A + 1

me

Eν −∆
, dP = 0,

(3.6)

where ∆ ≡ mn − mp ≈ 1.29 MeV and me ≈ 0.511 MeV is the positron mass. The same

result is obtained starting from the relativistic eq. (2.4) in the limit where the proton recoil

is neglected. That calculation reveals that the contribution proportional to εP is suppressed

by the small factor gPme/mp ∼ 0.1 in spite of the large value of the pseudoscalar charge gP .

In the following we neglect these subleading pseudoscalar contributions. Note that dS and

dT depend on the neutrino energy, which will be an important handle for constraining the

scalar and tensor Wilson coefficients in reactor experiments. The factor in the amplitude

proportional to me
Eν−∆ ≈

me
Ee

goes under the name of the Fierz interference term [37], and

is due to the lepton-chirality flip in the corresponding Lagrangian terms in eq. (2.6).

While non-standard effects on the detection side are calculable to a good accuracy, the

production side is far more involved. There are hundreds of different beta decay processes

contributing to the antineutrino flux in the reactor [38, 39], and the NSI effects on their

amplitudes may be subject to relatively large uncertainties. To tackle that problem, we

have to resort to certain crude approximations. First, we assume that all beta decays

contributing to the reactor antineutrino flux above the detection threshold Eν = 1.8 MeV

are of the Gamow-Teller type. With that assumption, the production coefficients are

given by

pL ≡ 1, pR = −1, pS ≈ 0, pP ≈ 0, pT = −gT
gA

me

fT (Eν)
. (3.7)

As before, the pseudoscalar interactions can be neglected at the leading order. In addition

the scalar ones do not contribute to Gamow-Teller transitions. The form factor in the

tensor coefficient is given by

fT (Eν) =

∑n
i=1wi(∆i − Eν)

√
(∆i − Eν −me)(∆i − Eν +me)∑n

i=1wi
√

(∆i − Eν −me)(∆i − Eν +me)

≈
∫∞
Eν+me

d∆W (∆)(∆− Eν)
√

(∆− Eν −me)(∆− Eν +me)∫∞
Eν+me

d∆W (∆)
√

(∆− Eν −me)(∆− Eν +me)
. (3.8)

The sum in the first line goes over all β decays resulting from nuclear fission processes in the

reactor, with appropriate weight factors wi determined by the fission yield. Furthermore,

∆i are the mass differences of the initial and final state nuclei participating in the beta

processes. As shown in the second line of eq. (3.8), rather than using a detailed reactor

model with all distinct processes explicitly included, to calculate fT (Eν) we replace the

sums by integrals over endpoint energies. We use a gaussian distribution for W (∆) [40]

peaked at 1.7 MeV and with σ = 2.5 MeV, which approximates well the phenomenological

distribution (see e.g. refs. [41, 42]).
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In reality, only about 70% of beta transitions in reactors are of the Gamow-Teller

type [43]. Most of the remaining ones are the first-forbidden transitions, whose neutrino

spectrum has considerable uncertainties even in the SM limit, and whose dependence on

non-standard interactions is poorly known (see ref. [44] for recent work in this direction).

These are expected to give a non-negligible contribution to the reactor antineutrino flux,

especially for Eν far above the detection threshold [45]. In particular, the first-forbidden

decays may reintroduce some sensitivity to the pseudoscalar interactions. In this paper

we ignore this complication, however we will check the robustness of our results by testing

how much they rely on the events at the high end of the reactor antineutrino spectrum.

In the SMEFT approach one assumes no new degrees of freedom beyond those of the

SM, therefore the sum in eq. (3.1) goes over the 3 neutrino states, and the oscillation

probability in general depends on the two independent mass squared differences ∆m2
21

and ∆m2
31. However, in short-baseline neutrino experiments one can typically neglect the

effects proportional to ∆m2
21L/E; in particular, this is a good approximation in Daya Bay

and RENO. In such a case eq. (3.1) simplifies to

Pν̄α→ν̄α(L,Eν) ≈ Cα11 + Cα22 + Cα33 + 2 Re (Cα12 + Cα13 + Cα23)

−4 Re (Cα13 + Cα23) sin2

(
∆m2

31L

4Eν

)
−2 Im (Cα13 + Cα23) sin

(
∆m2

31L

2Eν

)
+O

(
∆m2

21L

Eν

)
. (3.9)

For the reactor experiments the relevant observable is the electron antineutrino survival

probability. Taking α = e, and plugging in the expression of CeJK in eq. (3.4) we obtain

Pν̄e→ν̄e(L,Eν) = 1− sin2

(
∆m2

31L

4Eν

)
sin2

(
2θ13 +

∑
X=L,S,T

(dX + pX)Re [X]

)

− sin

(
∆m2

31L

2Eν

)
sin(2θ13)

∑
X=L,S,T

(dX − pX)Im [X] +O(ε2X), (3.10)

where we defined the following combinations of the PMNS and NSI parameters:

[L] ≡ eiδCP (s23[εL]eµ + c23[εL]eτ ) ,

[S] ≡ eiδCP (s23[εS ]eµ + c23[εS ]eτ ) ,

[T ] ≡ eiδCP (s23[ε̂T ]eµ + c23[ε̂T ]eτ ) . (3.11)

Using the detection and production coefficients in eqs. (3.6) and (3.7), the survival proba-

bility takes the form

Pν̄e→ν̄e(L,Eν) = 1− sin2

(
∆m2

31L

4Eν

)
sin2

(
2θ̃13 − αD

me

Eν −∆
− αP

me

fT (Eν)

)
(3.12)

+ sin

(
∆m2

31L

2Eν

)
sin(2θ̃13)

(
βD

me

Eν −∆
− βP

me

fT (Eν)

)
+O(ε2X),
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where

θ̃13 = θ13 + Re [L] ,

αD =
gS

3g2
A + 1

Re [S]− 3gAgT
3g2
A + 1

Re [T ] , αP =
gT
gA

Re [T ] ,

βD =
gS

3g2
A + 1

Im [S]− 3gAgT
3g2
A + 1

Im [T ] , βP =
gT
gA

Im [T ] , (3.13)

The oscillation formula in eq. (3.12) is valid away from ∆m2
31L/Eν ≈ 0, when the Wil-

son coefficients εX obey the SMEFT scaling: ε2X ∼ O(Λ−4) � εX ∼ O(Λ−2), and for

dX [X], pX [X] � θ13. In its derivation we assumed that the off-diagonal elements of εR
vanish, which is true up to O(Λ−4) corrections when the SMEFT is a valid effective theory

in some energy regime above mW (see eq. (A.1) for a more general formula). The expression

for Pνe→νe would be analogous with the reversed sign of the second line of eq. (3.12). Our

formula agrees with the survival probability written down in ref. [3] after expressing their

effective couplings εs,d by the Wilson coefficients of the WEFT Lagrangian, see appendix B.

There are several important conclusions one can draw from eq. (3.12):

• As mentioned before, the neutrino survival probability at the leading order depends

only on off-diagonal Wilson coefficients εX . We remark that the total number of

produced and detected events (rather than the survival probability) is in principle

sensitive to the diagonal scalar and tensor [εS,T ]ee, which we discuss in more detail

in section 4.1. However, this caveat has no practical consequences due to the very

stringent model-independent constraints on these coefficients from nuclear and meson

decays [33]. As discussed below eq. (2.7), the effects of [εL]ee and [εR]ee are completely

absorbed into the phenomenological values of the CKM element Vud and the axial

charge of the nucleon gA, and are unobservable in neutrino oscillation experiments.

• The sensitivity of reactor experiments to pseudoscalar NSI (εP 6= 0) vanishes in the

zero-recoil limit of beta decays, and when first-forbidden transitions in the reactor

are neglected.

• At the leading order, reactor experiments alone are not sensitive to off-diagonal NSI

of the V-A type ([εL]eα 6= 0). The reason is that, as evident in eq. (3.13), their

effects can be fully absorbed into a redefinition of the PMNS mixing angle θ13 into

the effective mixing angle θ̃13.4 That redefinition can in fact be performed including

also quadratic corrections in εL [5]. Since θ13 is an unknown parameter, which in the

standard context was actually measured by Daya Bay, RENO, and Double Chooz,

these experiments cannot separate the effect of the PMNS mixing parametrized by

θ13 from the new physics corrections contained in [εL]eα. To that end, it is necessary

4This issue is well-known in electroweak precision measurements (see e.g. [46]), where some non-standard

effects may be absorbed into a redefinition of the SM parameters. For example, the O(10−7) measurement

of the Fermi constant from the muon lifetime does not constrain new physics at this precision level, as the

non-standard corrections can be absorbed into a redefiniton of an a-priori unknown electroweak parameter

- the Higgs vaccuum expectation value. For analogous effects in CKM physics, see ref. [47].
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to measure another observable that is sensitive to a different combination of θ13 and

εL than the one defined by θ̃13. This conclusion continues to hold when subleading

terms in ∆m2
21 are taken into account in the survival probability.

• On the other hand, reactor experiments are sensitive to scalar and tensor charged-

current interactions between leptons and quarks. The survival probability depends

on the real and imaginary parts of the [S] and [T ] combinations defined in eq. (3.11).

Two handles allow us to explore that dependence in practice. One, in the presence

of CP violation (due to δCP in the PMNS matrix or imaginary components of εS,T ),

the survival probability acquires a different oscillatory dependence on L/Eν than

in the standard case. Secondly, the knowledge of the dependence of the survival

probability on neutrino energy Eν allows one to disentangle CP-conserving effects of

scalar and tensor interactions from each other, and from the (energy-independent)

effective mixing angle θ̃13.

• The survival probability in eq. (3.12) manifestly satisfies 0 < P (ν̄e → ν̄e) ≤ 1 in its

regime of validity specified below eq. (3.13). Naively, for ∆m2
31L/Eν � 1 one could

obtain P (ν̄e → ν̄e) > 1 or P (νe → νe) > 1 (depending on the sign and magnitude of

βX) due to the contribution in the second line in eq. (3.12). In this regime, however,

one can show that the O(ε2X) contributions cannot be neglected; including the full

non-linear εX dependence in eq. (3.4) one recovers P (ν̄e → ν̄e) ≤ 1 independently

of the magnitude of βX . Note that the Daya Bay and RENO experiments are de-

signed such that ∆m2
31L/Eν ∼ 1 for typical Eν , therefore this caveat has no practical

consequences for our analysis. Note also that there are no non-oscillatory terms in

eq. (3.12), therefore the so-called zero-distance effects [3, 48] sometimes discussed in

the NSI literature are absent in our approach. This is reassuring, as zero-distance

effects at the linear level in εX would also lead to P (ν̄e → ν̄e) > 1 for some parame-

ter choices.

• The last term in the survival probability in eq. (3.12) is proportional to

sin(∆m2
31L/(2Eν)), which clearly depends on the choice of mass ordering. Through-

out this analysis we assume ∆m2
31 > 0. Choosing the inverted mass ordering would

result in the opposite signs for the best fit values of Im [S] and Im [T ] compared to

that determined in the next section.

For the sake of illustration, in figure 1 we show the impact of NSI on the ratio of the

far to near survival probabilities as a function of the neutrino energy assuming a far and

near detector distances of L = 1500 m and L = 500 m, respectively. The left and right

panels show the effects of scalar and tensor interactions. To generate these plots we used

the best fit values of the oscillation parameters ∆m2
31 and θ13 from the recent global fit of

the neutrino oscillation data in ref. [1]. The orange curves are the SM probability without

any NSI effects. The dashed blue and dotted purple curves show the effect of the real and

imaginary parts of the combination of parameters [S] and [T ] defined in eq. (3.11). We

see that in both cases the effect of both Re [X] and Im [X] is not only to shift the survival

probability, but also distort its Eν spectrum due to the different energy dependence of
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Figure 1. The ratio of the survival probabilities at the far and near sites as a function of the

neutrino energy and at distances L = 1500 m and L = 500 m. The solid orange curves are for the

SM best fit value, while the dashed blue and dotted purple curves show the NSI effects.

the scalar and tensor interactions compared to the SM one. Note that, as can be seen

from the right panel of figure 1, reactor neutrino oscillations are more sensitive to tensor

interactions. This is because they interfere with the SM axial interactions, which typically

give larger contributions than the SM vector ones in reactor transitions and inverse beta

decay. In the scalar case (the left panel) the far to near probability is similarly sensitive to

the change in the real and imaginary parts. This is because the contributions of the real

and imaginary parts consist of single terms (coming only from the detection side) which

are of the same order and have similar effects on the probability. This is not the case for

the tensor case (right panel), for which the real and imaginary parts contributions appear

as the sum of two terms: those two terms have opposite sign for the real part but the same

sign for the imaginary part. For this reason the survival probability is more sensitive to

the imaginary part of [T ]. These comments are illustrative, as they they are valid for a

fixed value of θ̃13, and they can change in a complete analysis where the latter is also a

floating parameter, as we will see in section 4.3.

4 Constraints on EFT parameters from oscillations

4.1 Observables and NSI sensitivity

Typical reactor experiments detect antineutrinos via the inverse beta decay (IBD) process

ν̄p → e+n. They can measure not only the number of events but also the antineutrino

energy. In the EFT framework the number of detected IBD events with an antineutrino-

energy Eν at a distance d is given by

dNEFT(d,Eν) = ρ(d,Eν)Pν̄e→ν̄e(d,Eν) dEν , ρ ≡ dNno−osc
ν

dEν
, (4.1)

where P is the survival probability given in eq. (3.12), and dNno−osc
ν is the differential

number of IBD events that would be detected in the absence of oscillations.5

5We note that zero-distance effects are included in P and not in dNno−osc
ν , since they are due to a

mismatch between the source and detector neutrino flavor eigenstates. We recall that these effects do not

appear at O(Λ−2).
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Note that the latter depends on the distance in a purely geometric form (∼ 1/d2). It

also depends on the nonstandard EFT coefficients through the nuclear decays widths and

the IBD detection cross section. However, the situation is the opposite as in the survival

probability, since Nno−osc
ν does depend linearly (order Λ−2) on flavor-diagonal coefficients

[εX ]ee, but not on flavor-nondiagonal ones. Moreover, since there is no dependence at

any order in the vector EFT couplings [εL,R]ee (see discussion at the end of section 2.3),

the only linear BSM corrections in Nno−osc
ν comes from flavor-diagonal scalar and tensor

coefficients, [εS ]ee and [ε̂T ]ee. We have taken into account once again that the pseudo-

scalar contribution vanishes in the non-relativistic limit and we neglect the contribution of

forbidden decays.

To reduce systematic errors, reactor experiments use near and far detectors at different

distances from the reactor sources. The ratio of the number of IBD events in the energy

bin around Eν = Ēiν in two such detectors is given by

T
j/k
i ≡ NEFT

i (dj)

NEFT
i (dk)

=

∫ Ēiν+∆

Ēiν
dEνρ(dj , Eν)P (dj , Eν)∫ Ēiν+∆

Ēiν
dEνρ(dk, Eν)P (dk, Eν)

≈
(
dk
dj

)2 Pν̄e→ν̄e(dj , Ē
i
ν)

Pν̄e→ν̄e(dk, Ē
i
ν)
, (4.2)

where the last approximation is valid for small enough energy bins ∆. In that case, the

ρ contributions to the numerator and denominator cancel except for the geometric d-

dependence (flux), and only the EFT corrections entering via the survival probability

Pν̄e→ν̄e have an effect on the ratio T
j/k
i . Note however that for large energy bins, EFT

corrections to ρ with an energy dependence different to the SM one (as is the case for

scalar and tensor interactions) do not cancel. Obviously, this is also the case for the

ratio of the inclusive number of events in two detectors, since one has to integrate over

all energies. Finally, we note that there is an additional linear effect of flavor-diagonal

interactions in the total number of events, which (i) cancels in the far/near ratios and (ii)

suffers the large uncertainty of the total reactor flux.

This introduces a dependence of the inclusive detector rates (and their far/near ratios)

on the diagonal coefficients [εS ]ee and [ε̂T ]ee. However, given the relatively large (at least

percent level) uncertainties in reactor nuclear processes, and the strong (per-mille level or

better) constraints from “cleaner” beta decays and other precision experiments on these

diagonal coefficients [33], we will simply ignore this effect in our analysis. In fact, for this

same reason, such diagonal EFT coefficients cannot explain the observed deficit of detected

reactor antineutrino fluxes relative to the SM predictions [38, 39], which is often referred

to as the reactor antineutrino anomaly [49].

4.2 Setup and analysis

In our numerical analysis we use the results from the Daya Bay [21] and RENO [22]

experiments with 1958 days and 2200 days of data taking, respectively. The Daya Bay

experiment has 4 near detectors located at Experimental Halls 1 and 2 (EH1 and EH2)

and 4 far detectors located at Experimental Hall 3 (EH3). The weighted distances from

the reactor cores are respectively 516 m, 555 m and 1571 m. The RENO experiment has

one near and one far detector located at 367 m and 1440 m, respectively.
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First we define the following χ2 function that only uses spectral information

χ2
spectral =

Nbins∑
i=1

RF/Ni,obs −R
F/N
i,th

δR
F/N
i

2

+
∑
d

(
bd

σdbkg

)2

+
∑
r

(
fr
σrflux

)2

+

(
ε

σeff

)2

(4.3)

where R
F/N
i = NF

i /N
N
i is the ratio of far to near IBD events in the i-th bin of energy.

For Daya Bay, since there are two sets of near detectors at different distances, one defines

NN
i ≡ ωEH1N

EH1
i + ωEH2N

EH2
i , where ωEH1 = 0.05545 and ωEH2 = 0.2057 are the weights

that sample the different fluxes of the different reactors in equal proportions to the two

near experimental halls [50]. The statistical uncertainty δR
F/N
i is given by

δR
F/N
i =

NF
i,obs

NN
i,obs

√√√√NF
i,obs +NF

i,bkg

(NF
i,obs)

2
+
NN
i,obs +NN

i,bkg

(NN
i,obs)

2
, (4.4)

where Ni,bkg is the background expected in each energy bin. The systematic uncertainties

of the background, reactor flux, and efficiency are taken into account by the pull param-

eters bd, fr, and ε, respectively, which we take from the original Daya Bay and RENO

publication [22, 50]. The d and r indices refer to the different detectors and reactors. Fi-

nally, we construct χ2
spectral separately for RENO and Daya Bay, and combine the two in

our analysis.

In addition to the spectral information in χ2
spectral, we also take into account the ratio

of the total IBD rate measured in the near and far detectors of Daya Bay and RENO,

following closely the method described in ref. [51]. For our analysis we simply sum the two

likelihoods: χ2 = χ2
spectral + χ2

rate.

4.3 Results

We are ready to extract constraints on the mixing angle θ13 and NSI parameters appearing

in eq. (3.12) from a combination of Daya Bay and RENO data.6 In our analysis we do not

treat ∆m2
31 as a free parameter, but rather use the best-fit value ∆m2

31 = 2.52×10−3 eV2 [1]

assuming normal ordering. This is justified because that result is dominated by other

oscillation experiments than the reactor ones, and the new physics effect on the best-fit

value and error is expected to be negligible. We have checked the stability of our results

by letting ∆m2
31 vary within its 1σ uncertainty.

Consider first the case when only left-handed NSI are present: εL 6= 0, εR,S,P,T = 0.

This corresponds to vanishing α and β parameters in eq. (3.12) and the only free parameter

that remains is θ̃13. As explained previously, the reactor experiments alone are not sensitive

to new physics parametrized by [εL]eµ and [εL]eτ , as these parameters can be absorbed into

the unknown mixing angle θ13, and only the θ̃13 combination defined in eq. (3.13) is probed.

After marginalizing the χ2 with respect to all the pull parameters we find the following

result (all the uncertainties in this section are 68% CL):

sin2(2θ̃13) = 0.0841± 0.0027. (4.5)

6For completeness, results using separate Daya Bay and RENO data are presented in appendix C.
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Figure 2. Allowed regions in the (sin2 2θ̃13 − Re [S]) (first row) and (sin2 2θ̃13 − Im [S]) plane

(second row) for the combined data of the Daya Bay and RENO experiments. The 1-, 2-, and 3-σ

regions are shown with orange, blue, and purple, respectively. In the left panels only Re [S] (or

Im [S]) is varied at a time, while in the right panels both vary simultaneously.

In this simple case, leaving ∆m2
31 as a free parameters would have a negligible impact on

the confidence interval.

Next, we allow the scalar NSI to be non-zero: εS 6= 0, εR,P,T = 0. This implies

αP = βP = 0 in eq. (3.12), but now αD and βD can be non-zero, that is to say, NSI effects

can appear at the detection side. Of course, now we cannot use the value for θ̃13 in eq. (4.5),

as it was obtained under assumption that εS = 0. Instead, we need to derive simultaneous

constraints on θ̃13 and the combination of NSI parameters [S] defined in eq. (3.11). We
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consider three different cases: 1) only Re [S] is non-zero, 2) only Im [S] is non-zero, and 3)

both are non-zero and independent. We present our results in figure 2. The orange, blue,

and purple contours are the 1-, 2-, and 3-σ allowed regions, respectively. For the real part

we see some degeneracy between θ̃13 and Re [S]. This is expected: while the two lead to a

different energy dependence of the survival probability in eq. (3.12), they carry the same

oscillatory dependence on L/Eν . Setting Im [S] = 0 (upper left panel in figure 2), we find

the following constraint

Re [S] = 0.54± 0.39 . (4.6)

The bounds are very loose, and the validity of the EFT expansion is not assured for the

values of εS within these confidence intervals; in particular taking into account O(ε2S) terms

in the survival probability may significantly change the results. The same holds for the

validity of the expansion carried out to obtain the oscillation formula in eq. (3.12). We

conclude that Re [S] cannot be reliably constrained by the existing oscillation data from

reactor experiments. Moreover, in the presence of sizable Re [S] the constraints on the

effective mixing angle θ̃13 can be considerably relaxed.

The situation is somewhat better for Im [S] for which we can obtain O(0.1) constraints.

Assuming Re [S] = 0 (upper right panel in figure 2) we find:

Im [S] = 0.04± 0.13 . (4.7)

Comparing the upper and lower rows of figure 2 we see that leaving Re [S] as a free pa-

rameter to be marginalized over weakens the constraints on θ̃13, however for Im [S] only

the central value is slightly affected. In the situation where both Re [S] and Im [S] are free

parameters we find the constraints

Re [S] = 0.95± 0.37 , Im [S] = 0.08± 0.14 . (4.8)

Let us note that the 1-σ region of Re [S] is outside the validity range of the effective theory.

We emphasize that the sign of the best fit value for Im [S] depends on choosing the mass

ordering, and would be flipped for the inverted ordering.

Finally, we allow tensor NSI to be non-zero: ε̂T 6= 0, εR,S,P = 0. The effects of tensor

NSI appear on both the production and detection sides. We consider again three distinct

cases, one where only Re [T ] is non-zero, another where only Im [T ] is non-zero, and where

both are free parameters. Before presenting our results we recall that for calculating the

production coefficients in eq. (3.7) we have assumed that the beta transitions in the reactors

are of the Gamow-Teller type, while in fact almost 30% of the decays are first-forbidden

transitions [43]. These transitions are expected to be more important at the high end of the

neutrino spectrum [45]. Therefore, to test the robustness of our conclusions, we compare

the results obtained using the whole neutrino spectrum with the ones where the neutrino

energies are restricted to Eν < 5 MeV. We show the results in figure 3, using the same

color coding as in figure 2. For the 3σ regions, we show the results using the entire neutrino

energy spectrum (solid contours) and with the 5 MeV cut (dashed contours). The cut has

limited impact on the preferred parameter regions, which suggests that the presence of

forbidden transitions in the reactors should not affect our EFT constraints significantly.
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Figure 3. Allowed regions in the (sin2 2θ̃13 − Re [T ]) (first row) and (sin2 2θ̃13 − Im [T ]) plane

(second row) for the combined data of the Daya Bay and RENO experiments. The 1-, 2-, and 3-σ

regions are shown with orange, blue, and purple, respectively. The best fit values are marked by

×. In the left panels only Re [T ] (Im [T ]) is varied at a time, while in the right panels both vary

simultaneously. The dashed curves correspond to the 3-σ regions in the analysis where only events

with Eν < 5 MeV are taken into account. We note that the y-axis range is different in the upper

and lower panels.

In this case the sensitivity to Re [T ] is much better than for Re [S], with the 1σ contours

contained within the validity regime of the EFT. Using the entire neutrino spectrum we

find the following results for Im [T ] = 0:

Re [T ] = −0.124± 0.081 , (4.9)
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which changes to −0.079 ± 0.090 after imposing the Eν < 5 MeV cut. For Re [T ] = 0 the

constraint on Im [T ] is

Im [T ] = −0.003± 0.043 , (4.10)

or Im [T ] = −0.030± 0.045 after the Eν < 5 MeV cut. One sees that the nonstandard term

Im [T ] is the most strongly constrained one by reactor data. When both Re [T ] and Im [T ]

are free parameters we find the constraints

Re [T ] = −0.26± 0.14 , Im [T ] = −0.034± 0.042 , (4.11)

relaxed to −0.22 ± 0.15, −0.084 ± 0.042 after the Eν < 5 MeV cut is imposed. Note that

the errors for Im [T ] are a factor of three smaller than those for Im [S].

The last logical step would be to obtain a 5D likelihood function simultaneously for

θ̃13, Re [S], Im [S], Re [T ], Im [T ] treated as independent free parameters. However, in

this general case parameter degeneracies are probably too important to obtain meaningful

constraints on the NSI parameters. One could also try to derive constraints on the com-

bination [P ] ≡ eiδCP (s23[εP ]eµ + c23[εP ]eτ ) of the pseudo-scalar couplings in the effective

Lagrangian. However, since the effects of εP are velocity-suppressed in our approximation,

our analysis would be sensitive only to [P ] & 1, outside the validity range of the effective

theory. As we discuss below in section 5.3, much stronger constraints on εP can be derived

from pion decays.

It is worth mentioning that our constraints on Im [S] and Im [T ] are dominated by

χ2
spectral, with χ2

rate having a small impact on the confidence intervals. On the other hand,

using only the spectral information we find that the degeneracy between Re [S] and θ̃13

is worsened, which translates in weaker marginalized bounds. Last, we also note that the

O(0.1− 0.4) bounds on Re [S] and Re [T ] obtained above do not do justice to the sensitivity

and potential of these measurements. One should keep in mind the large correlation with

θ̃13 shown in figure 2. This translates to much more precise measurements in (i) less

general scenarios, like the SM case in eq. (4.5) shows; or (ii) after combination with other

measurements that are sensitive to the same coupling with different correlation.

5 Non-oscillation constraints on EFT parameters

In the previous section we derived a-few-percent-level constraints on linear combinations

of Wilson coefficients [εS ]eα and [ε̂T ]eα, α = µ, τ , from neutrino oscillations in reactor ex-

periments. To see these results in a wider context, in this section we discuss precision

observables that do not involve neutrino oscillations but are sensitive to the same param-

eters. There is one important difference between these two classes. While the oscillations

are sensitive to linear effects [εX ]eα, the observables discussed below are sensitive to ab-

solute values squared of these parameters (or their combinations). One consequence is

that they cannot distinguish between real and imaginary parts. Furthermore, the depen-

dence on [εX ]eα enters at O(Λ−4) in the SMEFT expansion. It is in principle possible that

their effects cancel against linear effects in [εX ]ee, coming from dimension-6 or dimension-8

SMEFT operators. For illustration we neglect such terms in the discussion below and set

bounds when only one [εX ]eα term is present in the Lagrangian at a time. Because of these
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assumptions, the bounds obtained in this section are less robust than the ones from oscil-

lations. Although they may be valid for the SMEFT derived from particular UV models,

it is important to keep in mind that they can be relaxed significantly if several interactions

are present at the same time. A thorough analysis of such scenarios is however beyond the

scope of this work, which is focused on neutrino physics.

5.1 Neutron and nuclear beta decay

Instead of the plethora of β-decay transitions happening inside nuclear reactors, one can

search for nonstandard effects in specific decays that happen to be very clean both exper-

imentally and theoretically [33]. One expects strong bounds on nonstandard interactions

involving wrong-flavor neutrinos from such studies, which has been used sometimes in the

past as an argument to neglect e.g. scalar and tensor interactions. However, to best of our

knowledge, all available beta-decay analysis have focused on interactions involving electron

neutrinos. We amend this situation here, deriving the bounds on scalar and tensor opera-

tors with a wrong-flavor neutrino. Our experimental input are the so-called Ft values of

0+ → 0+ transitions [52] and neutron data (lifetime and correlation coefficients). We use

the same statistical approach and dataset as in the recent review in ref. [33] (table 4, 5

and 7), but also including the recent PERKEO-III measurement of the beta asymmetry

in neutron decay, An = −0.11985(21) [53]. We note that the errors of the average lifetime

and beta asymmetries are re-scaled à la PDG to take into account tensions among various

measurements. Assuming only one interaction is present at a time we find the following

90% CL bounds:

|[εS ]eα| ≤ 6.4× 10−2 , |[ε̂T ]eα| ≤ 4.4× 10−2 . (5.1)

We note that the observables depend quadratically on these WEFT coefficients and thus

the error distribution is highly non-gaussian.

5.2 CKM unitarity

In the beta decay fit discussed above one extracts simultaneously the non-standard scalar

or tensor coupling and the SM parameters (|Vud| and the axial charge gA). It is impor-

tant to note that significant correlations between the scalar coupling and |Vud| appear.

Thus, adding to this analysis the very precise |Vud| value obtained from CKM unitarity:

|V unit.
ud | ≡

(
1− |Vus|2 − |Vub|2

)1/2
, has a drastic impact on the bound on scalar interac-

tions [33]. Namely:

|[εS ]eα| ≤ 2.0× 10−2 (90% CL) , (5.2)

where we used Vus = 0.2243(5) and Vub = 0.00394(36) [54]. Roughly speaking, the bound

above comes from the comparison of |Vud|2
(
1 + g2

S |[εS ]eα|2
)
, extracted from 0+ → 0+

transitions, and |V unit.
ud |2. The former happens to be currently a bit smaller than the latter,

which translates in a bound on |[εS ]eα| more stringent than naively expected (because this

interaction can only contribute positively).7

7In order to extract |Vud| from β decays we have used the traditional values for the radiative correc-

tions [52, 55]. Recently, refs. [56, 57] presented new values for various corrections. These values give an even

smaller value for |Vud|2, which translates into stronger constraints for the operators discussed in this work.
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CKM unitarity constrains also the offdiagonal vector coefficients, [εL,R]eα. In a one-

operator analysis we find

|[εL,R]eα| ≤ 1.9× 10−2 (90% CL) . (5.3)

The stringent bounds in eq. (5.2) and eq. (5.3) assume (i) the absence of other nonstandard

β-decay couplings, as in the previous section; (ii) the absence of new physics effects in the

extraction of Vus, Vub, and the Fermi constant GF ; and (iii) the 3-family setup, which is

not an extra assumption in the SMEFT.

5.3 Leptonic pion decays

The π → eνe channel is extremely sensitive to pseudo-scalar couplings because the latter do

not suffer the strong chiral suppression of the SM contribution (the SM width vanishes for

zero electron mass). For a pseudo-scalar interaction with a wrong-flavor neutrino, a bound

on |[εP ]eα(µ = 2 GeV)| can be derived from the clean ratio Rπ of the π → eνe and π → µνµ
widths [58–60]. Using the experimental and SM values Rπ = 1.2327(23) × 10−4 [54] and

RSM
π = 1.2352(1)× 10−4 [60], the 90% CL constraint is given by

|[εP ]eα|µ=2 GeV ≤ 7.5× 10−6. (5.4)

BSM models generating scalar/tensor interactions often generate pseudoscalar inter-

actions of similar magnitude. More importantly, even if this is not the case at tree-level,

the pseudoscalar interactions is generated radiatively [61]. For instance, the connection

between εP (2 GeV) and the coefficients at the EW scale and 1 TeV are given by [30]8

εP (2 GeV) = 2.5× 10−6 εS(MZ) + 1.7 εP (MZ)− 0.0061 ε̂T (MZ) (5.5)

= 0.0086 εS(1 TeV) + 2.1 εP (1 TeV)− 0.087 ε̂T (1 TeV) . (5.6)

The larger mixing found in the 1-TeV case is due not only to the trivial larger running but

also because the mixing happen to be larger in the SMEFT than in the WEFT [30].

In full generality εP (2 GeV) represents a different direction in the parameter space with

respect to εS,T (2 GeV). However, the mixing relations given above imply strong constraints

on the tensor coupling in simplified scenarios where (pseudo)scalar and tensor couplings are

not independent degrees of freedom, since severe cancellations among them are not possible

anymore. For example, if we assume that the pseudo-scalar operator is not generated at

tree-level at the high-scale, we obtain the following 90% CL bounds∣∣[ε̂T ]eα + 3× 10−4[εS ]eα
∣∣
µ=2 GeV

≤ 1.0× 10−3 (running from µ = MZ) ,∣∣[ε̂T ]eα − 4× 10−2[εS ]eα
∣∣
µ=2 GeV

≤ 7.0× 10−5 (running from µ = 1 TeV) , (5.7)

where the ranges correspond to the one-operator and global analysis discussed in eq. (5.4).

Let us note that the derivation of these bounds only takes into account log-enhanced one-

loop corrections and it can be altered by finite pieces, especially if the running is not carried

out to very high-energy scales.

8In this expression εS,P,T (1 TeV) should not be understood as a WEFT coefficient (the WEFT is not

valid above µ ' mZ), but as a short notation for a linear combination of SMEFT coefficients, as given in

eq. (2.3).
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5.4 LHC (pp → e + MET + X)

One can look for the same nonstandard charged-current interactions (or more precisely, for

their SMEFT counterparts) in the Drell-Yan process pp → e + MET + X [28, 62]. This

connection requires additional assumptions such as the validity of the SMEFT at such

high-energies, approximating Vij = δij in the SMEFT-WEFT mapping, and, especially,

neglecting the contributions from dim-8 operators (since LHC bounds are dominated or

very sensitive to dim-6 squared contributions).

Chirality-flipping interactions do not interfere with the SM and then the usual bounds

on operators involving electron neutrinos actually to the incoherent sum over all three

flavor neutrinos. Thus we can reinterpret the results from figure 8 of ref. [63], which used

the 13-TeV ATLAS search with 36 fb−1 [64]:(∑
α

|[εS ]eα|2
)1/2

. 2× 10−3 ,

(∑
α

|[ε̂T ]eα|2
)1/2

. 2× 10−3 , (5.8)

at 90% CL and at µ = 2 GeV.

5.5 Charged-lepton-flavor violation

In the SMEFT, dimension-six operators that give rise to charged-current interactions be-

tween quarks and leptons also yield neutral-current interactions between quarks and pairs

of charged leptons ` = e, µ, τ . In consequence, neutrino interactions parametrized by off-

diagonal [εX ]eα appear in the Lagrangian together with 4-fermion charged-lepton-flavor

violating (CLFV) interactions. The latter mediate at tree- or loop-level such processes

as ` → `′γ, ` → 3`′, or `N → `′N , which for ` 6= `′ have not been observed so far and

are stringently constrained by experiment. The contribution of dimension-6 operators to

CLFV observables arises at O(Λ−4), which is the leading order in this case because the SM

contributions are absent. The resulting constraints on lepton-flavor off-diagonal SMEFT

operators are typically very severe [65–68]. Using the analytical formula for the µ → e

conversion rate in ref. [69] and the experimental bound Br(µ→ e)Au ≤ 7× 10−13 [70], one

can constrain the SMEFT operators [O
(1)
lequ]µe11 and [Oledq]µe11. If their sum is the only

nonzero term one finds the 90% CL bound

|[εS ]eµ| . 3× 10−6 . (5.9)

Furthermore, non-observation of τ → eπ+π− sets stringent constraints [71] on scalar CLFV

interactions involving an electron and a tau. Assuming once again that only the low-energy

scalar coupling [εS ]eτ is generated, we find the 90% CL bound

|[εS ]eτ | . 4× 10−4 . (5.10)

When such stringent limits on [εX ]eα hold, observation of the scalar NSI effects in neutrino

oscillation experiments is of course impossible. On the other hand, we are not aware of

similar tree-level bounds in the literature on the SMEFT operator [O
(3)
lequ]αe11 contributing

to the tensor parameters [εT ]eα. We note that the CLFV constraints would not hold if the
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WEFT were not UV-completed by the SMEFT (because new physics is not much heavier

than mZ , or because electroweak symmetry is realized non-linealy in the UV theory), as

then off-diagonal εX are not correlated in general with CLFV interactions.

6 Conclusions

We have proposed a systematic approach to neutrino oscillations in the situation when

neutrino interactions with matter are modified by heavy new physics. To this end we

employed the model-independent framework of the SMEFT, with the Lagrangian organized

into an expansion in powers of 1/Λ, where Λ is the mass scale of new particles affecting

the neutrino interactions. The SMEFT framework enables consistent power-counting of

new physics effects and identifying the leading order corrections to the neutrino oscillations

probability. In this paper we applied it to oscillations in short-baseline reactor experiments,

however the formalism can be readily extended to other types of neutrino experiments.

We calculated the survival probability of reactor antineutrinos at O(Λ−2) in the

SMEFT expansion, that is including linear effects of dimension-6 operators. The main

result of this paper is given in eq. (3.12), from which the dependence of the survival prob-

ability on the PMNS parameters and dimension-6 Wilson coefficients can be read off. We

have taken into account all SMEFT operators that contribute at the leading order. In addi-

tion to operators affecting the SM-like (V-A) charged-current interactions between quarks

and leptons, those mediating scalar and tensor contact interactions contribute at the same

order Λ−2. The latter lead to a different energy dependence of the neutrino production

and detection amplitudes, which is reflected in eq. (3.12). We also paid due attention

to the interplay between the effects of dimension-6 operators and of the PMNS mixing.

It is a familiar fact in electroweak precision measurements and flavor physics that some

dimension-6 corrections to physical observables can be absorbed into SM parameters, such

as the Higgs vacuum expectation value or the Wolfenstein parameters. In the present case

one observes an analogous effect. It turns out that corrections to the survival probability

due to lepton-flavor off-diagonal V-A interactions parametrized by [εL]eα can be absorbed

into a redefinition of the mixing angle θ13 [5]. Since θ13 is not known a-priori (other than

from the very reactor experiments we consider here), the existing data only constrain a

linear combination θ̃13 of the original mixing angle θ13 and dimension-6 Wilson coefficients,

cf. eq. (3.13), but not the two separately. We conclude that, at the leading order in the

SMEFT expansion, reactor neutrino experiments alone only constrain the scalar and tensor

interactions, but not the V-A ones. This explains the origin of the degeneracy between θ13

and off-diagonal V-A NSI found in the previous literature.

We pointed out that neutrino oscillations can probe, at the linear (order Λ−2) level,

the dimension-6 tensor and scalar SMEFT operators that are off-diagonal in the lepton-

flavor space. To our understanding, it is the unique class of observables where this is the

case. Consequently, the oscillation constraints on these operators are robust as long as the

expansion of the SMEFT Lagrangian in powers of 1/Λ is quickly convergent. The same

operators can be probed by meson and nuclear decays or by production processes at the

LHC, however in those cases they enter quadratically (at order Λ−4). Such constraints are
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then subject to model-dependent assumptions about other dimension-6 and dimension-8

contributions to the same observables, and are thus less robust.

We identified the linear combinations of Wilson coefficients of scalar and tensor SMEFT

operators that can be constrained by reactor oscillation experiments, cf. eq. (3.11). Using

the most recent data from Daya Bay and RENO, we derived numerical constraints on these

combinations. Under various more or less constraining assumptions, they are presented in

section 4 and illustrated in figures 2 and 3. As of today, constraints at a few percent level can

be extracted from the publicly available reactor experiment data. This is competitive with

the constraints extracted from nuclear decays (which are less robust, as discussed above).

At face value, the LHC constraints on the same operators are at least an order of magnitude

more stringent. However, they are more model-dependent, and rely on the assumption that

the SMEFT is a valid framework at TeV energy scales. We also derived stringent constraints

on scalar and, especially, tensor Wilson coefficients arising due to renormalization group

mixing with the pseudoscalar ones. The latter are strongly constrained by pion decays

thanks to chiral enhancement. Again, those constraints are less robust, in particular they

depend on the starting point of the running, and assume the absence of cancellations

between different contributions. Finally, CLFV processes typically place severe constraints

on SMEFT operators that are off-diagonal in lepton-flavor indices. In particular, µ →
e conversion on nuclei strongly constrains operators contributing to the NSI parameter

[εS ]eµ, while τ → eπ+π− decays constrain the operators contributing to [εS ]eτ . To our

knowledge, however, CLFV constraints on the operators contributing at tree level to the

tensor parameters [εT ]eµ, and [εT ]eτ (that also affect reactor neutrino oscillations at the

leading order) are not given in the literature.

We note that the main goal of reactor experiments so far has been a precise determi-

nation of the mixing angle θ13 in the standard context, and the analyses were certainly

not optimized for constraining SMEFT operators. We believe that with more data, more

detailed spectral information, and targeted analyses, the constraints obtained in this paper

can be significantly improved. Furthermore, in our analysis the constraining power of reac-

tor experiments is weakened by a partial degeneracy between NSI and the effective mixing

angle θ̃13. Designing new observables sensitive to a different linear combination of θ̃13 and

[εX ]eα may be another path to increasing senisitivity to new physics.
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A WEFT without SMEFT

The WEFT is an effective theory below the scale µ . mW describing interactions of the

SM particles with the exception of the W , Z and Higgs bosons and the top quark, which

have been integrated out. In the main body of this paper we treated the WEFT as the

low-energy theory of the SMEFT. However, the WEFT is a consistent EFT in its own

right, which can be valid even if it is not completed by the SMEFT at higher energies.

This caveat is relevant if the masses of BSM particles are between a few and a 100 GeV, or

if the electroweak symmetry in the BSM theory is realized non-linearly. In this situation

the leading order Lagrangian relevant for neutrino oscillations is still the one of eq. (2.1),

however the parameters εX are no longer related by matching to the SMEFT parameters

at higher energies. The most important practical consequence is that εR may contain

non-diagonal elements at the leading order in the WEFT. Then the reactor antineutrino

survival probability in eq. (3.12) is generalized to

Pν̄e→ν̄e(L,Eν) = 1− sin2

(
∆m2

31L

4Eν

)
sin2

(
2θ̂13 − αD

me

Eν −∆
− αP

me

fT (Eν)

)
+ sin

(
∆m2

31L

2Eν

)
sin(2θ̂13)

(
γR + βD

me

Eν −∆
− βP

me

fT (Eν)

)
+O(ε2X),

(A.1)

where the definitions for γR and the (new) effective mixing angle are

θ̂13 = θ13 + Re [L]−
3g2
A

3g2
A + 1

Re [R] , (A.2)

γR = − 2

3g2
A + 1

Im [R] . (A.3)

The definitions of the coefficients αP,D, βP,D in eq. (A.1) are given in eq. (3.13), whereas

[R] is defined in analogy to [L], [S], and [T ], i.e. [R] ≡ eiδCP (s23[εR]eµ + c23[εR]eτ ).

In this setting the survival probability acquires dependence on one linear combina-

tion of the εR parameters, which is in principle distinguishable from other parameters in

eq. (A.1) due to the distinct L/Eν and Eν dependence. We show in figure 4 the results of

the combined analysis of the Daya Bay and RENO experiments allowing only the right-

handed NSI to be non-zero: εR 6= 0, εS,P,T = 0. Under this assumption we find

Im [R] = 0.034± 0.026 . (A.4)

B Traditional NSI formalism

In the neutrino literature, NSI are typically parametrized by the effective couplings εs

and εd, which correspond to non-standard effects in neutrino production and detection,

respectively (see e.g. ref. [3]). In this approach, neutrinos produced at the source and

detected at the detectors are not pure flavor states:

|νsα〉 = |να〉+
∑

β=e,µ,τ

εsαβ |νβ〉 , 〈νdβ | = 〈νβ |+
∑

α=e,µ,τ

εdβα 〈να| , (B.1)
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Figure 4. Allowed regions in the (sin2 2θ̂13 − Im [R]) plane for the combined data of the Daya

Bay and RENO experiments. The 1-, 2-, and 3-σ regions are shown with orange, blue, and purple,

respectively. The Daya Bay and RENO 3σ regions are shown with the grey dashed and dotted

curves, respectively.

where the first and second indices in εsαβ correspond to the flavors of the charged lepton

and neutrino, respectively, which is reversed for εdαβ . The oscillation probability is given by

Pνsα→νdβ
= | 〈νdβ | e−iHL |νsα〉 |2 , (B.2)

where in the absence of NSI in propagation the Hamiltonian is given by

Hαβ =
1

2Eν
Uαj

0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

U †kβ . (B.3)

Up to first order in ε’s, rewriting εseα = |εseα|eiφ
s
eα and εdβe = |εdβe|e

iφdβe , and taking the

limits ∆m2
21L/Eν � 1, cos θ13 ≈ 1, the survival probability of electron antineutrinos

becomes [3, 11]

Pν̄se→ν̄de = 1− sin2 2θ13 sin2 ∆m2
31L

4Eν
+ 2|εsee| cosφsee + 2|εdee| cosφdee

−4s13 sin2 ∆m2
31L

4Eν

[
s23|εseµ| cos(δCP − φseµ)

+s23|εdµe| cos(δCP + φdµe) + (µ→ τ, s→ c)
]

+2s13 sin
∆m2

31L

2Eν

[
s23|εseµ| sin(δCP − φseµ)

−s23|εdµe| sin(δCP + φdµe) + (µ→ τ, s→ c)
]
, (B.4)
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Comparing the probability in eq. (B.4) with the WEFT formula in eq. (A.1), the two agree

given the matching between the effective couplings

(εseα)∗ = [εL]eα − [εR]eα −
me

fT (Eν)

gT
gA

[ε̂T ]eα,

εdαe = [εL]eα −
3g2
A − 1

3g2
A + 1

[εR]eα −
me

Eν −∆

(
gS

3g2
A + 1

[εS ]eα −
3gAgT

3g2
A + 1

[ε̂T ]eα

)
, (B.5)

for α = µ, τ . On the other hand, matching eq. (B.4) to eq. (3.12) we find Re
(
εsee + εdee

)
= 0.

In our formalism, the diagonal EFT coefficients do not enter the survival probability, but

rather the total rate of produced and detected neutrinos (see section 4.1). This way, Pν̄se→ν̄de
can indeed be interpreted as a probability, since non-oscillatory terms linearly proportional

to εs,dee would lead to Pν̄se→ν̄de > 1 for some choices of parameters. It is important to note

that here we compare the “traditional” NSI formalism only to short baseline experiments,

while the matter effects would still need to be included for long base-line experiments.

C Separate RENO and Daya Bay analyses

For completeness, in this appendix we show separate RENO and Daya Bay constraints on

the mixing angle and the NSI parameters in eq. (3.12). This allows us to compare the

constraining power of the two experiments and their relative weight in the combined fit.

We follow the same presentation as in section 4. We consider first the case when only

left-handed NSI are present: εL 6= 0, εR,S,P,T = 0, in which case the only free parameter is

θ̃13. It is constrained as(
sin2 2θ̃13

)
Daya Bay

= 0.0841± 0.0028 ,
(

sin2 2θ̃13

)
RENO

= 0.0843± 0.0064 . (C.1)

These results are in good agreement with the best fit values end errors for θ13 reported by

the Daya Bay and RENO collaborations [21, 22].

Next, we allow the scalar NSI to be non-zero: εS 6= 0, εR,P,T = 0. For Im [S] = 0

we find

Re [S]Daya Bay = 0.56± 0.50 , Re [S]RENO = −0.57± 0.60 . (C.2)

For Re [S] = 0 we find

Im [S]Daya Bay = −0.11± 0.15 , Im [S]RENO = 0.14± 0.25 . (C.3)

When both Re [S] and Im [S] are free parameters we find

Re [S]Daya Bay = 0.50± 0.69 , 0.87 < Re [S]RENO ,

Im [S]Daya Bay = 0.03± 0.17 , Im [S]RENO = 0.45± 0.24 . (C.4)

Finally, we allow tensor NSI to be non-zero: ε̂T 6= 0, εR,S,P = 0. For Im [T ] = 0 we find

Re [T ]Daya Bay = −0.11± 0.10 , Re [T ]RENO = −0.08± 0.14 . (C.5)
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Figure 5. Allowed regions in the (sin2 2θ̃13−Re [S]) (first and second rows) and (sin2 2θ̃13− Im [S])

plane (third and fourth rows), for the Daya Bay (left) and RENO (right) experiments. The 1-, 2-,

and 3-σ regions are shown with orange, blue, and purple, respectively. The best fit values are

marked by ×.
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marked by ×. The dashed curves correspond to the analysis where only events with Eν < 5 MeV

are taken into account. We note that the y-axis range is different in the upper and lower panels.
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For Re [T ] = 0 we find

Im [T ]Daya Bay = 0.023± 0.026 , Im [T ]RENO = −0.003± 0.043 . (C.6)

When both Re [T ] and Im [T ] are free parameters we find

Re [T ]Daya Bay = −0.09± 0.16 , Re [T ]RENO = −0.91± 0.25 ,

Im [T ]Daya Bay = 0.005± 0.041 , Im [T ]RENO = −0.028± 0.069 . (C.7)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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at Daya Bay, JHEP 07 (2015) 060 [arXiv:1412.1064] [INSPIRE].

[12] P.O. Ludl and W. Rodejohann, Direct neutrino mass experiments and exotic charged current

interactions, JHEP 06 (2016) 040 [arXiv:1603.08690] [INSPIRE].

[13] D. Choudhury, K. Ghosh and S. Niyogi, Non-standard neutrino interactions: obviating

oscillation experiments, arXiv:1801.01513 [INSPIRE].

[14] J. Heeck, M. Lindner, W. Rodejohann and S. Vogl, Non-standard neutrino interactions and

neutral gauge bosons, SciPost Phys. 6 (2019) 038 [arXiv:1812.04067] [INSPIRE].

– 30 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP01(2019)106
https://arxiv.org/abs/1811.05487
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.05487
https://doi.org/10.1088/1126-6708/2006/10/084
https://arxiv.org/abs/hep-ph/0607020
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0607020
https://doi.org/10.1103/PhysRevD.77.013007
https://arxiv.org/abs/0708.0152
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.0152
https://doi.org/10.1103/PhysRevD.79.113012
https://arxiv.org/abs/0812.4417
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.4417
https://doi.org/10.1016/j.physletb.2008.12.005
https://arxiv.org/abs/0809.4835
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.4835
https://doi.org/10.1103/PhysRevD.79.093003
https://arxiv.org/abs/0901.1460
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1460
https://doi.org/10.1088/1126-6708/2009/08/090
https://arxiv.org/abs/0907.0097
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.0097
https://doi.org/10.1007/JHEP12(2011)001
https://arxiv.org/abs/1105.5580
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5580
https://doi.org/10.1088/0034-4885/76/4/044201
https://doi.org/10.1088/0034-4885/76/4/044201
https://arxiv.org/abs/1209.2710
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.2710
https://doi.org/10.1007/JHEP06(2013)026
https://arxiv.org/abs/1304.1042
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1042
https://doi.org/10.1007/JHEP07(2015)060
https://arxiv.org/abs/1412.1064
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.1064
https://doi.org/10.1007/JHEP06(2016)040
https://arxiv.org/abs/1603.08690
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.08690
https://arxiv.org/abs/1801.01513
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.01513
https://doi.org/10.21468/SciPostPhys.6.3.038
https://arxiv.org/abs/1812.04067
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.04067


J
H
E
P
0
5
(
2
0
1
9
)
1
7
3

[15] W. Altmannshofer, M. Tammaro and J. Zupan, Non-standard neutrino interactions and low

energy experiments, arXiv:1812.02778 [INSPIRE].

[16] D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino

generalized interactions, Phys. Rev. D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE].

[17] P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT enlightenment

of the neutrino dark side, Phys. Rev. D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE].

[18] I. Esteban et al., Updated constraints on non-standard interactions from global analysis of

oscillation data, JHEP 08 (2018) 180 [arXiv:1805.04530] [INSPIRE].

[19] S. Bergmann, Y. Grossman and E. Nardi, Neutrino propagation in matter with general

interactions, Phys. Rev. D 60 (1999) 093008 [hep-ph/9903517] [INSPIRE].

[20] Y. Farzan and M. Tortola, Neutrino oscillations and non-standard interactions, Front. in

Phys. 6 (2018) 10 [arXiv:1710.09360] [INSPIRE].

[21] Daya Bay collaboration, Measurement of the electron antineutrino oscillation with 1958

days of operation at Daya Bay, Phys. Rev. Lett. 121 (2018) 241805 [arXiv:1809.02261]

[INSPIRE].

[22] RENO collaboration, Measurement of reactor antineutrino oscillation amplitude and

frequency at RENO, Phys. Rev. Lett. 121 (2018) 201801 [arXiv:1806.00248] [INSPIRE].

[23] W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor

conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

[24] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the

standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
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