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Abstract

The measurements of the production of prompt D0, D+, D∗+, and D+
s mesons in proton–proton

(pp) collisions at
√

s = 5.02 TeV with the ALICE detector at the Large Hadron Collider (LHC) are

reported. D mesons were reconstructed at mid-rapidity (|y| < 0.5) via their hadronic decay chan-

nels D0 → K−π+, D+ → K−π+π+, D∗+ → D0π+ → K−π+π+, D+
s → φπ+ → K+K−π+, and their

charge conjugates. The production cross sections were measured in the transverse momentum inter-

val 0 < pT < 36 GeV/c for D0, 1 < pT < 36 GeV/c for D+ and D∗+, and in 2 < pT < 24 GeV/c

for D+
s mesons. Thanks to the higher integrated luminosity, an analysis in finer pT bins with re-

spect to the previous measurements at
√

s = 7 TeV was performed, allowing for a more detailed

description of the cross-section pT shape. The measured pT-differential production cross sections

are compared to the results at
√

s = 7 TeV and to four different perturbative QCD calculations. Its

rapidity dependence is also tested combining the ALICE and LHCb measurements in pp collisions at√
s = 5.02 TeV. This measurement will allow for a more accurate determination of the nuclear mod-

ification factor in p–Pb and Pb–Pb collisions performed at the same nucleon-nucleon centre-of-mass

energy.

http://arxiv.org/abs/1901.07979v2
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1 Introduction

The study of the production of hadrons containing heavy quarks, i.e. charm and beauty, in proton–proton

(pp) collisions at LHC energies is a sensitive test of Quantum Chromodynamics (QCD) calculations with

the factorisation approach. In this scheme, the transverse momentum (pT) differential production cross

sections of hadrons containing charm or beauty quarks are calculated as a convolution of three terms: (i)

the parton distribution functions (PDFs) of the incoming protons, (ii) the partonic scattering cross section,

calculated as a perturbative series in powers of the strong coupling constant αs, and (iii) the fragmentation

function, which parametrises the non-perturbative evolution of a heavy quark into a given species of

heavy-flavour hadron. Factorisation is implemented in terms of the squared momentum transfer Q2

(collinear factorisation) [1] or of the partonic transverse momentum kT [2]. At LHC energies, calculations

based on collinear factorisation are available in the general-mass variable-flavour-number scheme, GM-

VFNS [3–6], and in the fixed order plus next-to-leading logarithms approach, FONLL [7, 8], both of them

having next-to-leading order (NLO) accuracy with all-order resummation of next-to-leading logarithms.

Within the kT-factorisation framework, heavy-flavour production cross-section calculations exist only at

leading order (LO) approximation in αs [2, 9, 10]. All these calculations describe within uncertainties

the production cross sections of D and B mesons measured in pp and pp collisions in different kinematic

regions at centre-of-mass energies from 0.2 to 13 TeV (see e.g. Ref. [11] and references therein). In the

case of charm production, the uncertainties on the theoretical predictions, which are dominated by the

choice of the scales of the perturbative calculation (e.g. the factorisation and renormalisation scales), are

significantly larger than the uncertainties on the measured data points [12–23]. However, as pointed out

in Ref. [24], in the ratios of cross sections at different LHC energies and in different rapidity intervals

the uncertainty due to choice of the factorisation and renormalisation scales becomes subdominant with

respect to the uncertainty on the PDFs, thus making the measurement sensitive to the gluon PDF at small

Bjorken-x values. A precise measurement of the D-meson production cross sections down to pT = 0 can

therefore provide important constraints to perturbative QCD (pQCD) calculations and to low-x gluon

PDFs. Furthermore, D-meson measurements in pp collisions represent an essential reference for the

study of effects induced by cold and hot strongly-interacting matter in the case of proton–nucleus and

nucleus–nucleus collisions (see e.g. the recent reviews [11, 25, 26]).

In this article, the measurements of the pT-differential production cross sections of prompt D0, D+, D∗+,

and D+
s mesons (as average of particles and anti-particles) in pp collisions at the centre-of-mass energy√

s = 5.02 TeV are reported together with their ratios. The measurements are performed at mid-rapidity

(|y|< 0.5) in the transverse momentum intervals 0 < pT < 36 GeV/c for D0 mesons, 1< pT < 36 GeV/c

for D+ and D∗+ mesons, and 2< pT < 24 GeV/c for D+
s mesons. The pT-integrated D-meson production

cross sections per unit of rapidity is also reported for each D-meson species. The ratios of the D0, D+,

and D∗+-meson production cross sections measured at
√

s= 7 TeV [27] and
√

s= 5.02 TeV are presented

as well, and compared to FONLL calculations. Finally, the ratios of D0-meson production cross sections

at mid- and forward rapidity are also reported, using the measurements done at forward rapidity by the

LHCb collaboration in pp collisions at
√

s = 5.02 TeV [22].

2 Experimental apparatus and data sample

The ALICE experimental apparatus is composed of a set of detectors for particle reconstruction and

identification at mid-rapidity, embedded in a large solenoidal magnet that provides a B = 0.5 T field

parallel to the beams. It also includes a forward muon spectrometer and various forward and backward

detectors for triggering and event characterisation. A complete description and an overview of their

typical performance in pp, p–Pb, and Pb–Pb collisions is presented in Refs. [28, 29].

The tracking and particle identification capabilities of the ALICE central barrel detectors were exploited

to reconstruct the D-meson decay products at mid-rapidity. The Inner Tracking System (ITS), consisting
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of six cylindrical layers of silicon detectors, is used to track charged particles and to reconstruct primary

and secondary vertices. The Time Projection Chamber (TPC) provides track reconstruction with up

to 159 three-dimensional space points per track, as well as particle identification via the measurement

of their specific ionisation energy loss dE/dx. The particle identification capabilities of the TPC are

complemented by the Time-Of-Flight detector (TOF), which is used to measure the flight time of the

charged particles from the interaction point. These detectors cover the pseudorapidity interval |η |< 0.9.

The V0 detector, composed of two arrays of 32 scintillators each, covering the pseudorapidity ranges

−3.7 < η < −1.7 and 2.8 < η < 5.1, provides the minimum-bias (MB) trigger used to collect the

data sample. In addition, the timing information of the two V0 arrays and the correlation between

the number of hits and track segments in the two innermost layers of the ITS, consisting of Silicon

Pixel Detectors (SPD), was used for an offline event selection, in order to remove background due to

the interaction between one of the beams and the residual gas present in the beam vacuum tube. In

order to maintain a uniform acceptance in pseudorapidity, collision vertices were required to be within

±10 cm from the centre of the detector in the beam-line direction. The pile-up events (less than 1%)

were rejected by detecting multiple primary vertices using track segments defined with the SPD layers.

After the aforementioned selections, the data sample used for the analysis consists of about 990 million

MB events, corresponding to an integrated luminosity Lint = (19.3±0.4) nb−1, collected during the 2017

pp run at
√

s = 5.02 TeV.

3 Data analysis

3.1 Analysis with D-meson decay vertex reconstruction

The D mesons and their charge conjugates were reconstructed via the decay channels D0 → K−π+ (with

branching ratio, BR = 3.89±0.04%), D+ → K−π+π+ (BR = 8.98±0.28%), D∗+ → D0π+ → K−π+π+

(BR = 2.63±0.03%), and D+
s → φπ+ → K+K−π+ (BR = 2.27±0.08%) [30]. The analysis was based

on the reconstruction of decay vertices displaced from the interaction vertex, exploiting the separation

of a few hundred µm induced by the weak decays of D0, D+, and D+
s mesons (cτ ≃ 123, 312, and

150 µm, respectively [30]). The D0, D+, and D+
s candidates were built combining pairs or triplets of

tracks with the proper charge, each with |η | < 0.8, pT > 0.3 GeV/c, at least 70 associated TPC space

points, χ2/ndf < 2 in the TPC (where ndf is the number of degrees of freedom involved in the track fit

procedure), and at least one hit in either of the two layers of the SPD. The D∗+ candidates were defined by

the combination of D0 candidates with tracks reconstructed with at least two points in the ITS, including

at least one in the SPD, and pT > 80 MeV/c. As a consequence of these track selection criteria, the

acceptance for D mesons decreases rapidly for |y| > 0.5 at low pT and for |y| > 0.8 for pT > 5 GeV/c.

Therefore, only D-meson candidates within a fiducial acceptance region, |y| < yfid(pT), were selected.

The yfid(pT) factor was defined as a second-order polynomial function, increasing from 0.5 to 0.8 in the

transverse momentum range 0 < pT < 5 GeV/c, and a constant term, yfid = 0.8, for pT > 5 GeV/c.

In order to reduce the combinatorial background and to increase the signal-over-background ratio (S/B),

geometrical selections on the D0, D+, and D+
s -meson decay topology were applied. In the D∗+ → D0π+

case, the decay vertex cannot be resolved from the primary vertex and geometrical selections were ap-

plied on the secondary vertex topology of the produced D0 mesons. The selection requirements, tuned

to provide a large statistical significance for the signal and to keep the selection efficiency as high as

possible, were mainly based on the displacement of the tracks from the primary vertex (d0), the distance

between the D-meson decay vertex and the primary vertex (decay length, L), and the pointing of the re-

constructed D-meson momentum to the primary vertex. Additional selection criteria, already introduced

in Refs. [27, 31], were applied to D+ and D+
s candidates. These selections reject both combinatorial

background and D mesons from beauty-hadron decays (selection efficiency reduced by 50% at high

pT), denoted as “feed-down” in the following. For the D+
s -candidate selection, one of the two pairs of

opposite-sign tracks was required have a reconstructed K+K− invariant mass within ±10 MeV/c2 with
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respect to the PDG world average of the φ meson [30].

Further reduction of the combinatorial background was obtained by applying particle identification (PID)

to the decay tracks, except for the soft-pion track coming from D∗+ → D0π+ decays. Pions and kaons

were identified requiring compatibility with the respective particle hypothesis within three standard de-

viations (3σ ) between the measured and the expected signals for both the TPC dE/dx and the time-

of-flight. Tracks without TOF hits were identified using only the TPC information with a 3σ selection,

except for the decay products of D+
s candidates with pT < 6 GeV/c, for which a 2σ selection was needed

to suppress the larger fraction of combinatorial background in this mode.

The D-meson raw yields, including both particles and antiparticles, were obtained from binned maxi-

mum likelihood fits to the invariant-mass (M) distributions of D0, D+, and D+
s candidates and to the

mass difference ∆M = M(Kππ)−M(Kπ) distributions of D∗+ candidates, in the transverse-momentum

intervals 0.5 < pT < 36 GeV/c for D0 mesons, 1 < pT < 36 GeV/c for D+ and D∗+ mesons, and

2 < pT < 24 GeV/c for D+
s mesons. The signal extraction was performed in finer pT bins with respect

the previous measurements at
√

s = 7 TeV [27], allowing for a more detailed description of the cross-

section pT shape. The fit function was composed of a Gaussian for the description of the signal and of an

exponential term for the background of D0, D+, and D+
s candidates, and of a threshold function for D∗+

candidates [27]. For the D0 meson, the contribution of signal candidates present in the invariant-mass

distribution with the wrong decay-particle mass assignment (reflections) was included in the fit. It was

modelled based on the invariant-mass distributions of the reflected signal in the simulation, which were

parametrised as the sum of two Gaussian functions. The contribution of reflections is about 2%−3% of

the raw signal depending on pT. For the M(KKπ) distribution, an additional Gaussian was used to de-

scribe the signal of the decay D+ → K+K−π+, with a branching ratio of (9.51±0.34) ·10−3 [30], present

on the left side of the D+
s -meson signal. Figure 1 shows the invariant mass (mass-difference) distributions

together with the result of the fits, in 1.5 < pT < 2 GeV/c, 16 < pT < 24 GeV/c, 7 < pT < 7.5 GeV/c,

and 3 < pT < 4 GeV/c intervals for D0, D+, D∗+, and D+
s candidates, respectively. The statistical sig-

nificance of the observed signals, S/
√

(S+B), varies from 4 to 28, depending on the meson species and

on the pT interval. The S/B values obtained applying the selections described above are 0.01–1.85 for

D0, 0.5–2.2 for D+, 0.3–4.2 for D∗+, and 0.3–2.2 for D+
s mesons, depending on pT.

The pT-differential cross section of prompt D mesons in each pT interval was computed as:

d2σ D

dpTdy
=

1

c∆y(pT)∆pT
· 1

BR
·

1
2 fprompt(pT) ·ND+D,raw(pT)

∣

∣

∣

|y|<yfid(pT)

(Acc× ε)prompt(pT)

1

Lint
. (1)

The raw yield values (sum of particles and antiparticles, ND+D,raw) were divided by a factor of two and

multiplied by the prompt fraction fprompt to obtain the charged-averaged yields of prompt D mesons.

Furthermore, they were divided by the acceptance-times-efficiency of prompt D mesons (Acc×ε)prompt,

the BR of the decay channel, the width of the pT interval (∆pT), the correction factor for the rapidity

coverage c∆y, and the integrated luminosity Lint = Nev/σMB, where Nev is the number of analysed events

and σMB = (50.9±0.9) mb is the cross section for the MB trigger condition [32].

The (Acc× ε) correction was obtained simulating pp collisions with the PYTHIA 6.4.25 event gen-

erator [33] (Perugia-11 tune [34]), and propagating the generated particles through the detector using

GEANT3 [35]. Each simulated PYTHIA pp event contained a cc or bb pair, and D mesons were forced

to decay into the hadronic channels of interest for the analysis. The luminous region distribution and the

conditions of all the ALICE detectors in terms of active channels, gain, noise level and alignment, and

their evolution with time during the data taking, were taken into account in the simulations.

Figure 2 shows the (Acc×ε) as a function of pT for prompt and feed-down D0, D+, D∗+, and D+
s mesons

within the fiducial acceptance region. The average larger displacement from the primary vertex of beauty
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Figure 1: Invariant-mass (mass-difference) distributions of D0, D+, D∗+, and D+
s candidates and charge conju-

gates in 1.5 < pT < 2 GeV/c, 16 < pT < 24 GeV/c, 7 < pT < 7.5 GeV/c, and 3 < pT < 4 GeV/c intervals,

respectively. The blue solid lines show the total fit functions as described in the text and the red dashed lines

are the combinatorial-background terms. In case of D0, the grey dashed line represents the combinatorial back-

ground with the contribution of the reflections. The values of the mean (µ) and the width (σ ) of the signal peak

are reported together with the signal counts (S) and the signal over background ratio (S/B) in the mass interval

(µ − 3σ ,µ + 3σ ). The reported uncertainties are only the statistical uncertainties from the fit.

hadrons due to their long lifetime (cτ ≈ 500 µm [30]) results in a more efficient selection of feed-down

D mesons compared to prompt D mesons in most of the pT intervals.

The correction factor for the rapidity acceptance c∆y was computed with the PYTHIA 6.4.25 event gener-

ator with Perugia-11 tune. It was defined as the ratio between the generated D-meson yield in ∆y = 2yfid,

and that in |y|< 0.5. It was checked that calculations of the c∆y correction factor based on FONLL pQCD

calculations [8] or on the assumption of uniform D-meson rapidity distribution in |y| < yfid would give

the same result, because both in PYTHIA and in FONLL the D-meson yield is uniform within 1% in the

range |y|< 0.8.

The fprompt fraction was calculated similarly to previous measurements (see e.g. Refs. [27, 31]) using the
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Figure 2: Acceptance × efficiency for D0, D+, D∗+, and D+
s mesons, as a function of pT. The efficiencies for

prompt (solid lines) and feed-down (dotted lines) D mesons are shown.

beauty-hadron production cross sections from FONLL calculations [7, 36], the beauty hadron → D+X

decay kinematics from the EvtGen package [37], and the efficiencies for feed-down D mesons reported

in Fig. 2. The values of fprompt range between 0.8 and 0.96 depending on D-meson species and pT.

3.2 Analysis without D-meson decay vertex reconstruction

A different analysis method, not based on geometrical selections of the displaced decay-vertex topology,

was developed for the two-body decay D0 → K−π+ (and its charge conjugate) in order to extend the

measurement of the cross section down to pT = 0 [19]. Indeed, the poor track impact parameter resolution

at very low pT and the small Lorentz boost limit the effectiveness of the selections based on the displaced

decay-vertex topology. Furthermore, geometrical selections based on the displacement of the D0-meson

decay vertex tend to enhance the contribution of feed-down D mesons, increasing the related systematic

uncertainty. This alternative analysis technique is mainly based on particle identification and on the

estimation and subtraction of the combinatorial background.
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Figure 3: Invariant-mass distributions of D0 →K−π+ candidates (and charge conjugates) for 0< pT < 0.5 GeV/c.

The left panel displays the invariant-mass distribution of all opposite-sign Kπ pairs (or unlike sign, ULS in the

legend) together with the background distribution estimated with the track-rotation technique. The right panel

shows the invariant-mass distributions after subtraction of the background from the track-rotation technique. The

blue solid line shows the total fit function as described in the text and the grey dashed line is the residual background

after the subtraction of the background from the track-rotation technique.

The D0 candidates were formed combining pairs of kaons and pions tracks with opposite charge sign,

|η | < 0.8, and pT > 0.3 GeV/c. Track selection and pion and kaon identification were performed with

the same strategy used in the analysis with decay-vertex reconstruction described in Section 3.1. The

resulting D0 and D0 candidates were selected by applying the same fiducial acceptance selection |y| <
yfid(pT) adopted for the analysis with decay-vertex reconstruction. The invariant-mass distribution of

Kπ pairs was obtained in fourteen transverse momentum intervals, in the range 0 < pT < 12 GeV/c.

The background distribution was estimated with the track-rotation technique. For each D0 (and D0)

candidate, up to 19 combinatorial-background-like candidates were created by rotating the kaon track by

different angles in the range between π
10

and 19π
10

radians in azimuth. The left hand panel of Fig. 3 shows

the invariant-mass distribution of opposite-sign Kπ pairs together with that of the background estimated

with the track-rotation technique in the interval 0 < pT < 0.5 GeV/c.

After subtracting the background distribution from the opposite-sign Kπ invariant-mass distribution, the

D0-meson raw signal (sum of particle and antiparticle contributions) was extracted from the resulting

distribution via a fit to the background-subtracted invariant-mass distribution, as reported in Fig. 3 (right

panel) for the interval 0 < pT < 0.5 GeV/c. In the fit function, the signal was modelled with a Gaussian

term, while the residual background with second-order polynomial function. The statistical significance

of the signal extracted in 0 < pT < 0.5 GeV/c (0.5 < pT < 1 GeV/c) is S/
√

S+B = 5.2 (8.0).

The (Acc× ε) correction factors of prompt and feed-down D0 mesons were determined from the same

Monte Carlo simulations as those used for the analyses with decay-vertex reconstruction. The (Acc× ε)
obtained with the two different analyses are compared in Fig. 4. For the analysis that does not exploit

the selections on the D0-meson decay vertex, the efficiency is higher by a factor of about 30 (3) at low

(high) pT and almost independent of pT. The mild increase with the increasing pT is mainly determined

by the geometrical acceptance of the detector. Unlike in the analysis with decay-vertex reconstruction,

the efficiency is the same for prompt D0 and for feed-down D0, as expected when no selection is made

on the displacement of the D0-meson decay vertex from the interaction point.

The prompt fraction to the D0-meson raw yield, fprompt, was estimated with the same FONLL-based

approach used for the analysis with decay-vertex. The resulting fprompt values decrease with increasing

pT, from a value of about 0.95 for pT < 4 GeV/c to about 0.90 in the interval 8 < pT < 12 GeV/c and
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Figure 4: Product of acceptance and efficiency of D0 → K−π+ (and charge conjugates).

are larger compared to the analysis with decay-vertex reconstruction, due to the fact that the feed-down

component is not enhanced by the topological selection criteria.

3.3 Measurement of the fraction of prompt D mesons

In order to cross-check the values obtained with the FONLL-based method of Section 3.1, the fractions

of prompt D0 and D+
s mesons in the raw yields, fprompt, were measured exploiting the different shapes

for the distributions of the transverse-plane impact parameter to the primary vertex (d0) of prompt and

feed-down D mesons. The prompt fraction was estimated via an unbinned maximum-likelihood fit of the

d0 distribution of D0 and D+
s candidates with invariant mass |M −MD| < 2σ (where σ is the standard

deviation of the Gaussian function describing the D-meson signal in the invariant-mass fits), using the fit

function

F(d0) = S ·
[

(1− fprompt)F
feed-down(d0)+ fpromptF

prompt(d0)
]

+B ·Fbackgr(d0) . (2)

In this function, S and B are the signal raw yield and background in the selected invariant-mass range,

fixed to the values obtained from the invariant-mass fit; Fprompt(d0), F feed-down(d0), and Fbackgr(d0) are

the functions describing the impact-parameter distributions of prompt and feed-down D mesons and

background, respectively. The function Fprompt is a detector resolution term modelled with a Gaussian

and a symmetric exponential term. The function F feed-down is the convolution of a sum of two sym-

metric exponential functions (F feed-down
true ), which describe the intrinsic impact-parameter distribution of

secondary D mesons from beauty-hadron decays, and the detector resolution term (Fprompt). All the pa-

rameters of the Fprompt and F feed-down
true functions were fixed in the data fit to the values obtained by fitting

the distributions from Monte Carlo simulations, except for the Gaussian width of the detector-resolution

term, which was kept free in order to compensate a possible discrepancy between the impact-parameter

resolution in the data and in the simulation. The distribution describing the combinatorial background

was parameterised with a function composed of a Gaussian and symmetric exponential term (Fbackgr).

The parameters were fixed to those obtained by fitting the impact-parameter distribution of background

candidates in the side bands of the signal peak in the invariant-mass distributions. Figure 5 (left) shows

examples of fits to the impact-parameter distributions of D0 and D+
s mesons in the transverse-momentum

intervals 3 < pT < 4 GeV/c and 5 < pT < 6 GeV/c, respectively. For this study, wider pT intervals were

adopted compared to the analysis, due to the poor quality of the fit when reducing the sample. The D0

candidates used in the impact-parameter fit were selected with the same criteria described in Section 3.1.
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Figure 5: Left: examples of fits to the impact-parameter distributions of D0 and D+
s candidates. The curves show

the fit functions describing the prompt, feed-down, and background contributions, as well as their sum, as described

in the text. Right: fraction of prompt D0 and D+
s -mesons raw yield as a function of pT compared to the values

obtained with the FONLL-based approach. The results from the data-driven method are shown as square markers

with the error bars (boxes) representing the statistical (systematic) uncertainty. The central values of fprompt from

the FONLL-based approach are shown by the dashed line and their uncertainty by the red boxes.

For the D+
s mesons, the impact-parameter selection, used to extract the raw yield from the invariant-mass

distribution, was not applied for this study. In this case, the prompt fraction, fprompt, was obtained by in-

tegrating the functions obtained from the fit in the restricted impact-parameter range used in the analysis.

The prompt fraction measured with the fits to the impact-parameter distributions of D-meson candidates

has three main sources of systematic uncertainty, namely (i) the assumption on the shape of the impact-

parameter distribution for each contribution (prompt D mesons, feed-down D mesons, and combinatorial

background); (ii) the uncertainty on the signal and background yields extracted from the invariant-mass

fits; and (iii) the consistency of the procedure, evaluated with a Monte Carlo closure test. These un-

certainties were estimated with the procedures described in Ref. [19]. The total systematic uncertainty

on fprompt with the data-driven approach ranges, depending on pT, are between 1% and 9% for the D0

meson, and between 4% and 17% for the D+
s meson.

The prompt fractions in the raw yields of D0 and D+
s mesons measured with the data-driven method are
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compared to those calculated with the FONLL-based approach in the right panels of Fig. 5 and found to

be compatible within uncertainties. For the interval 24 < pT < 36 GeV/c (16 < pT < 24 GeV/c), given

the poor precision of the impact-parameter fit, it was not possible to determine the data-driven prompt

fraction for the D0 (D+
s ) meson.

4 Systematic uncertainties

Systematic uncertainties on the D-meson cross sections were estimated considering the following sources:

(i) extraction of the raw yield from the invariant-mass distributions; (ii) track reconstruction efficiency;

(iii) D-meson selection efficiency; (iv) PID efficiency; (v) the shape of the pT spectrum generated for D

mesons in the simulation; (vi) subtraction of the feed-down from beauty-hadron decays. In addition, the

uncertainties on the branching ratios and on the integrated luminosity were considered. A summary of

the systematic uncertainties is reported in Table 1 for different pT intervals.

The systematic uncertainties on the raw yield extraction were evaluated by repeating the fits several hun-

dred times varying the fit interval and the functional form of the background fit function. The same

strategy was performed using a bin-counting method, in which the signal yield was obtained by integrat-

ing the invariant-mass distribution after subtracting the background, estimated from a fit to the side-bands

only. The systematic uncertainty was defined as the RMS of the distribution of the signal yields obtained

from all these variations and ranges between 1% and 9% depending on the D-meson species and pT

interval. This includes for the D0 mesons a contribution of about 1% obtained by varying the ratio of

the integral of the reflections to the integral of the signal and the shape of the templates used in the

invariant-mass fits. For the background estimation of the D0-meson analysis without decay-vertex re-

construction with the track-rotation technique, different configurations of the rotation angle were used.

In addition, three alternative approaches were tested to estimate the background distribution: like-sign

(LS) pairs, event mixing, and side-band fit [19]. The raw yield values obtained subtracting these alter-

native background distributions were found to be consistent with those from the default configuration of

the track-rotation method within the uncertainty estimated by varying the fit conditions and therefore no

additional systematic uncertainty was assigned.

The systematic uncertainty on the track reconstruction efficiency has two different contributions. The

first one is estimated by varying the track-quality selection criteria and the second one is estimated

by comparing the probability to match the tracks from the TPC to the ITS hits in data and simulation

(matching efficiency). To obtain the matching efficiency, the abundances of primary and secondary

particles in data were estimated via template fits to the track impact-parameter distributions, where the

relative abundances in the simulation were weighted to match those in data [27, 38]. The estimated

uncertainty, a quadratic sum of the two contributions, depends on the D-meson pT and it ranges from 3%

to 5% for the two-body decay of D0 mesons and from 3.5% to 7% for the three-body decays of D+, D∗+,

and D+
s mesons.

The systematic uncertainty on the D-meson selection efficiency originates from imperfections in the

simulation of the D-meson decay kinematics and topology and of the resolutions and alignments of

detectors in the simulation. For the analyses with decay-vertex reconstruction, the systematic uncertainty

was estimated by repeating the analysis with different sets of selection criteria, resulting in a significant

modification of the efficiencies, raw yield, and background values. The systematic uncertainties are

largest at low pT (up to 5%), where the efficiencies are low and vary steeply with pT, because of the

tighter geometrical selections. For the D+
s meson, for which more stringent selection criteria were used,

slightly larger uncertainties were estimated, ranging from 5% at high pT to 8% at low pT. In the case

of the D0-meson analysis without decay-vertex reconstruction, the stability of the corrected yield was

tested against variations of the single-track pT selection and no systematic effect was observed.

To estimate the uncertainty on the PID selection efficiency, the analysis was repeated without PID selec-
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D0 D+ D∗+ D+
s

pT (GeV/c) 0-0.5 2-2.5 10-12 2-2.5 10-12 2-2.5 10-12 2-3 8-12

Signal yield 9% 3% 2% 3% 3% 3% 1% 7% 3%

Tracking efficiency 3% 4% 5% 4.5% 7% 4% 5% 4.5% 7%

Selection efficiency 0 5% 3% 4% 3% 5% 1% 8% 5%

PID efficiency 0 0 0 0 0 0 0 2.5% 0

pT shape in MC 0 0 0 1% 0 1% 0 1% 0

Feed-down +1.1
−1.3% +3.6

−4.3% +3.8
−5.3% +2.4

−2.8% +2.3
−3.1% +3.0

−3.5% +1.8
−2.5% +2.8

−3.3% +3.4
−4.5%

Branching ratio 1.0% 3.1% 1.3% 3.5%

Luminosity 2.1%

Table 1: Summary of relative systematic uncertainties on D0, D+, D∗+, and D+
s measurements in different pT

intervals.

tion for the three non-strange D-meson species and D+
s mesons with pT > 6 GeV/c. The resulting cross

sections were found to be compatible with those obtained with the PID selection and therefore no system-

atic uncertainty was assigned. For D+
s mesons with pT < 6 GeV/c and the D0-meson analysis without

decay-vertex reconstruction, an analysis without applying PID selections could not be performed due to

the insufficient statistical significance of the signal. The systematic uncertainty for low-pT D+
s mesons

was therefore estimated by comparing the pion and kaon PID selection efficiencies in the data and in

the simulation and combining the observed differences using the D+
s -meson decay kinematics [31]. A

3% systematic uncertainty was assigned for 4 < pT < 6 GeV/c, and 2.5% for pT < 4 GeV/c. For the

D0-meson analysis without decay-vertex reconstruction, compatible cross sections were obtained when

using more stringent PID criteria. Based on this result and on the fact that the PID selections are the

same as used in the analysis with decay-vertex reconstruction, no uncertainty due to PID was assigned.

The systematic uncertainty due to the generated D-meson pT shape was estimated by using FONLL as

an alternative generator with respect to PYTHIA to simulate the D-meson pT distribution [15], and was

found to be 0%–5% for pT < 3 GeV/c and negligible at higher pT. The pT shape of both considered

distributions were found to be compatible with the measured one within uncertainties. Finally, the sys-

tematic uncertainty on the subtraction of feed-down from beauty-hadron decays (i.e. the calculation of

the fprompt fraction) was estimated by varying the FONLL parameters (b-quark mass, factorisation, and

renormalisation scales) as prescribed in Ref. [8]. It ranges between +1.0
−1.2% and +4.4

−6.3% depending on the

D-meson species and pT interval.

The contributions of these different sources of uncertainties were summed in quadrature to obtain the

total systematic uncertainty in each pT interval, which varies from 6.5%–10.0%, 6.5%–10.5%, 5.4%–

11.3%, and 8.7%–12.1% for the D0, D+, D∗+, and D+
s mesons, respectively. The systematic uncertainty

on PID, tracking, and selection efficiencies are mainly correlated among the different pT intervals, while

the raw-yield extraction uncertainty is mostly uncorrelated. The pT-differential cross sections have an

additional global normalisation uncertainty due to the uncertainties on the integrated luminosity [32] and

on the branching ratios of the considered D-meson decays [30].

5 Results

5.1 Transverse momentum-differential cross sections

The pT-differential production cross section for prompt D0 mesons in |y|< 0.5 in pp collisions at
√

s =
5.02 TeV was obtained from the analyses with and without decay-vertex reconstruction. The two results

are compared in Fig. 6 with the inset showing their ratio in the common pT range. In all the figures in

this section, the vertical error bars represent the statistical uncertainties and the systematic uncertainties

are depicted as boxes around the data points. In each pT interval the symbols are positioned horizontally
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Figure 6: Prompt D0-meson pT-differential production cross section in |y|< 0.5 in pp collisions at
√

s= 5.02 TeV

measured with and without decay-vertex reconstruction. The inset shows the ratio of the measurements in their

common pT range. The vertical error bars and the empty boxes represent the statistical and systematic uncertainties,

respectively.

at the center of the bin and the horizontal bars represents the width of the pT interval. The two results

for prompt D0-meson cross section are found to be consistent within statistical uncertainties, which are

independent between the two measurements because of their very different signal-to-background ratios

and efficiencies. The most precise measurement of the prompt D0-meson production cross section is

obtained using the results of the analysis without decay-vertex reconstruction in the interval 0 < pT <
1 GeV/c and those of the analysis with decay-vertex reconstruction for pT > 1 GeV/c.

The pT-differential cross sections for prompt D0, D+, D∗+, and D+
s -meson production in |y|< 0.5 are de-

picted in Fig. 7. The prompt D0-meson pT-differential cross section is compatible with the one measured

by the CMS collaboration at the same centre-of-mass energy in |y|< 1 and 2 < pT < 100 GeV/c [20].

In Figs. 8, 9, 10 and 11 the measured prompt D0, D+, D∗+, D+
s -meson pT-differential cross sections are

compared with results of pQCD calculations performed with different schemes: FONLL [7, 8] (not avail-

able for the D+
s meson), two calculations using the GM-VNFS framework with different prescriptions to

regulate the divergences at small transverse momentum, dubbed as GM-VFNS(mod-µR,F) [39, 40] and

GM-VFNS(SACOT-mT) [6], and a calculation based on kT-factorisation [41]. The GM-VFNS(mod-µR,F)

calculations were performed with a different choice of the factorisation and renormalisation scales µF and

µR with respect to the GM-VFNS predictions of Ref. [5] that were compared in Ref. [27] to the cross sec-

tions measured at
√

s = 7 TeV. With this modification of QCD scale, the calculations could be extended

to lower pT. In GM-VFNS(SACOT-mT), the divergences of the heavy-quark PDFs and light-parton frag-

mentation functions at low pT are regulated by the heavy-quark mass, thus allowing the calculation of

the D-meson cross section down to pT = 0. Note also that the authors of the kT-factorisation calculations

changed the treatment of the running strong coupling constant αS and the gluon distributions [41], with

respect to the predictions shown in Ref. [27]. In GM-VFNS(mod-µR,F) the value of charm mass is set
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Figure 7: pT-differential production cross section of prompt D0, D+, D∗+, and D+
s mesons in pp collisions at√

s = 5.02 TeV. Statistical uncertainties (bars) and systematic uncertainties (boxes) are shown. For the D0 meson,

the results in 0 < pT < 1 GeV/c are obtained from the analysis without decay-vertex reconstruction, while those in

1 < pT < 36 GeV/c are taken from the analysis with decay-vertex reconstruction. The D∗+-meson cross section

is scaled by a factor of 5 for better visibility.

to 1.3 GeV/c2, while in FONLL, GM-VFNS(SACOT-mT) and kT-factorisation predictions the mass is

set to 1.5 GeV/c2. The four frameworks utilise different sets of PDFs (CTEQ6.6 [42], CTEQ14 [43],

NNPDF3.1 [44] and MMHT2014 [45] for FONLL, GM-VFNS(mod-µR,F), GM-VFNS(SACOT-mT) and

kT-factorisation, respectively) and different fragmentation functions. The theoretical uncertainties are es-

timated by varying the factorisation and renormalisation scales in FONLL, GM-VFNS(SACOT-mT) and

kT-factorisation, while only the renormalisation scale µR is varied in GM-VFNS(mod-µR,F). In FONLL

and kT-factorisation calculations the charm-quark mass is also varied. The uncertainties on the PDFs

are included in the GM-VFNS(SACOT-mT) and FONLL predictions. The theoretical calculations are

performed in the same pT intervals as the measurements, except for the first bin of the D0 prediction with

GM-VFNS(mod-µR,F) that starts from 0.1 GeV/c. The results of these calculations are shown as filled

boxes spanning the theoretical uncertainties and a solid line representing the values obtained with the

central values of the pQCD parameters.

The measured cross sections of non-strange D mesons are described within uncertainties by FONLL and

the two GM-VFNS calculations. The data lie systematically on the upper edge of the uncertainty band

of the FONLL predictions. For the two calculations in the GM-VFNS framework, the central values of

the predictions tend to underestimate the data at low and intermediate pT and to overestimate them at

high pT. The kT-factorisation predictions describe the data at low and intermediate pT, but overshoots

them for pT > 7 GeV/c. The D+
s -meson production tends to be underestimated by the three pQCD

calculations in the measured pT range.

The analysis without decay-vertex reconstruction provides also a direct measurement of the inclusive

D0-meson cross section because no selections are applied on the decay topology, which alter the fraction

of prompt and feed-down D mesons. The inclusive D0-meson cross section is shown in Fig. 12 and

compared with results from FONLL calculations [7, 8] with the B → D+X decay kinematics from the

EvtGen package [37]. The contributions of prompt D0-meson poduction from FONLL and D0 mesons

from B-meson decays from FONLL+EvtGen are also shown separately. The measured cross sections are
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Figure 8: pT-differential production cross sections for prompt D0 meson compared to pQCD calculations:

FONLL [7, 8], GM-VFNS(mod-µR,F) [39, 40], GM-VFNS(SACOT-mT) [6], and kT-factorisation [41]. The ra-

tios of the data to the theoretical predictions are shown in the lower part of each panel.

described by the calculation within the theoretical uncertainties, with the central value of the prediction

lying below the data in all the pT intervals, similarly to what observed for prompt D mesons.

The mean pT of prompt D0 mesons, 〈pT〉, was evaluated for pT >0 with a fit of the prompt D0-meson

cross section, that is measured down to pT = 0, using a power-law function, as was done in Ref. [27].

The result is:

〈pT〉promptD0

pp,5.02TeV = 2.06±0.03(stat.) ±0.03(syst.) GeV/c , (3)

which is slightly smaller than the one computed for pp collisions at
√

s = 7 TeV [27]:

〈pT〉promptD0

pp,7TeV = 2.19±0.06(stat.) ±0.04(syst.) GeV/c . (4)
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Figure 9: pT-differential production cross sections for prompt D+ meson compared to pQCD calculations:

FONLL [7, 8], GM-VFNS(mod-µR,F) [39, 40], GM-VFNS(SACOT-mT) [6], and kT-factorisation [41]. The ra-

tios of the data to the theoretical predictions are shown in the lower part of each panel.

The systematic uncertainty on the 〈pT〉 was estimated as described in Refs. [19, 27]. The contributions

due to the correlated and uncorrelated systematic uncertainties on the measured pT-differential cross

section were taken into account separately and the contribution due to the choice of the fit function has

been estimated by comparing results obtained using different functions and using a method based on

direct calculations of 〈pT〉 from the data points.

5.2 D-meson cross-section ratios

The ratios of the pT-differential cross sections of prompt D0, D+, D∗+, and D+
s mesons in pp collisions

at
√

s = 5.02 TeV are reported in Fig. 13. In the evaluation of the systematic uncertainties on these ratios,
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Figure 10: pT-differential production cross sections for prompt D∗+ meson compared to pQCD calculations:

FONLL [7, 8], GM-VFNS(mod-µR,F) [39, 40], GM-VFNS(SACOT-mT) [6], and kT-factorisation [41]. The ratios

of the data to the theoretical predictions are shown in the lower part of each panel.

the sources of correlated and uncorrelated systematic effects were treated separately. In particular, the

contributions of the yield extraction and cut efficiency were considered as uncorrelated, while those of the

feed-down from beauty-hadron decays and the tracking efficiency were treated as fully correlated among

the different D-meson species. The measured D-meson cross-section ratios do not show a significant pT

dependence within the experimental uncertainties, thus suggesting no discernible difference between the

fragmentation functions of charm quarks to pseudoscalar (D0, D+, and D+
s ) and vector (D∗+) mesons

and to strange and non-strange mesons. The results are compatible within uncertainties with the ratios
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Figure 11: pT-differential production cross sections for prompt D+
s meson compared to GM-VFNS(mod-

µR,F) [39, 40], GM-VFNS(SACOT-mT) [6], and kT-factorisation [41] pQCD calculations. The ratios of the data to

the theoretical predictions are shown in the lower part of each panel.

measured in pp collisions at
√

s = 7 TeV [27]1.

To study the evolution of prompt D-meson production with the centre-of-mass energy of the collision,

the ratios of the production cross sections in pp collisions at
√

s = 7 TeV [27] and
√

s = 5.02 TeV were

computed for D0, D+, D∗+ and D+
s mesons. The systematic uncertainties on the measured ratios were

obtained treating the contribution originating from the subtraction of the feed-down from beauty-hadron

decays as correlated, while all the other systematic uncertainties on the cross sections were propagated

1The cross section for D0 and D+ mesons in pp collisions at
√

s = 7 TeV were updated with respect to Ref. [27] to account

for the change of the world-average BR of D0 → K−π+ and D+ → K−π+π+ from (3.93%±0.04) to (3.89%±0.04), and from

(9.46%±0.24) to (8.98%±0.28), respectively.
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Figure 12: Inclusive D0 mesons (including also D0 mesons from beauty-hadron decays) in |y| < 0.5 in pp col-

lisions at
√

s = 5.02 TeV, from the analysis without decay-vertex reconstruction, compared to FONLL pQCD

calculations [7, 8] with the B → D+X decay kinematics from the EvtGen package [37] (grey boxes). The con-

tributions of prompt D0 from FONLL (red) and D0 from B-meson decays from FONLL+EvtGen (blue) are also

shown separately. The vertical error bars and the empty boxes represent the statistical and systematic uncertainties,

respectively.

as uncorrelated between the measurements at the two different energies, except for the uncertainty on

the BR, which cancels out in the ratio. The results for D0, D+, D∗+ and D+
s are compared in Fig. 14, on

the left panel. The ratios for the different D-meson species are compatible within uncertainties. In the

right panel, the D0-meson results are compared to FONLL calculations, which describe consistently the

increasing trend as a function of pT observed in the data. In the FONLL predictions, the uncertainties

originating from scale variations and from PDFs cancel out to a large extent in the ratio [24], thus making

the magnitude of the theoretical uncertainties comparable with those of the data.

The rapidity dependence of D0-meson production in pp collisions at
√

s = 5 TeV can be studied from the

ratios between our measurements at midrapidity and the LHCb results in different y intervals at forward

rapidity [22]. The precise measurement of the D0-meson cross section down to pT = 0 presented in this

paper, when analysed together with other results at different centre-of-mass energies and rapidities, can

provide sensitivity to the gluon PDF at small values of Bjorken-x (10−4–10−5) [24]. In Fig. 15 the ratios

of the D0-meson production cross sections per unit of rapidity measured with ALICE at mid-rapidity

(|y|< 0.5) and by the LHCb collaboration in three rapidity intervals at forward rapidity 2 < y < 2.5 (left

panel), 3 < y < 3.5 (middle panel), 4 < y < 4.5 (right panel) [22] are shown as a function of pT. The

error bars and boxes represent the uncertainty obtained from the propagation of the statistical and sys-

tematic uncertainties, respectively, from the pT-differential cross sections. The systematic uncertainties,

including the one on the luminosity determination, were treated as uncorrelated between the ALICE and

LHCb results, except for the uncertainty on the BR, which cancels out in the ratio. The central values
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Figure 13: Ratios of D-meson production cross sections as a function of pT in pp collisions at
√

s = 5.02 TeV and√
s = 7 TeV [27].
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Figure 14: Ratios of D0, D+, D∗+ and D+
s -meson production cross sections in pp collisions at

√
s = 7 TeV [27]

and
√

s = 5.02 TeV as a function of pT (left panel). D0 ratio compared to FONLL pQCD calculations [7, 8] (right

panel).

and the uncertainties of the FONLL calculations are evaluated as described in Ref. [27]. The measured

ratios are described by FONLL calculations, shown as red boxes in Fig. 15. Nevertheless the comparison

seems to hint at a different slope in data with respect to FONLL, since at low (high) pT the data tend to

stay above (below) the FONLL central values, in all rapidity intervals.
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Figure 15: Ratios of D0-meson production cross section per unit of rapidity at mid-rapidity (|y| < 0.5) to those

measured by the LHCb Collaboration [22] in three rapidity ranges, 2 < y < 2.5 (left panel), 3 < y < 3.5 (middle

panel), and 4 < y < 4.5 (right panel), as a function of pT. The error bars and boxes represent the statistical and

systematic uncertainty, respectively. Predictions from FONLL calculations are compared to the data points.

Kinematic range Visible cross section (µb)

D0 0 < pT < 36 GeV/c 447±20(stat)±30(syst)±9(lumi)±5(BR)

D+ 1 < pT < 36 GeV/c 144±10(stat)±10(syst)±3(lumi)±4(BR)

D∗+ 1 < pT < 36 GeV/c 143±12(stat)±11(syst)±3(lumi)±2(BR)

D+
s 2 < pT < 24 GeV/c 40± 4(stat)± 4(syst)±1(lumi)±1(BR)

Table 2: Visible production cross sections of prompt D mesons in |y|< 0.5 in pp collisions at
√

s = 5.02 TeV.

5.3 Transverse momentum-integrated cross sections and ratios

The visible production cross sections of prompt D mesons were evaluated by integrating the pT-differential

cross sections over the narrower pT intervals of the D+, D∗+, and D+
s -meson measurements, in the mea-

sured pT range. The results are reported in Table 2. The systematic uncertainty was evaluated by propa-

gating all the uncertainties as correlated among pT intervals, except for the yield extraction uncertainty

which is treated as uncorrelated owing to the bin-by-bin variation, significant especially at low pT, of

S/B and background invariant-mass shape.

The ratios of the pT-integrated yields of the different D-meson species were computed from the cross

sections integrated over the common pT range. The systematic uncertainties on the ratios were computed

treating the BR, yield extraction and cut efficiency uncertainties as uncorrelated among the different

species and the other sources as correlated. The results are reported in Table 3.

The measured ratios are compatible within uncertainties with the results at
√

s = 2.76 TeV and
√

s =
7 TeV [16, 27] and with the measurements of the LHCb collaboration at forward rapidity (2.0 < y < 4.5)

at three different collision energies
√

s = 5.02, 7, and 13 TeV [21–23].

The production cross sections per unit of rapidity, dσ/dy, at mid-rapidity were computed for each D-

meson species by extrapolating the visible cross section to the full pT range. The extrapolation factor for a

given D-meson species was computed using the FONLL central parameters to evaluate the ratio between

the total production cross section in |y| < 0.5 and that in the experimentally covered phase space. It

was verified that the extrapolation factors computed with FONLL were compatible with those resulting

from GM-VFNS calculations. The systematic uncertainty on the extrapolation factor was estimated

as proposed in Ref. [8], considering sources due to (i) the CTEQ6.6 PDFs uncertainties [42], (ii) the
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Kinematic range Production cross section ratio

σ(D+)/σ(D0) 1 < pT < 36 GeV/c 0.43±0.04(stat)±0.03(syst)±0.01(BR)

σ(D∗+)/σ(D0) 1 < pT < 36 GeV/c 0.43±0.04(stat)±0.03(syst)±0.003(BR)

σ(D+
s )/σ(D0) 2 < pT < 24 GeV/c 0.24±0.02(stat)±0.02(syst)±0.01(BR)

σ(D+
s )/σ(D+) 2 < pT < 24 GeV/c 0.56±0.06(stat)±0.05(syst)±0.03(BR)

Table 3: Ratios of the measured pT-integrated cross sections of prompt D mesons in |y| < 0.5 in pp collisions at√
s = 5.02 TeV.

Extr. factor to pT > 0 dσ/dy ||y|<0.5 (µb)

D0 1.0000+0.0003
−0.0000 447±20(stat)±30(syst)±9(lumi)±5(BR)

D+ 1.28+0.35
−0.09 184±13(stat)±13(syst)±4(lumi)±6(BR)+50

−13(extrap)

D∗+ 1.24+0.34
−0.08 178±15(stat)±14(syst)±4(lumi)±2(BR)+48

−12(extrap)

D+
s 2.35+0.78

−0.66 95± 9(stat)±10(syst)±2(lumi)±3(BR)+31
−26(extrap)

Table 4: Production cross sections of prompt D mesons in |y| < 0.5 and full pT range in pp collisions at
√

s =

5.02 TeV.

variation of the charm-quark mass and (iii) the renormalisation and factorisation scales in the FONLL

calculation. For D0 mesons, for which the measurement extends down to pT = 0, the extrapolation factor

accounts only for the very small contribution of D mesons with pT > 36 GeV/c and therefore its value is

very close to unity with negligible uncertainty. The FONLL predictions are not available for D+
s mesons,

hence in this case the central value of the extrapolation factor was computed as described in Ref. [27],

combining the prediction based on the pT-differential cross section of charm quarks from FONLL, the

fractions f (c → D+
s ) and f (c → D∗+

s ) from ALEPH [46], and the fragmentation functions from Ref. [47],

which have one parameter, r, that was set to 0.1 as done in FONLL [48]. An additional contribution to the

systematic uncertainty was assigned based on the envelope of the results obtained using the FONLL pT-

differential cross sections of non-strange D mesons to compute the D+
s -meson extrapolation factor. The

computed extrapolation factors and the prompt D-meson production cross sections per unit of rapidity

dσ/dy in |y|< 0.5, are presented in Table 4.

In Ref. [27], the cc production cross section per unit of rapidity at mid-rapidity (|y| < 0.5) and the total

charm production cross sections in pp collisions at
√

s = 7 TeV were reported. They were computed

from the prompt D0-meson production cross section, which was divided by the fraction of charm quarks

hadronising into D0 mesons, f (c → D0) = 0.542± 0.024, derived in Ref. [49] by averaging the mea-

surements in e+e− collisions at LEP. However, recent measurements of the Λ+
c baryon production cross

section in pp collisions at
√

s = 7 TeV and in p–Pb collisions at
√

s = 5.02 TeV [50] show a significant

enhancement of the Λ+
c /D0 ratio for pT >1 GeV/c as compared to the values measured in e+e− and

ep collisions at lower centre-of-mass energies. This suggests that the fragmentation fractions of charm

quarks into charmed baryons in pp collisions at LHC energies might differ significantly from the LEP

results reported in Ref. [49] and that measurements of charmed-baryon production cross sections in pp

collisions at
√

s = 5.02 TeV are needed for an accurate calculation of the charm production cross section.

6 Summary

We have reported the measurement of the inclusive pT-differential production cross sections of prompt

D0, D+, D∗+, and D+
s mesons at mid-rapidity (|y| < 0.5) in pp collisions at a centre-of-mass energy

of
√

s = 5.02 TeV, obtained with the data collected at the end of 2017 with the ALICE detector. The
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measurement was performed in the transverse-momentum range 0 < pT < 36 GeV/c for D0, 1 < pT <
36 GeV/c for D+ and D∗+, and 2 < pT < 24 GeV/c for D+

s mesons. It is measured in finer pT bins

with respect to the previous measurements at
√

s = 7 TeV [27], providing a more detailed description

of the cross-section pT shape. The results were compared and found compatible with different pQCD

calculations performed with different schemes: FONLL [7, 8], two calculations using the GM-VNFS

framework with different prescriptions [6, 39, 40], and a calculation based on kT-factorisation [41]. The

ratios of D0-meson production cross sections measured with ALICE and LHCb in different rapidity inter-

vals were compatible with FONLL calculations, indicating a slightly smaller slope in data with respect to

theoretical predictions. The ratios of the cross sections of D0, D+, and D∗+ mesons at
√

s = 7 TeV [27]

and
√

s = 5.02 TeV are consistent with FONLL pQCD calculations. The ratios of the pT-differential

cross sections of D0, D+, D∗+, and D+
s mesons were found to be compatible within uncertainties with

the D-meson cross-section ratios measured in pp collisions at
√

s = 7 TeV [27]. The new measurement

will allow for a more accurate determination of the nuclear modification factor RpA in p–Pb collisions

and RAA in Pb–Pb collisions at
√

sNN = 5.02 TeV, due to the larger statistics available and since it is

performed at the same centre-of-mass energy of the other collision systems.
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M. Kofarago144 , M.K. Köhler102 , T. Kollegger104 , A. Kondratyev75 , N. Kondratyeva91 , E. Kondratyuk90 ,

P.J. Konopka34 , M. Konyushikhin142 , L. Koska115 , O. Kovalenko84 , V. Kovalenko111 , M. Kowalski117 ,
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