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An observation of electroweak W±Z production in association with two jets in proton–
proton collisions is presented. The data collected by the ATLAS detector at the Large Hadron
Collider in 2015 and 2016 at a centre-of-mass energy of

√
s = 13 TeV are used, corresponding

to an integrated luminosity of 36.1 fb−1. Events containing three identified leptons, either
electrons or muons, and two jets are selected. The electroweak production of W±Z bosons in
association with two jets is measured with an observed significance of 5.3 standard deviations.
A fiducial cross-section for electroweak production including interference effects and for a
single leptonic decay mode is measured to be σWZj j−EW = 0.57 +0.14

−0.13 (stat.) +0.07
−0.06 (syst.) fb.

Total and differential fiducial cross-sections of the sum of W±Z j j electroweak and strong
productions for several kinematic observables are also measured.
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1 Introduction

The scattering of vector bosons (VBS), VV → VV with V = W/Z/γ, is a key process with which to probe
the SU(2)L × U(1)Y gauge symmetry of the electroweak (EW) theory that determines the self-couplings
of the vector bosons. New phenomena beyond the Standard Model (SM) can alter the couplings of vector
bosons, generating additional contributions to quartic gauge couplings (QGC) compared with the SM
predictions [1–3].

In proton–proton collisions, VBS is initiated by an interaction of two vector bosons radiated from the
initial-state quarks, yielding a final state with two bosons and two jets, VV j j, in a purely electroweak
process [4]. VBS diagrams are not independently gauge invariant and cannot be studied separately from
other processes leading to the same VV j j final state [5]. Two categories of processes give rise to VV j j
final states. The first category, which includes VBS contributions, involves exclusively weak interactions
at Born level of order α6

EW including the boson decays, where αEW is the electroweak coupling constant.
It is referred to as electroweak production. The second category involves both the strong and electroweak
interactions at Born level of order α2

Sα
4
EW, where αS is the strong interaction coupling constant. It is

referred to as QCD production. According to the SM a small interference occurs between electroweak
and QCD production.

Different searches for diboson electroweak production have been performed by the ATLAS and CMS
collaborations at the LHC. So far, electroweak VV j j production has only been observed in the same-sign
W±W± j j channel by CMS using data collected at a centre-of-mass energy of

√
s = 13 TeV [6]. Evidence

of electroweak VV j j production has also been obtained in the W±W± j j [7, 8] and Zγ j j [9] channels
by ATLAS and CMS, respectively, using smaller samples of data recorded at

√
s = 8 TeV. Limits on

electroweak cross-sections for the production of two gauge boson have been reported for the W±Z j j [10,
11], Z Z j j [12], Zγ j j [13] and Wγ j j [14] channels by ATLAS and CMS.

This Letter reports on an observation and measurement of electroweak W±Z j j production, exploiting the
fully leptonic final states where both the Z and W bosons decay into electrons or muons. The pp collision
data were collected with the ATLAS detector in 2015 and 2016 at a centre-of-mass energy of

√
s = 13 TeV

and correspond to an integrated luminosity of 36.1 fb−1.

2 The ATLAS detector

The ATLAS detector [15] is a multipurpose detector with a cylindrical geometry1 and nearly 4π coverage
in solid angle. The collision point is surrounded by inner tracking detectors, collectively referred to as
the inner detector (ID), located within a superconducting solenoid providing a 2 T axial magnetic field,
followed by a calorimeter system and a muon spectrometer (MS).

The inner detector provides precise measurements of charged-particle tracks in the pseudorapidity range
|η | < 2.5. It consists of three subdetectors arranged in a coaxial geometry around the beam axis: a silicon
pixel detector, a silicon microstrip detector and a transition radiation tracker.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam direction. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse (x, y) plane, φ being the azimuthal angle around the beam
direction. The pseudorapidity is defined in terms of the polar angle θ as η = −ln[tan(θ/2)].
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The electromagnetic calorimeter covers the region |η | < 3.2 and is based on high-granularity, lead/liquid-
argon (LAr) sampling technology. The hadronic calorimeter uses a steel/scintillator-tile detector in the
region |η | < 1.7 and a copper/LAr detector in the region 1.5 < |η | < 3.2. The most forward region of
the detector, 3.1 < |η | < 4.9, is equipped with a forward calorimeter, measuring electromagnetic and
hadronic energies in copper/LAr and tungsten/LAr modules.

The muon spectrometer comprises separate trigger and high-precision tracking chambers to measure the
deflection ofmuons in amagnetic field generated by three large superconducting toroidal magnets arranged
with an eightfold azimuthal coil symmetry around the calorimeters. The high-precision chambers cover
the range |η | < 2.7 with three layers of monitored drift tubes, complemented by cathode strip chambers in
the forward region, where the particle flux is highest. The muon trigger system covers the range |η | < 2.4
with resistive-plate chambers in the barrel and thin-gap chambers in the endcap regions.

A two-level trigger system is used to select events in real time [16]. It consists of a hardware-based
first-level trigger and a software-based high-level trigger. The latter employs algorithms similar to those
used offline to identify electrons, muons, photons and jets.

3 Phase space for cross-section measurements

TheW±Z j j electroweak cross-section ismeasured in a fiducial phase space that is defined by the kinematics
of the final-state leptons, electrons or muons, associated with the W± and Z boson decays, and of two
jets. Leptons produced in the decay of a hadron, a τ-lepton, or their descendants are not considered in the
definition of the fiducial phase space. At particle level, the kinematics of the charged lepton after quantum
electrodynamics (QED) final-state radiation (FSR) are ‘dressed’ by including contributions from photons
with an angular distance ∆R ≡

√
(∆η)2 + (∆φ)2 < 0.1 from the lepton. Dressed charged leptons, and

final-state neutrinos that do not originate from hadron or τ-lepton decays, are matched to the W± and Z
boson decay products using a Monte Carlo (MC) generator-independent algorithmic approach, called the
‘resonant shape’ algorithm. This algorithm is based on the value of an estimator expressing the product
of the nominal line shapes of the W and Z resonances as detailed in Ref. [10].

The fiducial phase space of the measurement matches the one used in Refs. [10, 17] and is defined at
particle level by the following requirements: the charged leptons from the Z boson decay are required
to have transverse momentum pT > 15 GeV, the charged lepton from the W± decay is required to have
transverse momentum p`T > 20 GeV, the charged leptons from the W± and Z bosons are required to have
|η | < 2.5 and the invariant mass of the two leptons from the Z boson decay must be within 10 GeV of
the nominal Z boson mass, taken from the world average value, mPDG

Z [18]. The W boson transverse

mass, defined as mW
T =

√
2 · pνT · p

`
T · [1 − cos∆φ(`, ν)], where ∆φ(`, ν) is the angle between the lepton

and the neutrino in the transverse plane and pνT is the transverse momentum of the neutrino, is required
to be mW

T > 30 GeV. The angular distance between the charged lepton from the W± decay and each of
the charged leptons from the Z decay is required to be ∆R > 0.3, and the angular distance between the
two leptons from the Z decay is required to be ∆R > 0.2. Requiring that the transverse momentum of the
leading lepton be above 27 GeV reduces the acceptance of the fiducial phase space by only 0.02% and is
therefore not added to the definition of the fiducial phase space, although it is present in the selection at
the detector level presented in Section 5.

In addition to these requirements that define an inclusive phase space, at least two jets with pT > 40 GeV
and |ηj | < 4.5 are required. These particle-level jets are reconstructed from stable particles with a
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lifetime of τ > 30 ps in the simulation after parton showering, hadronisation, and decay of particles with
τ < 30 ps. Muons, electrons, neutrinos and photons associated with W and Z decays are excluded. The
particle-level jets are reconstructed using the anti-kt [19] algorithm with a radius parameter R = 0.4. The
angular distance between all selected leptons and jets is required to be ∆R( j, `) > 0.3. If the ∆R( j, `)
requirement is not satisfied, the jet is discarded. The invariant mass, mj j , of the two highest-pT jets in
opposite hemispheres, ηj1 · ηj2 < 0, is required to be mj j > 500 GeV to enhance the sensitivity to VBS
processes. These two jets are referred to as tagging jets. Finally, processes with a b-quark in the initial
state, such as tZ j production, are not considered as signal. The production of tZ j results from a t-channel
exchange of a W boson between a b- and a u-quark giving a final state with a t-quark, a Z boson and a
light-quark jet, but does not include diagrams with gauge boson couplings.

4 Signal and background simulation

Monte Carlo simulation is used to model signal and background processes. All generated MC events were
passed through the ATLAS detector simulation [20], based on Geant 4 [21], and processed using the
same reconstruction software as used for the data. The event samples include the simulation of additional
proton–proton interactions (pile-up) generated with Pythia 8.186 [22] using the MSTW2008LO [23] parton
distribution functions (PDF) and the A2 [24] set of tuned parameters.

Scale factors are applied to simulated events to correct for the differences between data andMC simulation
in the trigger, reconstruction, identification, isolation and impact parameter efficiencies of electrons and
muons [25, 26]. Furthermore, the electron energy and muon momentum in simulated events are smeared
to account for differences in resolution between data and MC simulation [26, 27].

The Sherpa 2.2.2MCevent generator [28–35] was used tomodelW±Z j j events. It includes themodelling
of hard scattering, parton showering, hadronisation and the underlying event. AMC event sample, referred
to as W Z j j−EW, includes processes of order six (zero) in αEW (αS). In this sample, which includes VBS
diagrams, two additional jets originating from electroweak vertices from matrix-element partons are
included in the final state. Diagrams with a b-quark in either the initial or final state, i.e. b-quarks in the
matrix-element calculation, are not considered. This sample provides a LO prediction for the W Z j j−EW
signal process. A secondMC event sample, referred to asW Z j j−QCD, includes processes of order four in
αEW in the matrix-element ofW±Z production with up to one jet calculated at next-to-leading order (NLO)
and with a second or third jet calculated at leading order (LO). ThisW Z j j−QCD sample includes matrix-
element b-quarks. Both Sherpa samples were generated using the NNPDF3.0 [36] PDF set. Interferences
between the two processes were estimated at LO using the MadGraph5_aMC@NLO 2.3 [37] MC event
generator with the NNPDF3.0 PDF set, including only contributions to the squared matrix-element of
order one in αS. They are found to be positive and approximately 10% of the W Z j j−EW cross-section in
the fiducial phase space and are treated as an uncertainty in the measurement, as discussed in Section 8.
For the estimation of modelling uncertainties, alternative MC samples of W Z j j−QCD and W Z j j−EW
processes were generated with MadGraph5_aMC@NLO 2.3 at LO in QCD, including up to two partons
in the matrix-element for W Z j j−QCD, and using the NNPDF3.0 PDF set. MC samples of inclusive
W±Z production generated at NLO in QCD with the Powheg-Box v2 [38–41] generator, interfaced to
Pythia 8.210 or Herwig++ 2.7.1 [42] for simulation of parton showering and hadronisation are also used
for tests of the modelling of W Z j j−QCD events.

The qq̄ → Z Z (∗) processes were generated with Sherpa 2.2.2 and the NNPDF3.0 PDF set. Similarly
to W±Z simulation, the Z Z j j−QCD and Z Z j j−EW processes are generated separately with the same
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matrix-element accuracy as for theW±Z Sherpa MC samples. The Sherpa 2.1.1 MC event generator was
used to model the gg → Z Z (∗) and VVV processes at LO using the CT10 [43] PDF set. The tt̄V processes
were generated at NLO with the MadGraph5_aMC@NLO 2.3 MC generator using the NNPDF3.0 PDF
set interfaced to the Pythia 8.186 parton shower model. The associated production of a single top quark
and a Z boson was simulated at LO with MadGraph5_aMC@NLO 2.3 using the NNPDF3.0 PDF set and
interfaced to Pythia 8.186 for parton shower.

5 Event selection

Candidate events were selected using single-leptons triggers [16] that required at least one electron or
muon. The transverse momentum threshold of the leptons in 2015 was 24 GeV for electrons and 20 GeV
for muons satisfying a loose isolation requirement based only on ID track information. Due to the
higher instantaneous luminosity in 2016 the trigger threshold was increased to 26 GeV for both the
electrons and muons and tighter isolation requirements were applied. Possible inefficiencies for leptons
with large transverse momenta were reduced by including additional electron and muon triggers that
did not include any isolation requirements with transverse momentum thresholds of pT = 60 GeV and
50 GeV, respectively. Finally, a single-electron trigger requiring pT > 120 GeV or pT > 140 GeV in
2015 and 2016, respectively, with less restrictive electron identification criteria was used to increase the
selection efficiency for high-pT electrons. The combined efficiency of these triggers is close to 100% for
W±Z j j events. Only data recorded with stable beam conditions and with all relevant detector subsystems
operational are considered.

Events are required to have a primary vertex reconstructed from at least two charged-particle tracks and
compatible with the pp interaction region. If several such vertices are present in the event, the one with
the highest sum of the p2

T of the associated tracks is selected as the production vertex of the W±Z . All
final states with three charged leptons (electrons or muons) and neutrinos from W±Z leptonic decays are
considered.

Muon candidates are identified by tracks reconstructed in the muon spectrometer and matched to tracks
reconstructed in the inner detector. Muons are required to satisfy a ‘medium’ identification selection
that is based on requirements on the number of hits in the ID and the MS [26]. The efficiency of
this selection averaged over pT and η is > 98%. The muon momentum is calculated by combining
the MS measurement, corrected for the energy deposited in the calorimeters, with the ID measurement.
The transverse momentum of the muon must satisfy pT > 15 GeV and its pseudorapidity must satisfy
|η | < 2.5.

Electron candidates are reconstructed from energy clusters in the electromagnetic calorimeter matched
to ID tracks. Electrons are identified using a likelihood function constructed from information from the
shape of the electromagnetic showers in the calorimeter, track properties and track-to-cluster matching
quantities [25]. Electrons must satisfy a ‘medium’ likelihood requirement, which provides an overall
identification efficiency of 90%. The electron momentum is computed from the cluster energy and the
direction of the track. The transverse momentum of the electron must satisfy pT > 15 GeV and the
pseudorapidity of the cluster must be in the ranges |η | < 1.37 or 1.52 < |η | < 2.47.

Electron and muon candidates are required to originate from the primary vertex. The significance of the
track’s transverse impact parameter relative to the beam line must satisfy |d0/σd0 | < 3 (5) for muons
(electrons), and the longitudinal impact parameter, z0 (the difference between the value of z of the point
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on the track at which d0 is defined and the longitudinal position of the primary vertex), is required to
satisfy |z0 · sin(θ)| < 0.5 mm.

Electrons and muons are required to be isolated from other particles, according to calorimeter-cluster and
ID-track information. The isolation requirement for electrons varies with pT and is tuned for an efficiency
of at least 90% for pT > 25 GeV and at least 99% for pT > 60 GeV [25]. Fixed thresholds values are used
for the muon isolation variables, providing an efficiency above 90% for pT > 15 GeV and at least 99% for
pT > 60 GeV [26].

Jets are reconstructed from clusters of energy depositions in the calorimeter [44] using the anti-kt al-
gorithm [19] with a radius parameter R = 0.4. Events with jets arising from detector noise or other
non-collision sources are discarded [45]. All jets must have pT > 25 GeV and be reconstructed in the
pseudorapidity range |η | < 4.5. A multivariate combination of track-based variables is used to suppress
jets originating from pile-up in the ID acceptance [46]. The energy of jets is calibrated using a jet energy
correction derived from simulation and in situ methods using data [47]. Jets in the ID acceptance with
pT > 25 GeV containing a b-hadron are identified using a multivariate algorithm [48, 49] that uses impact
parameter and reconstructed secondary vertex information of the tracks contained in the jets. Jets initi-
ated by b-quarks are selected by setting the algorithm’s output threshold such that a 70% b-jet selection
efficiency is achieved in simulated tt̄ events.

The transverse momentum of the neutrino is estimated from the missing transverse momentum in the
event, Emiss

T , calculated as the negative vector sum of the transverse momentum of all identified hard
(high pT) physics objects (electrons, muons and jets), as well as an additional soft term. A track-based
measurement of the soft term [50, 51], which accounts for low-pT tracks not assigned to a hard object, is
used.

Events are required to contain exactly three lepton candidates satisfying the selection criteria described
above. To ensure that the trigger efficiency is well determined, at least one of the candidate leptons
is required to have pT > 25 GeV or pT > 27 GeV for the 2015 or 2016 data, respectively, and to be
geometrically matched to a lepton that was selected by the trigger.

To suppress background processes with at least four prompt leptons, events with a fourth lepton candidate
satisfying looser selection criteria are rejected. For this looser selection, the pT requirement for the
leptons is lowered to pT > 5 GeV and ‘loose’ identification requirements are used for both the electrons
andmuons. A less stringent requirement is applied for electron isolation based only on ID track information
and electrons with cluster in the range 1.37 ≤ |η | ≤ 1.52 are also considered.

Candidate events are required to have at least one pair of leptons of the same flavour and of opposite
charge, with an invariant mass that is consistent with the nominal Z boson mass [52] to within 10 GeV.
This pair is considered to be the Z boson candidate. If more than one pair can be formed, the pair whose
invariant mass is closest to the nominal Z boson mass is taken as the Z boson candidate.

The remaining third lepton is assigned to the W boson decay. The transverse mass of the W candidate,
computed using Emiss

T and the pT of the associated lepton, is required to be greater than 30 GeV.

Backgrounds originating frommisidentified leptons are suppressed by requiring the lepton associated with
the W boson to satisfy more stringent selection criteria. Thus, the transverse momentum of these leptons
is required to be pT > 20 GeV. Furthermore, leptons associated with the W boson decay are required to
satisfy the ‘tight’ identification requirements, which have an efficiency between 90% and 98% for muons
and an efficiency of 85% for electrons. Finally, muons must also satisfy a tighter isolation requirement,
tuned for an efficiency of at least 90% (99%) for pT > 25 (60) GeV.
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To select W±Z j j candidates, events are further required to be associated with at least two ‘tagging’ jets.
The leading tagging jet is selected as the highest-pT jet in the event with pT > 40 GeV. The second tagging
jet is selected as the onewith the highest pT among the remaining jets that have a pseudorapidity of opposite
sign to the first tagging jet and a pT > 40 GeV. These two jets are required to verify mj j > 150 GeV, in
order to minimise the contamination from triboson processes.

The final signal region (SR) for VBS processes is defined by requiring that the invariant mass of the two
tagging jets, mj j , be above 500 GeV and that no b-tagged jet be present in the event.

6 Background estimation

The background sources are classified into two groups: events where at least one of the candidate leptons
is not a prompt lepton (reducible background) and events where all candidates are prompt leptons or are
produced in the decay of a τ-lepton (irreducible background). Candidates that are not prompt leptons are
also called ‘misidentified’ or ‘fake’ leptons.

The dominant source of background originates from the QCD-induced production of W±Z dibosons
in association with two jets, W Z j j−QCD. The shapes of distributions of kinematic observables of this
irreducible background are modelled by the SherpaMC simulation. The normalisation of this background
is, however, constrained by data in a dedicated control region. This region, referred to asW Z j j−QCD CR,
is defined by selecting a sub-sample ofW±Z j j candidate events with mj j < 500 GeV and no reconstructed
b-jets.

The other main sources of irreducible background arise from Z Z and tt̄ + V (where V = Z or W).These
irreducible backgrounds are also modelled using MC simulations. Data in two additional dedicated
control regions, referred to as Z Z-CR and b-CR, respectively, are used to constrain the normalisations of
the Z Z j j−QCD and tt̄ + V backgrounds. The control region Z Z-CR, enriched in Z Z events, is defined
by applying the W±Z j j event selection defined in Section 5, with the exception that instead of vetoing
a fourth lepton it is required that events have at least a fourth lepton candidate with looser identification
requirements. This region is dominated by Z Z j j−QCD events with a small contribution of Z Z j j−EW
events. The control region b-CR, enriched in tt̄+V events, is defined by selectingW±Z j j candidate events
having at least one reconstructed b-jet. Remaining sources of irreducible background are Z Z j j−EW
VVV and tZ j events. Their contributions in the control and signal regions are estimated from MC
simulations.

The reducible backgrounds originate from Z + j, Zγ, tt̄, Wt andWW production processes. The reducible
backgrounds are estimated using a data-drivenmethod based on the inversion of a global matrix containing
the efficiencies and the misidentification probabilities for prompt and fake leptons [10, 53]. The method
exploits the classification of the lepton as loose or tight candidates and the probability that a fake lepton is
misidentified as a loose or tight lepton candidate. Tight leptons candidates are signal lepton candidates as
defined in Section 5. Loose lepton candidates are leptons that do not meet the isolation and identification
criteria of signal lepton candidates but satisfy only looser criteria. The misidentification probabilities for
fake leptons are determined from data, using dedicated control samples enriched in non-prompt leptons
from heavy-flavour jets and in misidentified leptons from photon conversions or charged hadrons in light-
flavour jets. The lepton misidentification probabilities are applied to samples of W±Z j j candidate events
in data where at least one and up to three of the lepton candidates are loose. Then, using a matrix inversion,
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the number of events with at least one misidentified lepton, which represents the amount of reducible
background in the selected W±Z j j sample, is obtained.

The number of observed events together with the expected background contributions are summarised in
Table 1 for the signal region and the three control regions. All sources of uncertainties, as described in
Section 8, are included. The expected signal purity in the W±Z j j signal region is about 13%, and 72% of
the events arise from W Z j j−QCD production.

Table 1: Expected and observed numbers of events in the W±Z j j signal region and in the three control regions,
before the fit. The expected number of W Z j j−EW events from Sherpa and the estimated number of background
events from the other processes are shown. The sum of the backgrounds containing misidentified leptons is labelled
‘Misid. leptons’. The contribution arising from interferences between W Z j j−QCD and W Z j j−EW processes is
not included in the table. The total uncertainties are quoted.

SR W Z j j−QCD CR b-CR Z Z-CR

Data 161 213 141 52
Total predicted 200 ±41 290 ± 61 160 ±14 45.2 ± 7.5

W Z j j−EW (signal) 24.9 ± 1.4 8.45 ± 0.37 1.36 ± 0.10 0.21± 0.12
W Z j j−QCD 144 ±41 231 ± 60 24.4 ± 1.7 1.43± 0.22
Misid. leptons 9.8 ± 3.9 17.7 ± 7.1 30 ±12 0.47± 0.21
Z Z j j−QCD 8.1 ± 2.2 15.0 ± 3.9 1.96 ± 0.49 35 ±11
tZ j 6.5 ± 1.2 6.6 ± 1.1 36.2 ± 5.7 0.18± 0.04
tt̄ + V 4.21 ± 0.76 9.11 ± 1.40 65.4 ±10.3 2.8 ± 0.61
Z Z j j−EW 1.80 ± 0.45 0.53 ± 0.14 0.12 ± 0.09 4.1 ± 1.4
VVV 0.59 ± 0.15 0.93 ± 0.23 0.13 ± 0.03 1.05± 0.30

7 Signal extraction procedure

Given the small contribution to the signal region of W Z j j−EW processes, a multivariate discriminant is
used to separate the signal from the backgrounds. A boosted decision tree (BDT), as implemented in the
TMVA package [54], is used to exploit the kinematic differences between the W Z j j−EW signal and the
W Z j j−QCD and other backgrounds. The BDT is trained and optimised on simulated events to separate
W Z j j−EW events from all background processes.

A total of 15 variables are combined into one discriminant, the BDT score output value in the range [−1, 1].
The variables can be classified into three categories: jet-kinematic variables, vector-bosons-kinematics
variables, and variables related to both jets and leptons kinematics. The variables related to the kinematic
properties of the two tagging jets are the invariant mass of the two jets, mj j , the transverse momenta of the
jets, the difference in pseudorapidity and azimuthal angle between the two jets, ∆ηj j and ∆φ j j , the rapidity
of the leading jet and the jet multiplicity. Variables related to the kinematic properties of the vector bosons
are the transverse momenta of the W and Z bosons, the pseudorapidity of the W boson, the absolute
difference between the rapidities of the Z boson and the lepton from the decay of theW boson, |yZ − y`,W |,
and the transverse mass of the W±Z system mWZ

T . The pseudorapidity of the W boson is reconstructed
using an estimate of the longitudinal momentum of the neutrino obtained using the W mass constraint
as detailed in Ref. [55]. The mWZ

T observable is reconstructed following Ref. [10]. Variables that relate
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the kinematic properties of jets and leptons are the distance in the pseudorapidity–azimuth plane between
the Z boson and the leading jet, ∆R( j1, Z), the event balance Rhard

pT , defined as the transverse component
of the vector sum of the W Z bosons and tagging jets momenta, normalised to their scalar pT sum, and,
finally the centrality of the W Z system relative to the tagging jets, defined as ζlep. = min(∆η−,∆η+),
with ∆η− = min(ηW

`
, ηZ`2

, ηZ`1
) −min(ηj1, ηj2) and ∆η+ = max(ηj1, ηj2) −max(ηW

`
, ηZ`2

, ηZ`1
). A larger set of

discriminating observables was studied but only variables improving signal-to-background were retained.
The goodmodelling byMC simulations of the distribution shapes and the correlations of all input variables
to the BDT is verified in the W Z j j−QCD CR, as exemplified by the good description of the BDT score
distribution of data in the W Z j j−QCD CR shown in Figure 1.

The distribution of the BDT score in the W±Z j j signal region is used to extract the significance of the
W Z j j−EW signal and to measure its fiducial cross-section via a maximum-likelihood fit. An extended
likelihood is built from the product of four likelihoods corresponding to the BDT score distribution in
the W±Z j j SR, the mj j distribution in the W Z j j−QCD CR, the multiplicity of reconstructed b-quarks
in the b-CR and the mj j distribution in the Z Z-CR. The inclusion of the three control regions in the fit
allows the yields of the W Z j j−QCD, tt̄ +V and Z Z j j−QCD backgrounds to be constrained by data. The
shapes of these backgrounds are taken fromMC predictions and can vary within the uncertainties affecting
the measurement as described in Section 8. The normalisations of these backgrounds are introduced in
the likelihood as parameters, labelled µWZj j−QCD, µt t̄+V and µZZ j j−QCD for W Z j j−QCD, tt̄ + V and
Z Z j j−QCD backgrounds, respectively. They are treated as unconstrained nuisance parameters that are
determined mainly by the data in the respective control region. The normalisation and shape of the other
irreducible backgrounds are taken from MC simulations and are allowed to vary within their respective
uncertainties. The distribution of the reducible background is estimated from data using thematrix method
presented in Section 6 and is allowed to vary within its uncertainty.

The determination of the fiducial cross-section is carried out using the signal strength parameter µWZj j−EW:

µWZj j−EW =
Nsignal

data

Nsignal
MC

=
σfid.
WZj j−EW

σfid.,MC
WZj j−EW

,

where Nsignal
data is the signal yield extracted from data by the fit and Nsignal

MC is the number of signal events
predicted by the Sherpa MC simulation. The measured cross-section σfid.

WZj j−EW is derived from the
signal strength µWZj j−EW by multiplying it by the Sherpa MC cross-section prediction σfid.,MC

WZj j−EW in the
fiducial region. The W Z j j−QCD contribution that is considered as background in the fit procedure does
not contain interference between theW Z j j−QCD andW Z j j−EW processes. The measured cross-section
σfid.
WZj j−EW therefore formally corresponds to the cross-section of the electroweak production including

interference effects.

8 Systematic uncertainties

Systematic uncertainties in the signal and control regions affecting the shape and normalisation of the BDT
score, mj j and Nb-jets distributions for the individual backgrounds, as well as the acceptance of the signal
and the shape of its template are considered. If the variation of a systematic uncertainty as a function
of the BDT score is consistent with being due to statistical fluctuations, this systematic uncertainty is
neglected.

9



Systematic uncertainties due to the theoretical modelling in the event generator used to evaluate the
W Z j j−QCD andW Z j j−EW templates are considered. Uncertainties due to higher orderQCDcorrections
are evaluated by varying the renormalisation and factorisation scales independently by factors of two and
one-half, removing combinations where the variations differ by a factor of four. These uncertainties are
of −20% to +30% on the W Z j j−QCD background normalisation and up to ±5% on the W Z j j−EW
signal shape. The uncertainties due to the PDF and the αS value used in the PDF determination are
evaluated using the PDF4LHC prescription [56]. They are of the order of 1% to 2% in shape of the
predicted cross-section. A global modelling uncertainty in the W Z j j−QCD background template that
includes effects of the parton shower model is estimated by comparing predictions of the BDT score
distribution in the signal region from the Sherpa and MadGraph MC event generators. The difference
between the predicted shapes of the BDT score distribution from the two generators is considered as
an uncertainty. The resulting uncertainty ranges from 5% to 20% at medium and high values of the
BDT score, respectively. Alternatively, using two MC samples with different parton shower models,
Powheg+Pythia8 and Powheg+Herwig, it was verified that for W Z j j−QCD events the variations of
the BDT score shape due to different parton shower models are within the global modelling uncertainty
defined above. A global modelling uncertainty in the W Z j j−EW signal template is also estimated by
comparing predictions of the BDT score distribution in the signal region from the Sherpa andMadGraph
MC event generators. This modelling uncertainty affects the shape of the BDT score distribution by at
most 14% at large values of the BDT score. The Sherpa W Z j j−EW sample used in this analysis was
recently found to implement a colour flow computation in VBS-like processes that increases central parton
emissions from the parton shower [57]. It was verified that possible effects on kinematic distributions and
especially on the BDT score distribution are covered by the modelling uncertainty used. The interference
between electroweak- and QCD-induced processes is not included in the probability distribution functions
of the fit but is considered as an uncertainty affecting only the shape of the W Z j j−EW MC template.
The effect is determined using the MadGraph MC generator, resulting for the signal region in shape-only
uncertainties ranging from 10% to 5% at low and high values of the BDT score, respectively. The effect
of interference on the shape of the W Z j j−EW MC template in the W±Z j j-QCD CR is negligible and is
therefore not included.

Systematic uncertainties affecting the reconstruction and energy calibration of jets, electrons and muons
are propagated through the analysis. The dominant sources of uncertainties are the jet energy scale
calibration, including the modelling of pile-up. The uncertainties in the jet energy scale are obtained from√

s = 13 TeV simulations and in situmeasurements [47]. The uncertainty in the jet energy resolution [58]
and in the suppression of jets originating from pile-up are also considered [46]. The uncertainties in the
b-tagging efficiency and the mistag rate are also taken into account. The effect of jet uncertainties on the
expected number of events ranges from 10% to 3% at low and high values of the BDT score, respectively,
with a similar effect for W Z j j−QCD and W Z j j−EW events.

The uncertainty in the Emiss
T measurement is estimated by propagating the uncertainties in the transverse

momenta of hard physics objects and by applying momentum scale and resolution uncertainties to the
track-based soft term [50, 51].

The uncertainties due to lepton reconstruction, identification, isolation requirements and trigger efficien-
cies are estimated using tag-and-probe methods in Z → `` events [25, 26]. Uncertainties in the lepton
momentum scale and resolution are also assessed using Z → `` events [26, 27]. These uncertainties
impact the expected number of events by 1.4% and 0.4% for electrons and muons, respectively, and are
independent of the BDT score. Their effect is similar for W Z j j−QCD and W Z j j−EW events.
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A 40% yield uncertainty is assigned to the reducible background estimate. This takes into account the
limited number of events in the control regions as well as the differences in background composition
between the control regions used to determine the lepton misidentification rate and the control regions
used to estimate the yield in the signal region. The uncertainty due to irreducible background sources
other than W Z j j−QCD is evaluated by propagating the uncertainty in their MC cross-sections. These
are 20% for VVV [59], 15% for tZ j [10] and tt̄ + V [60], and 25% for Z Z j j−QCD to account for the
potentially large impact of scale variations.

The uncertainty in the combined 2015+2016 integrated luminosity is 2.1%. It is derived, following
a methodology similar to that detailed in Ref. [61], and using the LUCID-2 detector for the baseline
luminosity measurements [62], from a calibration of the luminosity scale using x–y beam-separation
scans.

The effect of the systematic uncertainties on the final results after the maximum-likelihood fit is shown
in Table 2 where the breakdown of the contributions to the uncertainties in the measured fiducial cross-
section σfid.

WZj j−EW is presented. The individual sources of systematic uncertainty are combined into
theory modelling and experimental categories. As shown in the table, the systematic uncertainties in the
jet reconstruction and calibration play a dominant role, followed by the uncertainties in the modelling
of the W Z j j−EW signal and of the W Z j j−QCD background. Systematic uncertainties in the missing
transverse momentum computation arise directly from the momentum and energy calibration of jets,
electrons and muons and are included in the respective lines of Table 2. Systematic uncertainties in the
modelling of the reducible and irreducible backgrounds other than W Z j j−QCD are also detailed.

Table 2: Summary of the relative uncertainties in the measured fiducial cross-section σfid.
WZj j−EW. The uncertainties

are reported as percentages.

Source Uncertainty [%]

W Z j j−EW theory modelling 4.8
W Z j j−QCD theory modelling 5.2
W Z j j−EW and W Z j j−QCD interference 1.9

Jets 6.6
Pile-up 2.2
Electrons 1.4
Muons 0.4
b-tagging 0.1
MC statistics 1.9
Misid. lepton background 0.9
Other backgrounds 0.8

Luminosity 2.1

Total Systematics 10.9
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9 Cross-section measurements

The signal strength µWZj j−EW and its uncertainty are determined with a profile-likelihood-ratio test
statistic [63]. Systematic uncertainties in the input templates are treated as nuisance parameters with an
assumed Gaussian distribution. The distributions of mj j in the Z Z-CR control region, of Nb−jets in the b-
CR, of mj j in the W Z j j−QCD control region and of the BDT score in the signal region, with background
normalisations, signal normalisation and nuisance parameters adjusted by the profile-likelihood fit are
shown in Figure 2. The corresponding post-fit yields are detailed in Table 3. The table presents the
integral of the BDT score distribution in the SR, but the uncertainty on the measured signal cross section
is dominated by events at high BDT score. The signal strength is measured to be

µWZj j−EW = 1.77 +0.44
−0.40 (stat.) +0.15

−0.12 (exp. syst.) +0.15
−0.12 (mod. syst.) +0.15

−0.13 (theory) +0.04
−0.02 (lumi.) = 1.77 +0.51

−0.45 ,

where the uncertainties correspond to statistical, experimental systematic, theory modelling and inter-
ference systematic, theory σfid.,MC

WZj j−EW normalisation and luminosity uncertainties, respectively. The
background-only hypothesis is excluded with a significance of 5.3 standard deviations, compared with
3.2 standard deviations expected. The normalisation parameters of the W Z j j−QCD, tt̄ +V and Z Z back-
grounds constrained by data in the control and signal regions are measured to be µWZj j−QCD = 0.56±0.16,
µt t̄+V = 1.07 ± 0.28 and µZZ j j−QCD = 1.34 ± 0.44. The observed W Z j j−EW production integrated fi-
ducial cross-section derived from this signal strength for a single leptonic decay mode is

σfid.
WZj j−EW = 0.57 +0.14

−0.13 (stat.) +0.05
−0.04 (exp. syst.) +0.05

−0.04 (mod. syst.) +0.01
−0.01 (lumi.) fb

= 0.57 +0.16
−0.14 fb .

It corresponds to the cross-section of electroweak W±Z j j production, including interference effects
between W Z j j−QCD and W Z j j−EW processes, in the fiducial phase space defined in Section 3 using
dressed-level leptons.

The SM LO prediction from Sherpa for electroweak production without interference effects is

σ
fid., Sherpa
WZj j−EW = 0.321 ± 0.002 (stat.) ± 0.005 (PDF)+0.027

−0.023 (scale) fb,

where the effects of uncertainties in the PDF and the αS value used in the PDF determination, as well as the
uncertainties due to the renormalisation and factorisation scales, are evaluated using the same procedure
as the one described in Section 8.

A larger cross-section of σfid.,MadGraph
WZj j−EW = 0.366 ± 0.004 (stat.) fb is predicted by MadGraph. These

predictions are at LO only and include neither the effects of interference, estimated at LO to be 10%, nor
the effects of NLO electroweak corrections as calculated recently in Ref. [64].

From the number of observed events in the SR, the integrated cross-section of W±Z j j production in the
VBS fiducial phase space defined in Section 3, including W Z j j−EW and W Z j j−QCD contributions and
their interference, is measured. For a given channel W±Z → `

′±ν`+`−, where ` and `′ indicates each type
of lepton (e or µ), the integrated fiducial cross section that includes the leptonic branching fractions of the
W and Z bosons is calculated as

σfid.
W±Z j j =

Ndata − Nbkg

L · CWZj j
×

(
1 − Nτ

Nall

)
,
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Figure 1: Post-fit distribution of the BDT score distribution in the W Z j j−QCD control region. Signal and back-
grounds are normalised to the expected number of events after the fit. The uncertainty band around the MC
expectation includes all systematic uncertainties as obtained from the fit.

Table 3: Observed and expected numbers of events in the W±Z j j signal region and in the three control regions,
after the fit. The expected number of W Z j j−EW events from Sherpa and the estimated number of background
events from the other processes are shown. The sum of the backgrounds containing misidentified leptons is labelled
‘Misid. leptons’. The total correlated post-fit uncertainties are quoted.

SR W Z j j−QCD CR b-CR Z Z-CR

Data 161 213 141 52
Total predicted 167 ±11 204 ± 12 146 ±11 51.3 ± 7.0

W Z j j−EW (signal) 44 ±11 8.52 ± 0.41 1.38 ± 0.10 0.211± 0.004
W Z j j−QCD 91 ±10 144 ± 14 13.9 ± 3.8 0.94 ± 0.14
Misid. leptons 7.8 ± 3.2 14.0 ± 5.7 23.5 ± 9.6 0.41 ± 0.18
Z Z j j−QCD 11.1 ± 2.8 18.3 ± 1.1 2.35 ± 0.06 40.8 ± 7.2
tZ j 6.2 ± 1.1 6.3 ± 1.1 34.0 ± 5.3 0.17 ± 0.04
tt̄ + V 4.7 ± 1.0 11.14 ± 0.37 71 ±15 3.47 ± 0.54
Z Z j j−EW 1.80 ± 0.45 0.44 ± 0.10 0.10 ± 0.03 4.2 ± 1.2
VVV 0.59 ± 0.15 0.93 ± 0.23 0.13 ± 0.03 1.06 ± 0.30
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Figure 2: Post-fit distributions of (a) mj j in the Z Z-CR control region, (b) Nb−jets in the b-CR, (c) mj j in the
W Z j j−QCD control region and (d) the BDT score distribution in the signal region. Signal and backgrounds are
normalised to the expected number of events after the fit. The uncertainty band around the MC expectation includes
all systematic uncertainties as obtained from the fit.
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where Ndata and Nbkg are the number of observed events and the estimated number of background events
in the SR, respectively, and L is the integrated luminosity. The factor CWZj j , obtained from simulation,
is the ratio of the number of selected signal events at detector level to the number of events at particle level
in the fiducial phase space. This factor corrects for detector efficiencies and for QED final-state radiation
effects. The contribution from τ-lepton decays, amounting to 4.7%, is removed from the cross-section
definition by introducing the term in parentheses. This term is computed using simulation, where Nτ is the
number of selected events at detector level in which at least one of the bosons decays into a τ-lepton and
Nall is the number of selected W Z events with decays into any lepton. The CWZj j factor calculated with
Sherpa for the sum of the four measured decay channels is 0.52 with a negligible statistical uncertainty.
This factor is the same for W Z j j−QCD and W Z j j−EW events, as predicted by Sherpa. The theory
modelling uncertainty in this factor is 8%, as estimated from the difference between the Sherpa and
MadGraph predictions. The uncertainties on this factor due to higher order QCD scale corrections or
PDF are negligible.

The measured W±Z j j cross-section in the fiducial phase space for a single leptonic decay mode is

σfid.
W±Z j j = 1.68 ± 0.16 (stat.) ± 0.12 (exp. syst.) ± 0.13 (mod. syst.) ± 0.044 (lumi.) fb ,

= 1.68 ± 0.25 fb ,

where the uncertainties correspond to statistical, experimental systematic, theory modelling systematic,
and luminosity uncertainties, respectively. The corresponding prediction from Sherpa for strong and
electroweak production without interference effects is

σ
fid., Sherpa
W±Z j j

= 2.15 ± 0.01 (stat.) ± 0.05 (PDF)+0.65
−0.44 (scale) fb.

Events in the SR are also used to measure the W±Z j j differential production cross-section in the VBS
fiducial phase space. The differential detector-level distributions are corrected for detector resolution
using an iterative Bayesian unfolding method [65], as implemented in the RooUnfold toolkit [66]. Three
iterations were used for the unfolding of each variable. The width of the bins in each distribution is
chosen according to the experimental resolution and to the statistical significance of the expected number
of events in that bin. The fraction of signal MC events reconstructed in the same bin as generated is always
greater than 40% and around 70% on average.

For each distribution, simulated W±Z j j events are used to obtain a response matrix that accounts for
bin-to-bin migration effects between the reconstruction-level and particle-level distributions. The Sherpa
MC samples forW Z j j−EW andW Z j j−QCD production are added together to modelW±Z j j production.
To more closely model the data and to minimise unfolding uncertainties, their predicted cross-sections
are rescaled by the respective signal strengths of 1.77 and 0.56 for the W Z j j−EW and W Z j j−QCD
contributions, respectively, as measured in data by the maximum-likelihood fit.

Uncertainties in the unfolding due to imperfect modelling of the data by the MC simulation are evaluated
using a data-driven method [67], where the MC differential distribution is corrected to match the data
distribution and the resultingweightedMCdistribution at reconstruction level is unfoldedwith the response
matrix used in the data unfolding. The new unfolded distribution is compared with the weighted MC
distribution at generator level and the difference is taken as the systematic uncertainty. The uncertainties
obtained range from 0.1% to 25% depending on the resolution of the unfolded observables and on the
quality of its description by Sherpa.
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Measurements are performed as a function of three variables sensitive to anomalies in the quartic gauge
coupling in W±Z j j events [10], namely the scalar sum of the transverse momenta of the three charged
leptons associated with the W and Z bosons

∑
p`T, the difference in azimuthal angle ∆φ(W, Z) between

the W and Z bosons’ directions, and the transverse mass of the W±Z system mWZ
T , defined following

Ref. [10]. These are presented in Figure 3.

Measurements are also performed as a function of variables related to the kinematics of jets. The
exclusive multiplicity of jets, Njets, is shown in Figure 4. The absolute difference in rapidity between the
two tagging jets ∆yj j , the invariant mass of the tagging jets mj j , the exclusive multiplicity Ngap

jets of jets
with pT > 25 GeV in the gap in η between the two tagging jets, and the azimuthal angle between the two
tagging jets ∆φ j j are shown in Figure 5.

Total uncertainties in the measurements are dominated by statistical uncertainties. The differential meas-
urements are compared with the prediction from Sherpa, after having rescaled the separate W Z j j−QCD
and W Z j j−EW components by the global µWZj j−QCD and µWZj j−EW parameters, respectively, obtained
from the profile-likelihood fit to data. Interference effects between the W Z j j−QCD and W Z j j−EW
processes are incorporated via the µWZj j−EW parameter as a change of the global normalisation of the
Sherpa electroweak prediction.
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Figure 3: The measured W±Z j j differential cross-section in the VBS fiducial phase space as a function of (a)∑
p`T, (b) ∆φ(W, Z) and (c) mWZ

T . The inner and outer error bars on the data points represent the statistical
and total uncertainties, respectively. The measurements are compared with the sum of the rescaled W Z j j−QCD
and W Z j j−EW predictions from Sherpa (solid line). The W Z j j−EW and W Z j j−QCD contributions are also
represented by dashed and dashed-dotted lines, respectively. In (a) and (c), the right y-axis refers to the last cross-
section point, separated from the others by a vertical dashed line, as this last bin is integrated up to the maximum
value reached in the phase space. The lower panels show the ratios of the data to the predictions from Sherpa. The
uncertainty on the Sherpa prediction is dominated by the QCD scale uncertainty on the W Z j j−QCD predicted
cross-section, whose envelope is of +30

−20% and it is not represented on the figure.
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Figure 4: The measured W±Z j j differential cross-section in the VBS fiducial phase space as a function of the
exclusive jet multiplicity of jets with pT > 40 GeV. The inner and outer error bars on the data points represent
the statistical and total uncertainties, respectively. The measurements are compared with the sum of the scaled
W Z j j−QCD andW Z j j−EW predictions from Sherpa (solid line). TheW Z j j−EW andW Z j j−QCD contributions
are also represented by dashed and dashed-dotted lines, respectively. The right y-axis refers to the last cross-section
point, separated from the others by a vertical dashed line, as this last bin is integrated up to the maximum value
reached in the phase space. The lower panel shows the ratio of the data to the prediction from Sherpa. The
uncertainty on the Sherpa prediction is dominated by the QCD scale uncertainty on the W Z j j−QCD predicted
cross-section, whose envelope is of +30

−20% and it is not represented on the figure.
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Figure 5: The measured W±Z j j differential cross-section in the VBS fiducial phase space as a function of (a) the
absolute difference in rapidity between the two tagging jets ∆yj j , (b) the invariant mass of the tagging jets mj j ,
(c) Ngap

jets the exclusive jet multiplicity of jets with pT > 25 GeV in the gap between the two tagging jets, and (d)
the azimuthal angle between the two tagging jets ∆φ j j . The inner and outer error bars on the data points represent
the statistical and total uncertainties, respectively. The measurements are compared with the sum of the rescaled
W Z j j−QCD andW Z j j−EW predictions from Sherpa (solid line). TheW Z j j−EW andW Z j j−QCD contributions
are also represented by dashed and dashed-dotted lines, respectively. In (b) ad (c), the right y-axis refers to the
last cross-section point, separated from the others by a vertical dashed line, as this last bin is integrated up to the
maximum value reached in the phase space. The lower panels show the ratios of the data to the predictions from
Sherpa. The uncertainty on the Sherpa prediction is dominated by the QCD scale uncertainty on the W Z j j−QCD
predicted cross-section, whose envelope is of +30

−20% and it is not represented on the figure.
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10 Conclusion

An observation of electroweak production of a diboson W±Z system in association with two jets and
measurements of its production cross-section in

√
s = 13 TeV pp collisions at the LHC are presented. The

data were collected with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1.
The measurements use leptonic decays of the gauge bosons into electrons or muons and are performed
in a fiducial phase space approximating the detector acceptance that increases the sensitivity to W±Z j j
electroweak production modes.

The electroweak production of W±Z bosons in association with two jets is measured with observed and
expected significances of 5.3 and 3.2 standard deviations, respectively. The measured fiducial cross-
section for electroweak production including interference effects is

σWZj j−EW = 0.57 +0.14
−0.13 (stat.) +0.05

−0.04 (exp. syst.) +0.05
−0.04 (mod. syst.) +0.01

−0.01 (lumi.) fb.

It is found to be larger than the LO SM prediction of 0.32 ± 0.03 fb as calculated with the Sherpa
MC event generator that includes neither interference effects, estimated at LO to be 10%, nor NLO
electroweak corrections. Differential cross-sections of W±Z j j production, including both the strong
and electroweak processes, are also measured in the same fiducial phase space as a function of several
kinematic observables.
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