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Abstract: We investigate the nonperturbative relation between lightcone (LC) and

standard equal-time (ET) quantization in the context of λφ4 theory in d = 2. We

discuss the perturbative matching between bare parameters and the failure of its naive

nonperturbative extension. We argue that they are nevertheless the same theory non-

perturbatively, and that furthermore the nonperturbative map between bare parameters

can be extracted from ET perturbation theory via Borel resummation of the mass gap.

We test this map by using it to compare physical quantities computed using numerical

Hamiltonian truncation methods in ET and LC.
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1 Introduction and Summary

Quantization on surfaces of constant lightcone (LC) time x+ ≡ 1√
2
(t + x) leads to a

number of simplifications [1–5] compared to standard equal-time (ET) quantization,

where one uses surfaces of constant Lorentzian time. One pays a conceptual price for

this simplification, however. Important physics effects, such as spontaneous symmetry

breaking and renormalization of the vacuum energy, are subtle to uncover in LC quan-

tization [6–15]. Many of the difficult subtleties of LC can be traced to the fact that

energy p+ = µ2

2p−
is inversely proportional to momentum p− in terms of the Lorentz-

invariant µ2 = p2, and consequently “zero modes” with vanishing p− have infinite LC

energy and are lifted out of the spectrum.

From an Effective Field Theory (EFT) perspective, the heavy zero modes must be

integrated out, potentially leaving behind new interactions compared to the theory in
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ET quantization. It is useful to think in terms of an “effective lightcone Hamiltonian”

Heff for the lightcone-quantized theory, containing any new interactions generated by

integrating out the LC zero modes. A general prescription for how to obtain Heff

starting from an ET Hamiltonian HET is an open problem. In [16], we proposed a

method for constructing Heff in terms of HET perturbatively, but ultimately one would

like to go beyond perturbation theory. At a minimum, one needs to be able to determine

which relevant and marginal operators appear in Heff , at which point their coefficients

can be fixed in principle in terms of physical observables. More ambitiously, one would

like to be able to nonperturbatively determine a priori the values of the bare parameters

in Heff .

A useful model for investigating these issues in detail is λφ4 scalar theory in d = 2.

In this case, the perturbative prescription in [16] reduces to the earlier prescription of

[17, 18], which says that the entire effect of the zero modes is simply a shift in the bare

parameters:

m2 → m2
eff = m2 + 12λ〈φ2〉. (1.1)

As we will review, this prescription passes nontrivial checks at the perturbative level,

but fails nonperturbatively. However, comparisons of numerical analyses of the theory

in LC quantization indicate that there is a critical value of the mass, or more precisely

of the dimensionless ratio λ̄ = λ
m2 , where the theory reaches a scale-invariant fixed point

in the IR, but with a shifted value of the critical coupling as compared to numerical

analyses of ET quantization. So, one may take this as evidence that although the exact

form (1.1) for m2
eff is only valid perturbatively, there is still some value of m2

eff that

matches the ET theory. In other words, the Lagrangian in ET and LC quantization

are really describing the same theory, once their respective bare parameters have been

fixed in terms of a physical observable. In this paper, we will argue that this is true,

and that furthermore one can extract the correct matching of bare parameters from

the perturbative equation (1.1), though in a more involved way than one might naively

have expected.

The basic idea is that the physical mass gap µgap in the theory should be the

Borel resummation of its perturbation series in both ET and LC quantization. This

is the main assumption of the procedure we apply for extracting a map between bare

parameters of the two quantizations. Assuming this is true, then (1.1) relates the two

perturbation series to all orders, and therefore together with Borel resummation it

allows one to calculate µgap as a function of the bare parameters in both quantization

schemes starting with just the perturbation series of µgap and 〈φ2〉 in ET. Since the

gap is a physical quantity, one can then extract a map between bare parameters by
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equating the gap obtained as a function of λ̄ in LC and in ET.

To implement this procedure, we will use the recent results of [19] obtaining the

perturbation series of the gap and the vacuum energy to eighth order in the coupling.

We will also closely follow their implementation of Borel resummation, originally from

[20], which involves optimizing over two additional parameters to improve the conver-

gence rate. We reproduce their Borel resummation of the mass gap in ET quantization,

and additionally obtain the Borel resummation of the mass gap in LC quantization.

From this calculation of the gap, we can extract a map λ̄LC(λ̄ET). This result is shown

in Fig. 5.

In principle, with high enough orders in the perturbation series, one should get

the same result independently of whether one Borel resums the perturbation series for

the mass gap or some power µαgap. In practice, with only finitely many perturbative

terms, the result does depend on which power of the gap one chooses to resum. In

ET quantization, the convergence rate is fastest if one Borel resums µgap [19], due to

the fact that the critical exponent ν = 1 in d = 2 and therefore µgap ∼ |λ̄ − λ̄∗| as

one approaches the critical coupling λ̄∗. By contrast, in LC, we argue that µ2
gap should

close linearly in the bare coupling as one approaches the critical point. Therefore, we

expect the convergence rate to be fastest if we Borel resum µ2
gap in LC quantization.

To test our procedure, we compare the results of the Borel resummation to physical

quantities calculated in ET and LC quantization using the nonperturbative methods of

Hamiltonian truncation (i.e. ET renormalized Hamiltonian truncation [21–31] and LC

conformal truncation [16, 32–36], respectively). That is, we use Hamiltonian truncation

to numerically compute physical quantities as a function of the bare parameters in ET

and LC, and then use the map λ̄LC(λ̄ET) obtained from Borel resummation to compare

them. The first physical quantity we compare is just the mass gap itself, and we find

very good agreement, as shown in Fig. 7. Because the mass gap is the quantity that

we used to extract the map between parameters, this test is equivalent to a check that

Borel resumming the gap works well in both ET and LC.

The second physical quantity that we compare is the residue Z of the single-particle

pole of the φ propagator. Equivalently, it is (the square of) the matrix element of φ

between the vacuum and the single-particle state. We find that the ET and LC results

for Z in terms of the physical quantity µ2
gap/λ agree over a wide range of couplings

until close to the critical point, where truncation effects limit the convergence rate.

This agreement for Z is further evidence that both ET and LC quantization compute

the same physical observables once we identify the bare parameters with our matching

procedure.

The rest of the paper is organized as follows. In section 2, we review the perturba-

tive matching between ET and LC, and how its naive extension to a nonperturbative
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matching fails. In section 3, we obtain the matching between bare parameters by Borel

resumming the mass gap both as a function of ET parameters and LC parameters,

and equating them. In section 4, we perform tests of the mapping by using it to com-

pare physical quantities computed with conformal truncation techniques in the two

quantizations. Finally, in section 5, we conclude with a discussion of potential future

directions.

2 Review of Perturbative Matching

In this section, we will review the perturbative matching between the bare parameters

in λφ4 theory in LC quantization vs ET quantization. We will also discuss the difficulty

in extending the perturbative matching to the nonperturbative level.

2.1 Shift in Bare Parameters

We consider the following Lagrangian in d = 2:

L =
1

2
:(∂φ)2 :− 1

2
m2:φ2 :− λ:φ4 :, (2.1)

where :O : indicates that the operator is normal-ordered. The theory has a single

dimensionless parameter that we will denote λ̄ ≡ λ
m2 .1

The proposal in [16] for how to determine the effective LC Hamiltonian Heff is

essentially a matching procedure, where correlators are computed in ET and LC quan-

tization, and new terms are added to the LC Hamiltonian to make them agree. More

explicitly, this matching is achieved using the following trick. The matrix elements

of the ET Hamiltonian can be read off from matrix elements of the unitary evolution

operator U(t) through the relation H = limt→0 i∂tU(t). Matrix elements of U(t) are

simply given by two-point functions of operators, which are independent of the quan-

tization scheme. However, the LC Hamiltonian generates evolution with respect to x+

rather than t, so we extract it from U(t) by taking

Heff = lim
x+→0

i∂x+U(x+), (2.2)

where the partial derivative is now taken with respect to x+ rather than t. The spatial

coordinates are also treated differently: the external states in ET have fixed momentum

Px, whereas in LC they have fixed lightcone momentum P−, so in the former case we

Fourier transform with respect to x and in the latter with respect to x−. Perturbatively,

1Note that, due to normal-ordering, the bare mass parameter m2 is finite.
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φ φ

Figure 1. General structure of “plant” diagrams.

one can evaluate U in terms of its Dyson series. Naively, only the linear term in λ in the

Dyson series contributes, both for H and for Heff , because higher order terms involve

multiple integrals over time, all of whose region of integration vanishes in the limit

t → 0 or x+ → 0, respectively. The subtlety is that in LC coordinates, the higher

order terms in the Dyson series can contain δ functions of LC time, which therefore

can have a nonvanishing contribution even from an infinitesimal region of integration.2

Such δ functions in position space correspond to contributions independent of some

momentum q+ flowing through the diagram in momentum space, or more generally, to

contributions that are simply polynomials in q+. In λφ4 theory, the class of diagrams

that depend on q+ this way are diagrams with the topology of a “plant” shown in Fig. 1,

i.e. the diagram is an arbitrarily complicated subdiagram connected to a scalar line at

a single point.3 This conclusion reproduces an earlier result due to Burkardt [17], from

inspection of Feynman diagrams. It is clear that in perturbation theory, these plant

diagrams simply renormalize the mass by a shift proportional to the loop diagrams for

the vev (in ET quantization) of :φ2 :,

m2
LC = m2

ET + 12λET〈:φ2 :〉. (2.3)

Remarkably, in a heroic effort, the perturbative coefficients of both the vacuum

energy density Λ(λ̄) and the mass gap µgap(λ̄) have recently been computed to O(λ̄8)

2See also [37] for another perspective on why interpolations between LC and ET are discontinuous
at the LC limit.

3The basic idea, explained more thoroughly in [16], is that most diagrams have q+ dependence
in the denominator ∼ i

2q+q−−m2+iε of internal propagators. For plant diagrams, however, none of

the external spatial momentum p− flows through the nontrivial part of the diagram, so there is a
contribution from the region of integration where the loop momentum q− vanishes and therefore the
denominator does not depend on q+.
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in this theory [19]. We summarize their result here:

Λ̄ET ≡
Λ

m2
ET

=
∞∑
n=2

anλ̄
n
ET, µ̄2

ET ≡
µ2

gap

m2
ET

= 1 +
∞∑
n=2

cnλ̄
n
ET, (2.4)

where

a2 = −21ζ(3)

16π3
, a3 =

27ζ(3)

8π4
, a4 = −0.11612596491, a5 = 0.394953418,

a6 = −1.62979422, a7 = 7.8540421, a8 = −43.192021, (2.5)

c2 = −3

2
, c3 =

9

π
+

63ζ(3)

2π3
, c4 = −14.65586922, c5 = 65.9730843,

c6 = −347.888128, c7 = 2077.70336, c8 = −13 711.0454. (2.6)

We can extract the vev 〈:φ2 :〉 from the vacuum energy by taking derivatives. Naively,

since the coefficient of :φ2 : in the action is m2, the derivative of the vacuum energy with

respect to m2 is 〈:φ2 :〉. However, m2 also shows up in the action through the renormal-

ization scheme. Specifically, in defining the Lagrangian (2.1) in terms of normal-ordered

operators, we subtracted off the divergent contributions to the vacuum energy and bare

mass, which depend on m2. We can make this additional m2-dependence explicit by

rewriting the Lagrangian without normal-ordering, using the relations [25, 26]

:φ2 : = φ2 − 1

4π
log

Λ2
cutoff

m2
, :φ4 : = φ4 − 3

2π
log

Λ2
cutoff

m2
φ2 +

3

16π2
log2 Λ2

cutoff

m2
, (2.7)

where we’ve imposed a uniform cutoff Λcutoff on the loop momenta. The resulting

expression for the Lagrangian is

L =
1

2
(∂φ)2 − 1

2

(
m2 − 3λ

π
log

Λ2
cutoff

m2

)
φ2 − λφ4 − δΛ, (2.8)

∂δΛ

∂m2
= − 1

8π

(
1 +

3λ̄

π

)
log

Λ2
cutoff

m2
, (2.9)

where we have added mass and vacuum energy counterterms. So the actual relation

between the vacuum energy and the vev 〈:φ2 :〉 is

∂

∂m2
Λ =

1

2

(
1 +

3λ̄

π

)(
〈φ2〉 − 1

4π
log

Λ2
cutoff

m2

)
=

1

2

(
1 +

3λ̄

π

)
〈:φ2 :〉. (2.10)

In terms of the dimensionless quantities Λ̄, λ̄, this equation takes the following form,
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which is what we will use to extract 〈:φ2 :〉:

〈:φ2 :〉 = 2
Λ̄− λ̄ d

dλ̄
Λ̄

1 + 3λ̄
π

. (2.11)

From now on we will suppress the normal-ordering notation :O :, with the understanding

that all local operators are to be normal-ordered.

Once we have the perturbative expansion of the vev 〈φ2〉, we can obtain the per-

turbative relation between the LC and ET couplings λ̄. Equation (2.3) implies that

λ̄LC =
λ

m2
LC

=
λ̄ET

1 + 12λ̄ET〈φ2〉
. (2.12)

Using the perturbative coefficients of Λ, the first few coefficients of λ̄LC in terms of λ̄ET

are

λ̄LC = λ̄ET −
63ζ(3)

2π3
λ̄4

ET +
513ζ(3)

2π4
λ̄5

ET + . . . . (2.13)

It is straightforward to invert this equation to any order in perturbation theory:

λ̄ET = λ̄LC +
63ζ(3)

2π3
λ̄4

LC −
513ζ(3)

2π4
λ̄5

LC + . . . . (2.14)

To compare the gap µ̄ET to a LC calculation, we divide the gap by the LC parameter

mLC and express the result in terms of λ̄LC:

µ̄2
LC(λ̄LC) =

µ2
gap

m2
LC

=
µ̄2

ET(λ̄ET)

1 + 12λ̄ET〈φ2〉
, (2.15)

where λ̄ET is converted to a function of λ̄LC by inverting (2.12).4 Expanded out to λ̄6
LC,

the prediction for the gap in LC quantization is

µ̄2
LC = 1− 3

2
λ̄2

LC +
9

π
λ̄3

LC − 11.4906λ̄4
LC + 52.7576λ̄5

LC − 287.357λ̄6
LC + . . . . (2.16)

We have independently computed these coefficients up to λ̄5
LC in LC quantization using

old-fashioned perturbation theory. More precisely, we computed the Hamiltonian in LC

quantization in a basis of operators with dimension up to ∆max, and then we substituted

these matrix elements into the time-independent perturbation theory formula for the

4Equivalently, µ̄2
ET(λET) = (1 + 12λ̄ET〈φ2〉)µ̄2

LC

(
λ̄ET

1+12λ̄ET〈φ2〉

)
.
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single-particle state energy.5 We obtained the numeric result

µ̄2
LC = 1− 1.49995λ̄2

LC +
8.9999

π
λ̄3

LC − 11.52λ̄4
LC + 52.9λ̄5

LC + . . . , (2.17)

in reasonable agreement with (2.16).

2.2 Nonperturbative Failure

Next, we would like to generalize the perturbative matching condition (2.3) to a nonper-

turbative relation. The most natural guess would be that (2.3) is simply true exactly,

giving mLC directly as a function of λET once the nonperturbative vev 〈φ2〉 is known as

a function of λET. However, as noted in [16], this guess is not consistent with numeric

results obtained using Hamiltonian truncation, or with results from Borel resumma-

tion [19]. We will review the relevant numeric results here.

To test the conjecture that (2.3) is true as an exact statement, we can take µ̄2
ET

and 〈φ2〉 from a numeric computation in ET quantization as a function of λ̄ET, as well

as µ̄2
LC numerically in LC quantization as a function of λ̄LC, and use eqs. (2.12) and

(2.15) to convert µ̄2
ET(λ̄ET) to µ̄2

LC(λ̄LC). The result of the numeric computation of

〈φ2〉 is shown in Fig. 2.6 Immediately, however, one encounters a problem. The issue

is that with the vev 〈φ2〉 as shown, the map (2.12) from λ̄ET hits a local maximum

at around λ̄LC ≈ 0.7 and then turns around. If this prediction were correct, it would

mean that no value of λ̄ET would correspond to λ̄LC & 0.7. Equally problematically, it

would imply that a single value of λ̄ET would correspond to two different values of λ̄LC.

Neither of these bizarre predictions is seen in the numeric analysis of LC quantization,

as we review below.

We emphasize that this turnaround problem does not depend on any particularly

special feature of the numeric result for 〈φ2〉. From (2.12), it is easy to see that such a

turnaround occurs if at any point

d

dλ̄ET

〈φ2〉 =
1

12λ̄2
ET

. (2.18)

5We also had to extrapolate our results to infinite ∆max, since we were limited by computation
time to ∆max ≤ 33. We extrapolated by fitting the dependence of each perturbative coefficients on
∆max with a power law, a∆−Nmax + b, where a, b and N were obtained from fitting. The main source of
error on the coefficients is due to uncertainties in the fit parameters a, b, and N ; we estimate that this
error is in the last digit shown in each coefficient in (2.16).

6Concretely, the nonperturbative ET data for 〈φ2〉 was obtained via eq. (2.11) from the vacuum en-
ergy Λ initially computed with renormalized Hamiltonian truncation in [25], as well as the computation
of Λ via Borel resummation in [19].
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Figure 2. Left, top: Plot of 〈φ2〉 as a function of λ̄ET. Right, top: Mass-squared gap µ̄2
ET

in ET quantization as a function of λ̄ET. Left, middle: m2
LC as a function of m2

ET, setting
λET = λLC = 1, according to eq. (2.3). Right, middle: λ̄LC as a function of λ̄ET, again ac-

cording to eq. (2.3). Bottom: ∂〈φ2〉
∂λ̄ET

(solid black line) compared with the turnaround threshold
1

12λ̄2ET
(dashed gray line). All five plots include results obtained using both renormalized ET

Hamiltonian truncation [25] (“HT”) and Borel resummation [19] (“Borel”). The close agree-
ment between the HT and Borel methods is evidence of their accuracy. The turnaround in
the middle two plots indicate that the literal interpretation of (2.3) would incorrectly imply
that the map from λ̄ET to λ̄LC is not invertible; two different values of λ̄ET would correspond
to the same λ̄LC.

Since d
dλ̄ET
〈φ2〉 starts out small at small λ̄ET, its derivative must therefore stay below

(12λ̄2
ET)−1 to avoid a turnaround. Therefore, even rather modest growth in 〈φ2〉 as a
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function of coupling leads to the above problem eventually.

Less obvious a priori is the fact that the turnaround point occurs at smaller values

of the coupling than the critical coupling λ̄ET,∗, where the gap closes. A reasonable

conjecture would have been that (2.3) is valid nonperturbatively but only in the unbro-

ken phase. However, one can see from Fig. 2 that the turnaround occurs for λ̄ET ∼ 1,

whereas the critical point is at the much larger value λ̄ET ∼ 3, so this conjecture is also

wrong. It appears that if (2.3) has some nonperturbative meaning, it must be more

subtle. A hint is that the physical quantity µ̄2
ET is an asymptotic series of the coupling,

but one that Borel resums to the true value [19]. So in principle, µ̄2
ET is determined by

its perturbation series through Borel resummation, and one might hope this is true of

µ̄2
LC in terms of λ̄LC as well. Then, the perturbative equation (2.3) would simply be the

connection between the two perturbation series, and would need to be combined with

Borel summation to obtain a nonperturbative matching relation between the two quan-

tizations. In the following sections, we will turn to analyzing this possibility in detail.

We relegate to appendix A a discussion of zero-dimensional analogue, where one can see

more explicitly how a relation like (2.3) might have a straightforward interpretation to

all orders in perturbation theory, but involve additional subtleties nonperturbatively.

3 Map from ET to LC Using Borel Resummation of Mass Gap

We’ve now seen that the proposed map (2.3) between ET and LC couplings, which

holds to all orders in perturbation theory, clearly fails nonperturbatively. Based on

this result, one might näıvely suspect that no such nonperturbative map exists, or at

least cannot be found by knowing only perturbative data. However, in this section, we

demonstrate that the map λ̄LC(λ̄ET) can be constructed by instead computing the mass

gap µ̄2
gap(λ̄) in both ET and LC quantization by Borel resumming the two perturbation

series, then matching the two functions to indirectly obtain the nonperturbative map

between the two couplings,

µgap,LC = µgap,ET ↔
µ̄2

gap(λ̄LC)

λ̄LC

=
µ̄2

gap(λ̄ET)

λ̄ET

⇒ λ̄LC(λ̄ET). (3.1)

The fact that the intermediate function µ̄2
gap(λ̄) can be accurately computed by

Borel resumming its perturbative expansion was demonstrated recently for the case of

ET quantization in [19]. There, the authors directly computed the perturbative ex-

pansion of µ̄2
gap(λ̄ET) up to O(λ̄8

ET), then used these series coefficients to numerically

determine the fully resummed function. These resummation results successfully repro-

duced previous nonperturbative calculations of µ̄2
gap(λ̄ET) via Hamiltonian truncation.
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ET perturbation
series for 

LC perturbation
series for 

perturbative relation

Borel
resummation

Borel
resummation

exact exact

Figure 3. Outline of the procedure for extracting the map between bare couplings in LC
and ET from the ET perturbation series.

In this section, we repeat this procedure for the case of LC quantization. Specifi-

cally, we use eq. (2.3) to convert the perturbative expansion of µ̄2
gap in powers of λ̄ET

into the corresponding expansion in terms of λ̄LC. Using the same approach as [19], we

then use these new LC perturbative coefficients to numerically determine the resummed

function µ̄2
gap(λ̄LC). Once we have this function, we can combine it with the results of

[19] to finally obtain the desired nonperturbative map λ̄LC(λ̄ET).7

It is worth emphasizing that in this entire calculation, we only use data obtained

in ET quantization. The perturbative expansion of µ̄2
gap(λ̄LC) is obtained solely from

the ET expansions for µ̄2
gap and 〈φ2〉, combined with the perturbative map (2.3). This

strategy is sketched in Fig. 3. In section 4, we compare our resummation results with

Hamiltonian truncation results obtained directly in LC quantization, but at this stage

we are using strictly ET data.

3.1 Lightning Review of Borel Resummation via Conformal Mapping

Before focusing on the application to LC quantization, let’s briefly review the resum-

mation technique used in [19], though interested readers should consult that work for

7Note that we are not simply Borel resumming the perturbative expansion of λ̄LC(λ̄ET) from (2.3),
since for λ̄ET less than the turnaround point, that should just reproduce the naive prescription where
we apply (2.3) as an exact relation. For larger λ̄ET, the Borel integral should diverge, since it is
attempting to reproduce a noninvertible function.
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more details. In general, we are interested in studying a function F (g), which has the

asymptotic expansion

F (g) =
∞∑
n=0

Fn g
n, (3.2)

where, for our particular case of interest, F → µ̄2
gap and g → λ̄. In principle, we would

like to compute the Borel-Le Roy transform

Bb(t) =
∞∑
n=0

B(b)
n tn, B(b)

n ≡
Fn

Γ(n+ b+ 1)
, (3.3)

which can then be used to obtain the Borel resummed function

FB(g) =
1

gb+1

∫ ∞
0

dt tbe−t/gBb(t). (3.4)

However, we do not have the full asymptotic series, only the first N + 1 terms,

F (N)(g) =
N∑
n=0

Fn g
n, (3.5)

and if we näıvely apply this procedure to the truncated sum, we simply get the same

expression back. The problem is that the Borel transform Bb(t) only has a finite

radius of convergence, due to a singularity at t = − 1
a
,8 but the inverse Borel transform

evaluates Bb(t) far beyond this radius of convergence. Because of this, we cannot

exchange the sum with the integration and inverse Borel transform term-by-term.

We can avoid this issue with the change of variables,

t =
4

a

u

(1− u)2
, (3.6)

which maps the entire complex plane to the unit disk |u| ≤ 1, with the branch cut

singularity originating from t = − 1
a

mapped to the edge of the disk. If we now study

the series expansion of B̃b(u) ≡ Bb(t(u)), we find that it converges over the entire range

of integration, which means we can safely inverse Borel transform each term in the

8The location of this singularity is given by the classical action of the leading instanton configura-
tion, which can be computed numerically to obtain a = 0.683708 [19]. Under mild assumptions about
the series coefficients of the gap and vacuum energy in ET, the same a should control the asymptotic
behavior of the LC series coefficients. We have also explicitly checked that the difference in ratios of
subsequent terms for ET and LC coefficients is only a couple percent at eighth order.
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sum,

FB(g) =
1

gb+1

∞∑
n=0

B̃(b)
n

∫ 1

0

du
dt

du
tb(u) e−t(u)/gun. (3.7)

Since the coefficients B̃
(b)
n only depend on Fn′ with n′ ≤ n, truncating the original

asymptotic series to the first N +1 terms is equivalent to restricting this sum for FB(g)

to its first N + 1 terms. However, this new series is a convergent one, which makes this

truncated sum a reasonable approximation to the full expression.

We can actually improve the convergence of this series by introducing a second

parameter s, which is defined by rewriting the Borel transform as

B̃b(u) =
1

(1− u)2s

∞∑
n=0

B̃(b,s)
n un. (3.8)

While this rewriting obviously has no effect on the full expression, at any finite order

in the series, the parameter s allows us to better model the behavior as g →∞.

Given the first N+1 terms in the perturbative expansion of F (g), we can therefore

compute the truncated resummation

F
(N)
B (g) =

1

gb+1

N∑
n=0

B̃(b,s)
n

∫ 1

0

du
dt

du
tb(u) e−t(u)/g un

(1− u)2s
, (3.9)

which approaches FB(g) as N → ∞. Note that while the exact function FB(g) is

independent of both the Le Roy parameter b and the summation variable s, at any

finite truncation there is still some residual dependence on these two variables, which

we can use to improve the accuracy of our results. Specifically, following [19], we choose

the values of b and s to minimize the function

∆F
(N)
B ≡ (∂bF

(N)
B )2 + (∂sF

(N)
B )2 +

(
|F (N)
B − F (N−1)

B | − |F (N−1)
B − F (N−2)

B |
)2

. (3.10)

We can then obtain a rough estimate of the associated error by varying the parameters

about the best-fit values b0, s0 and measuring the resulting shift in F
(N)
B .

3.2 Borel Resumming Mass Gap

Now that we have reviewed the general resummation procedure, let’s apply it to our

specific example of µ̄2
gap(λ̄LC). To do so, we first need to construct the perturbative

expansion of this function to some order in λ̄LC. As discussed in section 2, we can

do this by applying our perturbative map between couplings (2.3) to the expansion of
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µ̄2
gap(λ̄ET), replacing each power of λ̄ET with a series in λ̄LC to obtain

µ̄2
gap

(
λ̄ET(λ̄LC)

)
= 1− 3

2
λ̄2

LC +
9

π
λ̄3

LC − 11.4906 λ̄4
LC + 52.7576 λ̄5

LC

− 287.357 λ̄6
LC + 1758.23 λ̄7

LC − 11901.4 λ̄8
LC +O(λ̄9

LC).
(3.11)

In the language of the previous subsection, this expansion of the mass gap to O(λ̄NLC)

defines our truncated series F (N)(g). Using the terms in this sum, we can construct the

Borel transform coefficients B̃
(b,s)
n , then multiply these coefficients by the inverse Borel

transform integrals given in eq. (3.9) to obtain the resummed function F
(N)
B (g), which

depends explicitly on the two parameters b and s.

For a given truncation level N , we then scan over values of λ̄LC between 0.2 and 0.9,

and for each value of the coupling, determine the b and s which minimize the function

∆F
(N)
B given in eq. (3.10). This gives us a distribution of values for b and s, and we

use the central values b0, s0 to define our final resummed function. For example, in the

case of N = 8, which is the highest truncation level we consider, we obtain the values

b
(N=8)
0 = 4.14, ∆b(N=8) = 0.14,

s
(N=8)
0 = 2.84, ∆s(N=8) = 0.0065.

(3.12)

where ∆b(N),∆s(N) simply correspond to the difference between the highest and lowest

values of b, s obtained by scanning over couplings.

Fig. 4 shows the resulting resummed µ̄2
gap(λ̄LC) for N = 6 (blue, dot-dashed), 7

(red, dotted), and 8 (black, solid). For each value of N , the upper and lower lines

correspond to b
(N)
0 ±∆b, s

(N)
0 ±∆s, where ∆b,∆s correspond to the difference between

the maximum and minimum values of b, s obtained over all considered values of the

coupling 0.2 ≤ λ̄LC ≤ 0.9 and truncation order 6 ≤ N ≤ 8,

∆b = 0.58, ∆s = 0.56. (3.13)

As we can see, there is a significant correction in going from N = 6 to N = 7,

but by N = 8 the sum appears to have largely converged for all λ̄LC below the critical

coupling, where the mass gap closes. The estimated error for N = 8 is much smaller

than the previous orders, which indicates that this result is largely independent of b

and s, as we’d expect for the fully resummed function. However, it is worth pointing

out that simply varying the resummation parameters clearly underestimates the overall

error (at least for low N), since the error bars for N = 6 do not contain the results for

N = 7, 8.
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Figure 4. Plots of estimates of the gap from 6th, 7th, and 8th order, for (blue, dot-dashed),
(red, dotted), and (black, solid), respectively. The upper and lower lines are the upper and
lower values from moving b, s away from their “best-fit” values as described in the text.
Additional errors due to the change from one order in perturbation theory to the next can
be read off by comparing the different lines. We also show in purple, dashed, a plot of the
Taylor series truncated at λ8.
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Figure 5. Left: Gap µ̄2 as a function of λ̄ET, from Borel resumming its perturba-
tion series at eighth order. Center: Gap µ̄2 as a function of λ̄LC from Borel resum-
ming its perturbation series, also at eighth. Right: Inferred map λ̄LC(λ̄ET) from imposing
µ̄2

LC(λ̄LC)/λ̄LC = µ̄2
ET(λ̄ET)/λ̄ET. In the left and center plot, errors (barely visible) are cal-

culated as in Fig. 4.

Using only ET perturbation theory data, combined with the perturbative map

between ET and LC couplings in eq. (2.3), we’ve therefore constructed a numerically

resummed approximation to the nonperturbative LC mass gap µ̄2
gap(λ̄LC). Similarly, we

can use this same technique to Borel resum µ̄2
gap(λ̄ET) (which simply reproduces the

results of [19]). These two results, both at truncation level N = 8, are shown in the

center and left of Fig. 5, respectively.

We can now use these two intermediate functions to construct the nonperturbative
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ET Method λ̄ET∗ LC Method λ̄LC∗

Borel [19] 2.807± .034 Borel (this work) 0.97± .01

HT [29, 30] 2.76± .03 LCT [35] 0.96± .02

Lattice MC [38] 2.764± .004 Symm. Poly. [41] 1.10± .03

MPS 1 [39] 2.769± .002 DLCQ [42] 1.4

MPS 2 [39] 2.7625± .0008

TRG [40] 2.728± .014

Table 1. Computed values of the critical coupling λ̄∗ from various methods in both ET (left)
and LC (right) quantization.

map λ̄LC(λ̄ET). Specifically, we can identify which points in the two plots correspond

to the same physical theory, parameterized by the ratio µ̄2
gap/λ̄. In other words, for

each value of λ̄ET, we can use the left plot of Fig. 5 to determine the corresponding

value of µ̄2
gap/λ̄ET. We can then use the middle plot to determine which value of λ̄LC

has the same µ̄2
gap/λ̄LC, thus giving us a map between bare couplings in ET and LC

quantization, shown in the right plot of Fig. 5. In particular, we find the following

different values for the coupling λ̄∗ at the critical point in the two quantizations:

λ̄ET∗ = 2.81, λ̄LC∗ = 0.97, (3.14)

where the former is just reproducing the calculation in [19]. These values can be com-

pared with previous results obtained using renormalized Hamiltonian truncation [29,

30], lattice Monte Carlo methods [38], matrix product states [39], and the tensor net-

work renormalization group [40] for the case of ET quantization, and symmetric polyno-

mials [41], discrete lightcone quantization [42], and lightcone conformal truncation [35]

for the case of LC quantization, listed in table 1.9

3.3 Linear Closing of the Gap in LC

Before testing our nonperturbative map λ̄LC(λ̄ET) in section 4, let’s first briefly mention

an important subtlety in our two Borel resummed functions µ̄2
gap(λ̄ET) and µ̄2

gap(λ̄LC).

As discussed in [19], the accuracy of this truncated resummation procedure at N = 8

is still quite sensitive to which power µ̄αgap we choose to Borel resum. In particular,

our choice of α determines how the Borel resummed mass gap vanishes as we approach

the critical point. We can easily understand this by noting in eq. (3.9) that F (N)(g)

is analytic in g, which means that as we approach a critical point, generically the

9See also [43] for a recent new method for calculating the mass gap and vacuum energy.
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resummed function will vanish linearly with g. If we choose to Borel resum µ̄αgap(λ̄), we

thus expect the inferred mass gap to vanish as

µ̄gap(λ̄) ∼ |λ̄− λ̄∗|
1
α , λ̄→ λ̄∗ (Truncated Borel). (3.15)

However, we know that the behavior of the exact mass gap function is set by the critical

exponent ν associated with the lowest singlet operator in the IR fixed point,

µ̄gap(λ̄) ∼ |λ̄− λ̄∗|ν , λ̄→ λ̄∗ (Exact). (3.16)

The optimal choice of α for convergence of the truncated resummation is thus α = 1
ν
.10

For this particular example of φ4 theory in d = 2, the critical point is in the same

universality class as the 2D Ising model, with the known critical exponent ν = 1. In

constructing the left plot of Fig. 5, we therefore technically chose to resum the function

µ̄gap(λ̄ET), as was done in [19], then squared the result to obtain µ̄2
gap.

However, there is a further subtlety in Borel resumming the LC mass gap, which is

that the mass gap does not close as |λ̄− λ̄∗|ν in LC quantization. To understand this,

we can study the mass gap from a Hamiltonian perspective. At linear order around

the critical point, the LC Hamiltonian can be written in the form

P+(λ) = P+∗(λ∗) +
1

2λ̄∗
(λ∗ − λ)

∫
dx φ2(x). (3.17)

Moreover, the Hamiltonian P+ is proportional to µ2,

µ2 = 2P+P−. (3.18)

We therefore can write the LC mass gap squared as

µ2
gap,LC =

1

2λ̄∗
|λ− λ∗|〈1|φ2(0)|1〉. (3.19)

In order for the LC mass gap to vanish as |λ̄−λ̄∗|ν , the expectation value of φ2 in the first

excited state would therefore need to vanish as |λ̄− λ̄∗|2ν−1. However, this expectation

value is necessarily positive at the critical point. One simple way to see this is to expand

the first excited state in terms of free mass eigenstates |m2
i 〉 (i.e. |1〉 =

∑
i ci|m2

i 〉), such

10In principle, we can choose any value of α, and the resulting mass gap will converge to the exact
answer as we take the truncation level N →∞. We are simply noting that, in practice, we can improve
the rate of convergence near the critical point if we include knowledge of the critical exponent ν in
the Borel resummed function.
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Figure 6. Same as Fig. 4, but for Borel resumming µ̄LC rather than Borel resumming µ̄2
LC

in LC. The right plot just shows the square of the left plot.

that the expectation value 〈1|φ2|1〉 is clearly a sum of positive terms:

〈1|φ2(0)|1〉 =
∑
i

|ci|2
m2
i

m2
. (3.20)

We therefore see that in φ4 theory µ2
gap,LC must vanish linearly with λ̄, regardless of

the critical exponent ν.11 Based on this observation, we can optimize the convergence

of our truncated sum by Borel resumming the function µ̄2
gap(λ̄LC), which was done to

construct the middle plot of Fig. 5. For contrast, we have also shown the results in

Fig. 6 if we instead resum µ̄gap(λ̄LC); as one can see, the convergence rate is clearly

worse than in Fig. 4.

More generally, in any theory where the coefficient of a relevant UV operator OR
can be tuned to reach a IR fixed point, we can look at the expectation value of that

operator in the first excited state to determine how the LC mass gap behaves near the

critical point. If this expectation value is positive and finite, then µ2
gap,LC will close

linearly in the associated coupling.

One interesting consequence of this observation is that in such theories the map

from ET to LC couplings must account for this differing critical behavior. Specifically,

we expect the scaling relation

|λ̄LC − λ̄LC,∗| ∼ |λ̄ET − λ̄ET,∗|2ν (λ̄→ λ̄∗), (3.21)

11Technically, µ2
gap,LC could vanish as a smaller than linear power, if the expectation value of φ2

diverged as λ̄ → λ̄∗. However, based on the Borel resummation results in this work and separate
LC Hamiltonian truncation results [35, 41, 44, 45], this expectation value appears to remain finite in
d = 2, such that µ2

gap,LC vanishes linearly.
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as demonstrated in the right plot of Fig. 5, where our inferred map λ̄LC(λ̄ET) approaches

the critical point quadratically in the ET coupling.

In other words, the map between ET and LC couplings contains information about

critical exponents. In principle, if one could construct this map directly, rather than

from matching ET and LC results, then one would have a method of directly computing

the critical exponent ν. Though we currently have no method for doing so for this

particular model, in appendix B we consider the 3D O(N) model at large N , where we

can directly calculate the map λ̄LC(λ̄ET). In this example, we can explicitly see how

the linear critical behavior in LC quantization is corrected by the map to reproduce

the appropriate critical exponent in ET quantization.

4 Tests of the Mapping

In the previous section, we extracted a map between the LC coupling λ̄LC and ET

coupling λ̄ET from the ET perturbative expansion of µ2
gap by assuming that the mass

gap was Borel resummable in both quantization schemes. In this section, we will look

at some tests of this map by using it to compare physical quantities that have been

computed by Hamiltonian truncation methods in both quantizations. The LC data

was initially computed in [35], using the method of LC conformal truncation. For

these results, we used a basis of primary operators in massless scalar field theory up to

∆max = 33 (with 5084 states in the Z2-odd sector) to then extrapolate ∆max →∞. The

ET data was initially computed in [25] using a basis of free massive energy eigenstates

on S1 with radius L = 10 (in units of the bare mass m) and energy cutoff Emax = 20

(12801 odd sector states).12

4.1 Mass Gap

For our first check of the map λ̄ET(λ̄LC), we consider the mass gap µ2
gap computed

by Hamiltonian truncation in both quantization schemes. Of course, the idea of the

previous section was that one should be able to obtain the gap in either quantization by

Borel-resumming its perturbation series. With Hamiltonian truncation, we can check

this proposal directly, by computing the gap numerically and using the map obtained

from Borel resummation to compare the two quantization schemes.

First, in the left plot of Fig. 7, we show the Hamiltonian truncation result for µ̄2
gap

computed in both ET (black, solid) and LC (red, dashed). More precisely, in either

quantization we can vary the bare mass-squared m2 and the bare coupling λ, compute

µ̄2
gap ≡ µ2

gap/m
2, and plot the result as a function of λ̄ ≡ λ/m2. At very small couplings

12We thank Lorenzo Vitale for kindly providing us with these ET results.
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Figure 7. Left: Comparison of µ̄2 =
µ2gap
m2 as a function of λ̄ = λ

m2 , for ET (black, solid) and
LC (red, dashed) quantization from numerical conformal truncation analysis. The mismatch
is apparent, due to the fact that the bare parameter m should not be the same in both

quantization schemes. Right: Comparison of µ̄2
ET =

µ2gap
m2

ET
as a function of λ̄ET after applying

the map from λET to λLC in Fig. 5. The black, solid line is the result from an ET numerical
conformal truncation analysis, the same as in the left plot. The red, dashed line is the result
from a LC numerical conformal truncation analysis, after applying the map. The blue, dotted
line is the gap in ET quantization from Borel resumming the ET perturbation series.

λ̄ . 0.1, the two curves are very similar, but quickly diverge at larger couplings where

it becomes crucial to take into account the fact that the bare parameter λ̄ in the two

quantizations does not match.

In the right plot of Fig. 7, we have used the map λ̄LC ↔ λ̄ET derived in the previous

section using Borel resummation to correct the mismatch. The ET value of µ̄2
gap as a

function of λ̄ET is the same as in the left plot. The LC result µ̄2
LC(λ̄LC) from the left

plot has been converted to ET by substituting it into the formula

µ̄2
ET(λ̄ET) =

λ̄ET

λ̄LC(λ̄ET)
µ̄2

LC

(
λ̄LC(λ̄ET)

)
. (4.1)

In effect, we have used the gap computed using Borel resummation to “undo” the

difference in the gap computed using conformal truncation, such that the converted

LC truncation results now match those of ET. We also show some spread in this LC

result, coming from the spread in the 8th order result in Fig. 4. Finally, we also

show for comparison the ET result (blue, dashed) obtained from Borel resumming its

perturbation series (from the left plot in Fig. 5).
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Figure 8. Comparison of 1 − Z as a function of µ2
gap/λ, in both ET (red) and LC (blue,

green). The two LC results were extrapolated from ∆max = 33 data using both the 1-particle
(blue) and 3-particle (green) thresholds to define the mass gap. Their disagreement near the
critical point indicates that the LC truncation data has not fully converged for µ2

gap/λ . 0.3.

4.2 Residue at Single-Particle Pole

For our second check of the map between bare parameters, we compute the residue Z

of the single-particle pole in the scalar two point function:

G(p) =
iZ

p2 − µ2
gap + iε

+ . . . . (4.2)

Equivalently, Z is defined in terms of the matrix element of the field φ between the

ground state and the first excited state,

Z = |〈Ω|φ(0)|1〉|2. (4.3)

By definition, Z = 1 in the free theory (at λ̄ = 0), but decreases from 1 at finite

coupling. Fig. 8 shows the numerically computed deviation of Z from the free value

in both ET and LC quantization, as a function of the dimensionless ratio µ2
gap/λ. In

constructing our nonperturbative map, we identified ET and LC theories with the same

value for this ratio, which means the two schemes should yield the same result for the

physical observable Z.

For the LC results, we have used two different definitions of the mass gap. The
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first (in blue), was obtained using the single-particle mass, µ2
gap ≡ µ2

1, while the other

(green) was obtained by using the three-particle threshold, µ2
gap ≡ 1

9
µ2

3. In principle,

these two definitions should be equivalent, but at any finite truncation µ3 > 3µ1. The

comparison between these two extrapolated plots thus provides us with an indication

of the error, along with the estimated error bars obtained by varying the slope of

the extrapolation. As we can see, the two LC results are in good agreement until

µ2
gap/λ . 0.3, which indicates that the results at ∆max = 33 have not fully converged

near the critical point. This disagreement near µgap = 0 is largely due to the fact that

the single-particle eigenvalue necessarily reaches zero before the three-particle threshold

for any truncation.

We can then compare these two LC results to the ET data (red), which was calcu-

lated using the single-particle mass to define the gap. As we can see, all three results

are consistent until close to the critical point. This agreement in the observable Z

indicates that at a fixed value of µ2
gap/λ both ET and LC truncation are describing the

same theory, confirming our procedure for matching bare parameters.13

5 Future Directions

The main goal of this paper has been to obtain a deeper understanding of the relation

between ET and LC quantization, focusing on the special case of λφ4 theory in 2d. In

principle, the same analysis we have applied here could be done for λφ4 in 3d. The

main challenges in 3d compared to 2d are due to the fact that the calculations all

become computationally more expensive. The perturbative analysis of [19] in 3d would

require doing loop integrals with a larger phase space and additional UV divergences,

making it more challenging to go to O(λ̄8). The tests from comparing to conformal

truncation results also become more difficult mainly due to the larger number of states

at each level in higher dimensions. Nevertheless, perhaps with available resources these

obstacles could be overcome.

More generally, it is important to understand when the effect of LC zero modes

is to just shift the bare parameters of the theory. While obtaining a detailed map

between the bare parameters is likely an impractically difficult task in most cases,

one could hope to prove that such a map exists provided that certain simple criteria

13In this case, we have not literally used our mapping of bare parameters, but rather went directly to
Z as a function of µ2

gap/λ in both quantizations. We have already seen that our map matches µ2
gap/λ in

terms of the bare parameters to reasonably high accuracy, so in principle there is not much difference
between first writing Z in terms of λ̄ET and λ̄LC and then mapping, versus directly expressing Z in
terms of µ2

gap/λ in each quantization. In practice, we have found that extrapolating to infinite ∆max

typically is more accurate when physical quantities are expressed in terms of other physical quantities,
rather than in terms of bare parameters.
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are satisfied. For most practical purposes, such a proof would be as good as the map

itself, since usually one is interested in the relation between different physical quantities

in the theory rather then their (usually scheme-dependent) dependence on the bare

parameters. A natural conjecture in the spirit of the analysis of this paper is that any

time the perturbative effect of zero modes can be absorbed into a shift in the bare

parameters, their nonperturbative effect can be as well. A closely related question is

whether or not Borel resummability of a physical quantity in ET perturbation theory

implies its Borel resummability in LC. We have essentially assumed that this is true of

2d λφ4 theory in this paper, and have attempted to test this assumption numerically,

but a proof would of course be more desirable.

There have been many previous studies of 2d λφ4 theory using lattice MC meth-

ods [38, 46, 47], tensor networks [39, 40], and the density matrix renormalization

group [48]. However, those studies have largely focused on the critical point, in or-

der to extract the critical coupling λ̄∗, as well as critical exponents. It would be very

useful if such methods could be used to extract the λ̄-dependence of observables such

as the mass gap, vacuum energy, and vev 〈φ2〉 away from the critical point. Such data

would provide a useful additional check of the map between ET and LC quantization,

as well as insight into the nonperturbative structure of λφ4 theory, more generally.

Finally, we have focused our analysis on the symmetry preserving phase, 〈φ〉 = 0,

but it would be very interesting to understand the symmetry-broken phase of the

theory as well. In this case, because of the apparent triviality of the vacuum in LC

quantization, we expect that one has to start with the Lagrangian expanded around

the true vacuum. As a result, the Lagrangian would have a φ3 term in addition to

the quadratic and quartic. A puzzle in this approach is that the coefficient of the

φ3 interaction should not really be an independent parameter of the theory, which

is fully determined in the original manifestly Z2-symmetric Lagrangian by only two

parameters. An additional constraint is provided by the fact that for the correct value

of the φ3 coefficient as a function of the φ2 and φ4 coefficients, the spectrum of the

theory must be invariant under φ3 → −φ3. In the case of the O(N) 2d model, or

more generally for theories with spontaneous breaking of continuous symmetries, one

could also constrain the parameters of the theory by demanding that the spectrum

contain massless Goldstone bosons. Potentially, such constraints could be used to fix

the coefficient of φ3. We leave these questions to future work.
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A 0d Example

In this paper, we have mostly focused on the prescription in λφ4 theory that assigns

an effective value of λ̄LC(λ̄ET) in LC quantization corresponding to an ET computation

according to

m2
LC = m2

ET + 12λET〈φ2〉ET. (A.1)

The theory is determined by the dimensionless combination λ̄ = λ
m2 . A problem with

(A.1) is that applying it literally assigns the same lightcone λ̄LC to two different val-

ues of λ̄ET. In this appendix, we will analyze the analogous phenomenon in a lower

dimensional example.

We will find it somewhat conceptually simpler to work in units with λ = 1 in both

quantizations. The first point we want to make here is that we can state the puzzle of

why (A.1) fails without referring to LC quantization. Because the plant diagrams have

no momentum dependence, their contributions can be exactly absorbed into a mass

counterterm. This is essentially the same argument that one uses when one normal-

orders the action: one can simply drop the one-loop contribution to the two-point

function since it can be absorbed into a (log divergent) shift in the mass term. The

next plant diagram occurs at three loops,

∼=
(
m2 → m2 + 1

m4

63ζ(3)
2π3

)
. (A.2)

This diagram can also be removed precisely with a counterterm. We can continue

in this way to any order in perturbation theory, without ever having to mention LC

quantization or making any conjectures about what LC does. In other words, in per-

turbation theory, we really can just remove all plant diagrams by defining a new mass

term.
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In this language, we can reinterpret the lower left plot in Fig 2 as a statement of

what new mass m2
LC we get as a function of the original mass m2

ET. At large m2
ET, the

shift from 〈φ2〉 is small compared to m2
ET, and so everything looks fine. However, as we

decrease mET, the new mass m2
LC(m2

ET) in the new effective ET description (where we

have deleted all the plant diagrams) receives larger and larger contributions from the

plant diagrams, and eventually these more than compensate for the decreasing “bare”

mass. Even without doing any additional computations, we see that this procedure

naively makes a prediction for the results in ET quantization, namely that two different

values of m2
ET should give the same physical results. The problem is that this prediction

is wrong. Stated this way, the failure of the prediction may seem surprising. The plant

diagrams really are present in the original ET computation, and they really do give a

contribution to the mass, so it seems like they really should push the effective mass

back up.

We can get more intuition about what is going wrong by asking this question in

the following simpler toy “model”:

Z(m2) ≡
∫ ∞
−∞

dxe−m
2x2−x4 =

1

2
e
m4

8 mK 1
4

(
m4

8

)
, (A.3)

where Kν is a Bessel function. A “diagrammatic” evaluation of this integral is just its

series expansion in 1/m2:

Z(m2) =

√
π

m

(
1− 3

4m4
+

105

32m8
+ . . .

)
=

√
π

m

∞∑
n=0

1

(−4m4)n
(4n− 1)!!

(n)!
. (A.4)

One can easily compute the “vev” exactly

〈x2〉 =
1

4
m2

K 3
4

(
m4

8

)
K 1

4

(
m4

8

) − 1

 . (A.5)

As we did in the 2d theory, we can plot an effective “LC” mass-squared as a function

of the “ET” mass-squared:

m2
LC = m2 + 6〈x2〉, (A.6)

shown in Fig. 9.

As before, at large m2 the function is monotonic (and in this case it is monotonic
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Figure 9. Left: Plot of m2
LC ≡ m2 + 6〈x2〉 for the integral (A.3). The important feature

is that m2
LC is not an invertible function of m2. Right: Plot of 〈x2〉 as a function of m2. If

the perturbative procedure of absorbing plant diagrams into counter-terms were well-defined
nonperturbatively, then 〈x2〉 would be the same for any two values of m2 that corresponded
to the same m2

LC in the left plot.

for all positive m2). However, at negative14 m2, we see that the function turns back

up, predicting that the integral should give the same result for multiple values of m2.

From the plot of 〈x2〉 in Fig. 9, we see that this prediction is false.

Essentially what the “effective” integral with plant diagrams subtracted out is

doing is defining, as a function of the mass and the counterterm,

Zδ(m
2
LC) ≡

∫ ∞
−∞

dxe−m
2
LCx

2−(−δx2+x4) (A.7)

such that δ removes all plant diagrams. Manifestly, Zδ is related to the original integral

by

Zδ(m
2 + δ) = Z(m2). (A.8)

The perturbation series of Zδ differs from that of Z, since the former is expanded in

inverse powers of mLC:

Zδ(m
2
LC) =

√
π

mLC

(
1 +

δ

2m2
LC

+
3(−2 + δ2)

8m2
LC

+ . . .

)
(A.9)

Continuing with the analogy, we are interested in choosing δ to eliminate all of the

plant diagrams. To do this, we take δ = δ(m) = 6〈x2〉m2 . In perturbation theory, this

14Unlike in higher dimensions, there is no phase transition here at m2 = 0, and the integral and its
moments (like 〈x2〉) are well-defined, smooth functions of m2 even across the point m2 = 0.

– 26 –



Figure 10. Diagrams contributing to m2
LC. Solid and dashed lines denote φi and σ propa-

gators respectively.

is just

δ(m) =
3

m2

(
1− 3

m4
+

24

m8
− 297

m12
+ . . .

)
(A.10)

However, defining Zδ(m)(mLC) at the nonperturbative level requires determining δ(m)

as a function of mLC, which in turn requires inverting m as a function of mLC. So

while the procedure of defining a Zδ(m)(mLC) with plant diagrams subtracted makes

sense in perturbation theory, the point is that it does not make sense nonperturbatively

(at a minimum, it must be augmented with a choice of the branch of the solution for

m2(m2
LC) – such an augmentation would be going beyond the perturbative prescription,

in analogy with how Borel-resumming the 2d theory is an augmentation going beyond

perturbation theory) which is why the validity of (A.6) is restricted to perturbation

theory.

B Linear Closing of Gap in O(N) Model

In this appendix we will determine the map between ET and LC parameters in the

3D O(N) model at large-N . This is possible to do because one can resum perturba-

tion theory at large-N . Parametrizing the large-N theory in the presence of a mass

deformation in following way,

L = =
1

2
(∂φi)

2 − 1

2

m2
ET

λ
σ − 1

2
σ(φi)

2 +
σ2

4λ
, (B.1)

we proceed to calculate the contribution to Heff which corresponds to m2
LC. This in-

volves resumming the diagrams of Fig. 10. The diagrams yield the following standard
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resummation equation, valid to leading order in N for 〈σ〉 = m2
LC:

m2
LC = m2

ET + λN

∫
d3p

(2π)3

[
1

p2 +m2
LC

− 1

p2

]
(B.2)

Here, we have rotated the integral to Euclidean momentum, and have included the

effect of normal ordering. When m2
ET > 0 and in the limit λ → ∞ (i.e. focusing on

the regime near the interacting fixed point) the relation between the parameters is

approximately given by

mLC =
4π

λN
m2

ET. (B.3)

Let us now recall that in the LC quantization of the O(N) model, the gap closes linearly

with mLC. For instance, the spectral density of the φ2 operator along the flow is given

by:

πρφ2(q) =

1
2q(

1 + λN
8qπ

log
(
q+2mLC

q−2mLC

))2

+
(
λ
8q

)2 . (B.4)

Thus, as in the case of our 2D scalar example, the LC O(N) model gap closes in

a manner which is inconsistent with the power expected from the large-N critical

exponent of ν = 1. However, again, as in the 2D case, it is the map between ET and

LC parameters which resolves this tension. Indeed, near the critical point the map

knows about the ν exponent:

µgap ∼ mLC ∼ m2
ET. (B.5)
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