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1 Introduction

Quark flavour-changing transitions have been used to probe high-energy scales since several

decades, with many successes along the way, such as predicting the existence and prop-

erties of the charm and top quarks. They are particularly well suited for this purpose in

the context of the Standard Model (SM), where flavour transitions are controlled by the

unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix defined by only 4 real parameters.

Over the last decades, the improvement in measurements has been matched by theoretical

progress in computing accurately SM contributions, from the high-energy side (electroweak

and perturbative QCD contributions) but also from the low-energy side (hadronic matrix
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elements involving QCD in the non-perturbative regime). Global fits to the wealth of ex-

perimental data on flavour transitions show an overall excellent agreement with the SM

picture, leading also to a precise determination of the CKM parameters [1].

Such a precise determination of the CKM parameters is essential for precise predictions

of many flavour observables, used to set bounds on beyond-the-SM (BSM) physics. Some

of these bounds are among the most stringent BSM constraints available, and can be

translated to lower bounds on the BSM scale much above the reach of present and near-

future colliders. However, these bounds must be extracted with great care, because the

presence of new physics may well invalidate the assumptions implicit in the extraction of

the CKM parameters in a SM-based analysis. The goal of this article is to address, in a

systematic and model-independent way, how new physics (NP) will affect the global CKM

fit and what is the best way to fix the full CKM matrix in a generic BSM context.

Direct searches for new heavy particles at the LHC have not been conclusive, which

suggests a significant gap between the electroweak (EW) and BSM scales. In this context,

the Standard Model Effective Field Theory (SMEFT) [2, 3] represents an appropriate

theoretical framework to analyse flavour data. Such data analysis is done once and for all in

the SMEFT and the subsequent correlated bounds on the relevant Wilson coefficients can be

applied to a plethora of NP models in a simple way. This is true whether one is addressing

anomalies in the data, or just setting bounds on BSM physics. Moreover, the SMEFT

allows one to account for non-trivial correlations between different classes of observables,

such as quark-flavour transitions, leptonic processes, and EW precision measurements. In

addition it embeds resummations that are needed to tame large logarithms in the presence

of large scale hierarchies through Renormalisation Group Evolutions (RGEs).

The SMEFT is the effective theory of any fundamental theory that contains the SM

supplemented by a set of heavy particles with masses M ∼ Λ � mZ , and in which the

EW symmetry is linearly realised. Technically speaking, it extends the SM Lagrangian

with higher-dimensional operators built from SM fields, with the assumption that these

operators also obey the gauge symmetry of the SM. The leading NP effects are typically

encoded in the Wilson coefficients of operators of dimension six, and thus the primary

goal is to establish confidence intervals for these parameters. However, it is important

to realise that the free parameters of the SMEFT are not only the Wilson coefficients,

but also the parameters already present in the SM Lagrangian (or the “SM parameters”

with a slight abuse of language): the gauge and Yukawa couplings, the Higgs mass and its

vacuum expectation value (VEV). In a consistent analysis one needs to take into account

the presence of the NP contributions affecting the input observables from which the SM

parameters are extracted.

The issue of NP “contamination” has been carefully studied in the context of EW preci-

sion observables (see e.g. ref. [4]), where the relevant SM parameters are the SU(2)L×U(1)Y
gauge couplings gL, gY , and the Higgs VEV v. In the SM their numerical values are de-

termined from three very precisely measured experimental inputs (see e.g. ref. [5]): the

fine-structure constant αem(0) (from the Rydberg constant), the Z-boson mass (from the Z

lineshape in LEP-1), and the Fermi constant GF (from the muon lifetime). In the SMEFT,

the relation between these observables and gL, gY , and v is affected by dimension-six op-
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erators, and a straightforward extraction of the SM parameters is thus not possible. For

example, the Fermi constant is given by GF = (
√

2v2)−1 (1 + δGF /GF ) where δGF is a

linear combination of several dimension-six Wilson coefficients (see section 3.2 for details).

One option would be to perform a global fit simultaneously to the Wilson coefficients

and the SM parameters. A more convenient and practical approach, however, consists

in absorbing δGF into a redefinition of the SM parameters, in a procedure akin to the

renormalisation of the SM at one loop. Namely, one can define the “tilde VEV” param-

eter ṽ = v (1 + δGF /GF )−1/2 such that it relates to the Fermi constant in the same way

as the Higgs VEV in the SM: GF = (
√

2ṽ2)−1, and has a well-defined numerical value,

ṽ = 246.21965(6) GeV. Although δGF has been redefined away here, it does not disappear.

Instead, NP corrections proportional to δGF emerge in SMEFT predictions of other elec-

troweak observables (such as the W boson mass) that depend on the Higgs VEV in the SM

limit, once v is traded for ṽ. This kind of approach was followed in some previous global

analyses of EW precision observables within the SMEFT, see e.g. refs. [6–10].

We want to develop an analogous approach to deal with the CKM parameters in

the SMEFT consistently. This task is much more challenging than in the EW sector

where a small set of precisely measured and theoretically clean input observables can be

distinguished. On the contrary, SM CKM fits rely on many distinct observables, often

measured in elaborate experimental set-ups and displaying a complicated dependence on

non-perturbative hadronic inputs. These require more involved theoretical approaches,

sometimes relying on assumptions only justified within the SM. For this reason the current

global CKM fits developed within the SM cannot be used without a careful adaptation in

a general BSM framework such as the SMEFT. Perhaps for these reasons there is, in

fact, no complete SMEFT analysis of flavour data available in the literature to this day.1

Model-independent analyses available in the literature (and also many model-dependent

ones) involve different classes of assumptions. A usual approach, motivated by setups with

a very high NP scale and an arbitrary flavour structure, is to use ∆F = 2 processes to

extract NP bounds [14–19], with the implicit or explicit assumption that the extraction of

the CKM parameters themselves (which are used to calculate the SM prediction of these

∆F = 2 processes) is not affected by NP [16]. Moreover, it is sometimes assumed that the

“PDG values” of the CKM parameters (obtained from the global SM CKM fits) can still

be used in such BSM setups. Such assumptions are highly non-trivial and they greatly

reduce the model-independent nature of these studies. The goal of this work is to provide

the necessary results so that such assumptions are not needed.

In this article we propose a consistent framework to use the CKM parameters in the

SMEFT. To this end, we will select a number of input observables, and identify specific

combinations of the CKM parameters and Wilson coefficients that are determined by these

observables. These combinations will define the “tilde Wolfenstein parameters” which, in

analogy to the tilde VEV, can be used to predict numerical values and NP dependence of

1Consistent analyses of smaller flavour sub-sectors do exist, such as e.g. refs. [11–13], which study

semileptonic light quark transitions. These processes only involve the Wolfenstein parameter λ, which is

treated as a floating parameter in these references. The non-trivial extension of this approach to the full

flavour sector is the subject of this work.
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other flavour observables. The outline of the article is the following. Section 2 introduces

the theory framework and notation. In section 3 we describe our strategy to extract the

CKM parameters in the general context of the SMEFT, and justify our choice of the input

observables. In section 4 we extract numerical values for the tilde Wolfenstein parame-

ters from the input observables, and give the necessary formulas to apply our results in

phenomenological SMEFT applications. In section 5 with discuss some examples of appli-

cations of our formalism. Section 6 contains our conclusions and some future perspectives.

2 Theoretical framework

2.1 Fermion masses and CKM matrix beyond the SM

We assume that there is a hierarchy between the EW and NP scales (µEW � ΛNP), and

that EW symmetry breaking is linearly realised. In that case the physics at the EW scale

is described by the SMEFT [2, 3]:

LSMEFT = LSM + LD>4 = LSM +
∑
i

CiQ
(6)
i + · · · , (2.1)

where Q
(6)
i and Ci are respectively the dimension-six effective operators and their Wilson

coefficients, and the dots include operators that violate lepton or baryon number and

operators of dimension larger than six, which we will not consider. We will use the Warsaw

basis and the notation and conventions in ref. [20] except for the fact that we include 1/Λ2

in the coefficients Ci.

In the broken phase, the Lagrangian at the EW scale contains the fermion mass terms:

Lmψ = −
∑

ψ=u,d,e

ψR,i [Mψ]ij ψL,j + h.c. , (2.2)

where the mass matrices include contributions from the SM Yukawa couplings as well as

from dimension-six operators:

Mψ = − v√
2

[
Γ†ψ −

v2

2
C†ψH

]
, (2.3)

where v denotes the VEV of the Higgs doublet in the presence of dimension-six operators.

It is always possible to define the Lagrangian in a “weak” basis for the fermion fields

where the mass matrices are given by

Me = diag(me,mµ,mτ ), Mu = diag(mu,mc,mt), Md = diag(md,ms,mb) · V † , (2.4)

with V a unitary matrix. We will adopt this convention, in line with refs. [21, 22]. Thus, the

right- and left-handed lepton and up-quark fields, as well as the right-handed down-quark

fields are the same in the weak and mass eigenstate bases: eL,1 = eL, eR,2 = µR, uL,2 = cL,

dR,3 = bR, etc., while the translation from weak to mass eigenstate flavour indices for the

left-handed down quarks is given by the V matrix:

dL,i = Vix dL,x = Vid dL + Vis sL + Vib bL , i = 1, 2, 3 . (2.5)
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Formally, Vix has a weak index i = {1, 2, 3} and a mass-eigenstate index x = {d, s, b} [22].

Since in our convention the weak and mass bases for up-type quarks are the same, it holds

that V1x = Vux, V2x = Vcx and V3x = Vtx, and from now on we can use Vrx with both

mass-eigenstates indices r = u, c, t and x = d, s, b. In this article we use the Wolfenstein

parameterization for V :

V =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


=

 1− 1
2λ

2− 1
8λ

4 λ Aλ3(1+ 1
2λ

2)(ρ̄−iη̄)

−λ+A2λ5(1
2−ρ̄−iη̄) 1− 1

2λ
2− 1

8λ
4(1+4A2) Aλ2

Aλ3(1−ρ̄−iη̄) −Aλ2+Aλ4(1
2−ρ̄−iη̄) 1− 1

2A
2λ4

+O(λ6) . (2.6)

We refer to the unitary matrix V as the CKM matrix. Its definition is affected by the pres-

ence of certain dimension-six operators, cf. eq. (2.3). Moreover, and contrary to the SM,

the flavour structure of charged currents is not uniquely determined by the CKM matrix,

but is also affected by the presence of dimension-six operators with generic flavour struc-

ture.2 In the following we discuss the consistent extraction of V from flavour observables

within the general context of the SMEFT.

2.2 Effective theory below the EW scale

While it is possible that, in the future, precision high-energy measurements at the EW scale

might be used to extract the parameters of the CKM matrix (see e.g. [23]), low-energy

flavour-violating observables remain currently the best window to CKM physics. These

observables are calculated in an effective theory where particles with EW-scale masses

have been integrated out [22, 24–26]. Low-energy flavour observables probe directly the

Wilson coefficients of the operators in this Low-energy EFT (LEFT) at the appropriate

hadronic scale, which can be related to the SMEFT through RGE together with a matching

at the EW scale.

In this article we will use the LEFT basis and notation of ref. [22]:

LLEFT = LQED+QCD +
∑
i

LiO(5,6)
i + · · · , (2.7)

where we have kept lepton- and baryon-number conserving operators of dimension five

and six, O(5,6)
i , with Li denoting the respective Wilson coefficients. For B physics, this

EFT includes all quarks and leptons except the top quark [26], while for physics at lower

energies one may integrate out additional fields such as the b quark. Anticipating the

relevant observables that will be chosen in section 3.3 to fix the CKM matrix, we focus on

the semileptonic and ∆F = 2 operators (mediating d → uµ−ν̄µ, s → uµ−ν̄µ, b → uτ−ν̄τ
transitions as well as Bd and Bs mixings). The relevant LEFT operators are collected for

convenience in table 1.
2A tacit assumption throughout this article is that the numerical values of the Wolfenstein parameters

in the SMEFT are not far from the ones determined in the SM context; in particular that λ is small enough

to serve as an expansion parameter in eq. (2.6).
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Semileptonic ∆F = 2

[OV,LLνedu

]
iijk

= (ν̄L,iγ
µeL,i)(d̄L,jγµuL,k) [OV,LLdd ]ijij = (d̄L,iγ

µdL,j)(d̄L,iγµdL,j)

[OV,LRνedu

]
iijk

= (ν̄L,iγ
µeL,i)(d̄R,jγµuR,k) [OV,RRdd ]ijij = (d̄R,iγ

µdR,j)(d̄R,iγµdR,j)

[OS,RRνedu

]
iijk

= (ν̄L,ieR,i)(d̄L,juR,k) [OV 1,LR
dd ]ijij = (d̄L,iγ

µdL,j)(d̄R,iγµdR,j)

[OT,RRνedu

]
iijk

= (ν̄L,iσ
µνeR,i)(d̄L,jσµνuR,k) [OV 8,LR

dd ]ijij = (d̄L,iγ
µT adL,j)(d̄R,iγµT

adR,j)

[OS,RLνedu

]
iijk

= (ν̄L,ieR,i)(d̄R,juL,k) [OS1,RR
dd ]ijij = (d̄L,idR,j)(d̄L,idR,j)

[OS8,RR
dd ]ijij = (d̄L,iT

adR,j)(d̄L,iT
adR,j)

Table 1. Operators in the LEFT [22] relevant for semileptonic charged-current transitions and

Bd,s mixing.

The tree-level matching conditions for the full set of Wilson coefficients Li in terms

of the SMEFT Wilson coefficients can be found in ref. [22]. The matching conditions in

the SM are known to much higher orders (see e.g. [24, 27]), while some one-loop contribu-

tions from non-SM operators are also known [28–30]. We will consider the state-of-the-art

SM matching conditions but only tree-level matching from dimension-six operators in the

SMEFT, as given in ref. [22]. A typical matching condition has the structure:

Li(µEW) = F SM
i (~g, ~m, µEW) +

∑
j

F
(6)
ij (~g, ~m, µEW)Cj(µEW) (2.8)

where F SM
i (~g, ~m, µEW) are the SM matching conditions as functions of the set of cou-

plings and masses in the SMEFT (collectively called ~g and ~m), and the product

F
(6)
ij (~g, ~m, µEW)Cj(µEW) denotes the contribution from the dimension-six SMEFT opera-

tor Q
(6)
j . The relevant expressions for the specific SMEFT operators needed in the analysis

of section 4 are given in appendix A.

The low-energy amplitudes used to compute the processes of interest for the CKM

parameters are given by default in terms of LEFT Wilson coefficients at a low, hadronic

scale, where non-perturbative matrix elements are computed: Li(µb ∼ 4.3 GeV) in the

case of B physics and Li(µs ∼ 2 GeV) in the case of K physics. In order to relate the

coefficients at these scales with the matching conditions at the EW scale without generating

large logarithms one needs to use RGEs. As in the case of the matching conditions, the

anomalous dimensions of the SM operators are known to high orders in αs. For some

sets of BSM operators, two- or three-loop anomalous dimensions in QCD are also known,

including the operators that will be relevant in section 4 [31, 32]. One-loop anomalous

dimensions in QED+QCD are known for the full set of LEFT operators [26, 33], which are

implemented in publicly available software tools [10, 34]. The RG evolution, which can be

implemented matricially as

Li(µ1) =
∑
j

[η(µ1, µ2)]ij Lj(µ2) , (2.9)

is included in the relevant formulas given in appendix B.

– 6 –
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3 Model-independent determination of the CKM matrix

3.1 Basics of the CKM fit in the SM

In the SM, the numerical values of the Wolfenstein parameters Wi ≡ {λ,A, ρ̄, η̄} are ex-

tracted from a global fit to a long list of experimental observables (see e.g. [1]) that are

accurately measured and whose SM predictions are well understood. They can be separated

in four broad categories:

• Leptonic decays (∆F = 1 branching ratios): the branching ratios provide

information on the modulus of a CKM matrix element, provided that one knows

the corresponding decay constant, i.e. the coupling between the axial current and

the relevant meson. Currently, the main observables with accurate theoretical and

experimental inputs are

π → µν , K → eν , K → µν , τ → Kν , τ → πν ,

D → µν , Ds → µν , Ds → τν , B → τν . (3.1)

• Semileptonic decays (∆F = 1 branching ratios): these measurements pro-

vide information on the modulus of a CKM matrix element, provided that one

knows the corresponding form factors, i.e. the couplings between the vector/axial

and scalar/pseudoscalar currents and the relevant mesons. Currently, observables

with accurate theoretical and experimental inputs are:

K → πeν , D → πeν , D → Keν , B → πeν , B → Deν , B → D∗eν . (3.2)

Also in this category we can include the superallowed nuclear transitions, which pro-

vide a precise value for |Vud| and rely on a detailed description of nuclei and their weak

transitions. There are also determinations of |Vub| and |Vcb| from inclusive b → c`ν

and b → u`ν transitions, which are however not fully compatible with the determi-

nations from exclusive transitions (hinting at underestimated systematics). We can

also include in this category |Vus| determinations from inclusive τ → ūsν̄ decays.

• CP-asymmetries (∆F = 1 CP-violating observables): these measurements

allow one to extract CP-violating phases (α, β and γ, see ref. [1] for their definition).

They typically combine information from different channels or exploit time-dependent

asymmetries involving the same hadronic matrix elements, so that the latter can be

determined from the data or cancel out in ratios depending only on the CKM ele-

ments. The presence of the same hadronic matrix elements may hinge on SM flavour

symmetries (isospin symmetry for the angle α), the hierarchy of CKM contributions

(neglect of penguins for the angles β and βs) or the knowledge of hadronic matrix

elements from other sources (hadronic D decays for the angle γ). The main current

processes of interest are:

B → ππ, ρπ, ρρ (for α) , B → J/ψK(∗), (cc̄)K (for β) ,

B → D(∗)K(∗) (for γ) , Bs → J/ψφ, ψ(2S)φ (for βs) . (3.3)

– 7 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
2

• Neutral-meson mixing (∆F = 2 observables): these measurements deal with

the time evolution of the system composed by a neutral-meson flavour state and its

CP-conjugate. They measure properties of the transition from one mass eigenstate

of a neutral-meson system to the other (difference of masses, CP violation). They

rely on the knowledge of the matrix element of the relevant ∆F = 2 operator in the

SM between both neutral mesons. The main current observables of interest are

εK (KK̄) , ∆Md (BdB̄d) , ∆Ms (BsB̄s) . (3.4)

All these measurements show a remarkable agreement with the CKM picture for the quark-

flavour transitions embedded in the SM, leading to an accurate determination of the four

CKM parameters [1]. However, these results have to be reassessed in the presence of NP,

as non-SM contributions may not respect the assumptions implicit in their derivation. In

the remainder of this article we propose an algorithm for extracting the CKM parameters

in a general SMEFT framework, and discuss how to translate the measurements of flavour

observables into constraints on NP in a consistent way.

3.2 Interlude: Higgs VEV in the SMEFT

Before embarking on the extraction of the CKM parameters in the SMEFT, it is worth

recalling how parameters in the EW sector can be defined to illustrate this strategy. We

take as an example the Higgs VEV in the SMEFT. In the SM, v is related to the Fermi

constant GF , which in turn can be defined as a coefficient of the 4-fermion interaction

between muons, electrons and neutrinos in the effective theory at a scale µ ∼ mµ:

Leff ⊃ −2
√

2GF (ν̄µγα µL)(ēLγ
ανe) + h.c. (3.5)

Integrating out the tree-level W exchange in the SM one finds GF = (
√

2v2)−1. Given the

experimental value GF = 1.1663787(6)×10−5 GeV−2 [5] precisely measured in muon decay,

one can assign the numerical value to the Higgs VEV, v = 246.21965(6) GeV. However,

this logic is perturbed if the SMEFT (and not the SM) is the relevant theory at µ & mW .

In that case one finds that dimension-six operators affect the Fermi constant as3

GF =
1√
2v2

(
1 +

δGF
GF

)
,

δGF
GF

= v2

([
C

(3)
H`

]
µµ

+
[
C

(3)
H`

]
ee
− 1

2

[
C``
]
µeeµ
− 1

2

[
C``
]
eµµe

)
+O(Λ−4), (3.6)

where v is the VEV of the Higgs field in the presence of dimension-six operators, and C``,

C
(3)
H` are Wilson coefficients of the corresponding operators in the Warsaw basis [20]. At

3Summing over the 4-lepton terms
∑
ijkl

[
C``
]
ijkl

¯̀
iγµ`j ¯̀

kγ
µ`l in the SMEFT Lagrangian, the Wilson

coefficients
[
C``
]
ijji

and
[
C``
]
jiij

are indistinguishable because they multiply exactly the same operator.

In the literature one often encounters the convention that the two Wilson coefficients in this pair are equal,

or that one of them is zero. Our eq. (3.6) is valid regardless of the convention.

– 8 –
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this stage we cannot assign a numerical value to v without knowing the Wilson coefficients.

Instead, it is convenient to define the tilde VEV parameter ṽ via the relation

ṽ =
v√

1 + δGF /GF
= v

(
1 +

δv

v

)
,

δv

v
= −1

2

δGF
GF

+O(Λ−4). (3.7)

With this definition we recover GF = (
√

2ṽ2)−1, and we can assign a numerical value to

ṽ, which is equal to that of v in the SM context, ṽ = 246.21965(6) GeV. In fact, this

procedure is similar to the renormalisation of the SM at one loop. Let us however stress

that we are dealing with finite tree-level corrections in the present situation.

At this point the dependence of the muon decay width on the SMEFT Wilson coef-

ficients has been absorbed into the definition of ṽ, hence this observable alone does not

constrain NP. However, the physical effect of δGF is not void. Using eq. (3.7), we should re-

place v with ṽ in the expression for any other EW observable sensitive to the Higgs VEV in

the SM limit, in order to isolate the SM prediction for that observable. This way, δGF will

modify the linear combination of Wilson coefficients to which the observable is sensitive:

O = OSM(v) + δOdirect
NP = OSM(ṽ) + δOindirect

NP + δOdirect
NP ,

δOindirect
NP =

ṽ

2

δGF
GF

∂OSM(ṽ)

∂ṽ
+O(Λ−4) . (3.8)

The “direct” contribution comes from the computation using the initial SMEFT parame-

ters, whereas the “indirect” part comes from the redefinition of the Higgs VEV. We remark

that the separation between direct and indirect NP effects is semantic. Both effects are in

general equally large and physical, namely O(Λ−2) in the SMEFT expansion.

3.3 Strategy for the extraction of the CKM parameters in the SMEFT

We turn to the determination of CKM parameters in the general context of the SMEFT.

There are two distinct strategies one could envisage here. One could aim at performing

a global fit to all available flavour observables where not only the dimension-six Wilson

coefficients but also the 4 independent CKM parameters are considered free parameters.

Treating the unknown Wilson coefficients as nuisance parameters would return confidence

intervals for the Wolfenstein parameters. This is a formidable task, and a much greater

challenge than the SM CKM fit considering the number of parameters involved. An illus-

tration of this strategy in the more limited case of NP only in the ∆F = 2 sector can be

found in refs. [17–19].

In this article we opt for a simpler strategy. We will identify a minimal set of four

optimal observables constraining specific combinations of CKM and SMEFT parameters.

These observables will define the 4 Wolfenstein parameters to which we will assign numeri-

cal values and errors. These in turn can be used to predict numerical values of other flavour

observables, which can be compared with the experimental values in order to constrain NP.

Note that our strategy can be embedded in the former one at a later stage, by using the

results obtained in this article as “pseudo-observables” in a global fit.

In line with the discussion in section 3.2, we will denote the combinations of Wolfenstein

parameters and SMEFT Wilson coefficients extracted from the selected observables by

– 9 –
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(denoting ρ̃ ≡ ˜̄ρ and η̃ ≡ ˜̄η)

W̃j = {λ̃, Ã, ρ̃, η̃} , (3.9)

with the understanding that in the SM limit W̃j → {λ,A, ρ̄, η̄}. We will often refer to these

quantities as tilde Wolfenstein parameters, or simply tilde parameters.

In order to determine W̃j one should choose a quartet of observables from the pool

of observables listed in section 3.1. Ideally, we want the input observables to satisfy the

following rather constraining conditions:

1. The set of observables must have a good sensitivity to all the four Wolfenstein pa-

rameters;

2. Each observable should be accurately measured and its theoretical prediction (in the

general BSM case) should be well understood and non-controversial;

3. The general SMEFT expression for the observables should involve as few SMEFT

Wilson coefficients as possible, in order to minimize the number of correlated observ-

ables needed in phenomenological applications.

This greatly reduces the available choices from the list in section 3.1. Condition #1 is

obviously mandatory and can be checked in the SM limit. Condition #2 rules out b→ c`ν`
(` = e, µ) transitions due to the tensions observed between exclusive vs. inclusive deter-

minations [1].4 Condition #3 is needed to select observables that can be used in the

general SMEFT framework while depending only on a limited set of theoretical inputs and

unknown parameters.

Let us now discuss some classes of the observables from the CKM fit in the SM in sec-

tion 3.1 in more detail. Observables from non-leptonic decays in eq. (3.3) involve a limited

set of hadronic matrix elements in the SM, which can be determined or eliminated thanks

to additional observables and symmetries. Beyond the SM, however, these observables

involve a much wider set of hadronic matrix elements that are currently not known and, in

a general SMEFT context, cannot be related to other hadronic quantities through flavour

symmetries. A similar issue affects εK , which can be extracted from K → ππ decays only

under specific assumptions about the weak amplitudes.

Concerning the semileptonic decays such as K → π`ν, D → K`ν, or B → π`ν, the

rates depend on form factors whose momentum dependence is usually extracted from the

measurement of the differential distributions, which are themselves modified by BSM ef-

fects. Thus in order to use this information, a new BSM analysis of both differential

distribution and rate is required (see e.g. ref. [11]). This is in contrast to the leptonic de-

cays, whose hadronic input is limited to decay constants, well known from lattice QCD. In

addition, semileptonic decays are often sensitive to a larger set of BSM operators than lep-

tonic decays, disfavouring semileptonic decays on the basis of condition #3. Overall these

arguments favor using leptonic as opposed to semileptonic decays as our input observables.

4It has been noted that using the so-called BGL parameterization for the form factors ameliorates this

tension [35, 36]. However, a recent analysis performed by BaBar employing the BGL parameterization

found again tension between exclusive and inclusive determinations [37]. We therefore prefer not to include

the exclusive determination of Vcb as an input observable until the issue gets clarified definitely.
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We can now determine the most appropriate observables for the determination of the

CKM parameters. Concerning observables sensitive (only) to λ, condition #2 suggests to

disfavour D and Ds meson decays compared to K decays. The latter are measured with

a better accuracy and thus exhibit better sensitivity to λ. One technical complication,

however, arises due to the dependence of the leptonic K decays on the decay constant fK+ ,

as its most recent determinations rely on the “experimental” value of fπ from π → µν

to set the reference scale in the lattice QCD calculations [38]. This reintroduces an SM

assumption (i.e., that the pion leptonic decay is completely dominated by SM contributions)

that is not appropriate for a general analysis in the SMEFT setup [11]. To avoid this

complication, we take the ratio Γ(K → µν̄) to Γ(π → µν̄) as our input observable, as

the lattice determinations of fK+/fπ+ are free from this problem (and known with higher

accuracy). Concerning the parameter A, we may consider observables sensitive to Vub, Vcb,

Vtd, or Vts, while the highest sensitivity to ρ̄ and η̄ comes from Vub and Vtd. All in all, the

remaining observables satisfying our criteria and sensitive to these three CKM parameters

are B → τν (for Vub), ∆Md (for Vtd), and ∆Ms (for Vts).

This leaves us with the following set of input observables that we consider optimal:

Γ(K → µνµ)/Γ(π → µνµ), Γ(B → τντ ), ∆Md, ∆Ms. (3.10)

These four observables indeed obey the criteria listed above. In section 4 we will show

that they provide an accurate determination of the four Wolfenstein parameters W̃j in the

generic SMEFT case, with only a moderate loss of accuracy compared the SM case. One

should stress that our choice is not set in stone, and some variations on the input observables

are of course possible, similarly to different input schemes used in EW precision physics.

Furthermore, we emphasise that the “optimal choice” may vary over time. For example, if

the inclusive-vs-exclusive tensions for b→ c or b→ u transitions disappear, or (theoretical

or experimental) progress is achieved in some of the flavour transitions that we dismissed,

our input observables may need to be appropriately reconsidered.

Summarizing, our approach to constraining NP in the SMEFT using flavour observ-

ables adheres to the following algorithm:

1. We identify the dependence of the input observables Oinput
i in eq. (3.10) on the

LEFT Wilson coefficients Lk and, given the LEFT-to-SMEFT map, on the Wilson

coefficients of dimension-six operators in the SMEFT Ck:

Oinput
i = Oinput

i,SM (Wj)
[
(1 + f(Lk)

]
= Oinput

i,SM (Wj)
[
1 + g(Ck)

]
, (3.11)

where we keep the dependence of the f and g functions on the CKM parameters

Wj ≡ {λ,A, ρ̄, η̄} as implicit.

2. We define the parameters W̃j ≡ {λ̃, Ã, ρ̃, η̃} by

W̃j = Wj

(
1 +

δWj

Wj

)
, (3.12)

where δWj/Wj are functions of the LEFT (or SMEFT) Wilson coefficients. They

are defined such that the input observables depend explicitly only on W̃j in a way
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similar to the SM expression and involving no additional LEFT or SMEFT Wilson

coefficients:

Oinput
i = Oinput

i,SM (W̃j) . (3.13)

3. We extract the numerical value of the tilde parameters W̃j using eq. (3.13) along with

the necessary experimental and theoretical inputs (as described above), keeping full

track of correlations. These values, their correlated uncertainties, and the contribu-

tion from BSM operators, given in eq. (3.12), will be the main result of this work.

4. At this point we can translate any other flavour measurement, Oα, into a model-

independent NP constraint:

Oα = Oα,SM(Wj) + δOdirect
α,NP = Oα,SM(W̃j) + δOindirect

α,NP + δOdirect
α,NP , (3.14)

where δOdirect
α,NP stands for a combination of Wilson coefficients contributing directly

to the observable, and the indirect contribution is5

δOindirect
α,NP = −

∂Oα,SM

∂Wi
δWi + O(Λ−4). (3.15)

Eq. (3.14) is the flavour analogue of eq. (3.8) relevant for EW precision observables.

Once the tilde Wolfenstein parameters have been determined, it is convenient to in-

troduce the tilde CKM matrix Ṽ . Given the SM expression V (λ,A, ρ̄, η̄) in eq. (2.6), we

define Ṽ by

Ṽ ≡ V (λ̃, Ã, ρ̃, η̃). (3.16)

The elements of this matrix can be used to calculate the numerical SM predictions for

observables depending on the CKM parameters. The NP effects included in them should

be taken into account through the method described above. The Ṽ matrix defined above

is unitary by construction. This does not entail any loss of generality, because we do not

define the nine elements of Ṽ as the elements extracted from nine different measurements

(such matrix would not be unitary in the SMEFT). Unitarity is a key and necessary

ingredient, since we only have four independent CKM parameters to fix, and thus we only

need to “lose” four measurements (and not nine) to fix them. Any additional observable

becomes in this way a NP probe, as it should be.

A last comment is in order concerning the choice of the hadronic inputs related to these

observables. Lattice QCD provides a self-consistent theoretical framework to compute these

inputs in global CKM analysis, but it still requires phenomenological inputs to determine

the values of the parameters of the Lagrangian: the quark masses and the strong coupling

constant (i.e. the lattice scale in physical units). However, as discussed above for fK ,

the “experimental” value of fπ from π → µν is often used to set the scale in the lattice

5These expressions are valid at the linear order in the NP contributions. In general eq. (3.14) contains

also higher order terms in δWi, or cross terms of order δWi × δOdirect
α,NP that should be included if one wants

to trace NP effects beyond the leading order.
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QCD calculations. This reintroduces an SM assumption (i.e., the pion leptonic decay

is completely dominated by SM contributions), which will propagate in all dimensionful

lattice QCD inputs and which is thus not appropriate for a general analysis in the SMEFT

setup. From this point of view it is thus better to use determinations of the scale where an

observable dominated by strong dynamics is used to set the scale (for instance the masses

of hadrons, or the quark-antiquark potential).

4 Analysis and results

4.1 K → µν̄µ, π → µν̄µ and B → τ ν̄τ

We start with the leptonic decay rates Γ(P+ → `+ν`), with P = {π,K,B}, and ` = {µ, τ}.
For an exhaustive study of Vus from K → µν̄µ along the lines of the present article, we

refer to ref. [11]. The decay rate for the process P− → `−ν̄` can be written as

Γ(P− → `−ν̄`) = |Vuq|2
f2
P mPm

2
`

16πṽ4

(
1−

m2
`

m2
P

)2

(1 + δP`) (1 + ∆P`2) , (4.1)

where fP is the decay constant defined by 〈0|q̄γµγ5u|P+(k)〉 = ikµfP , and the quantity δP`
accounts for all electromagnetic corrections in the SM (see e.g. [39]),6 as well as isospin-

breaking corrections if they are not already included in the decay constants [40]. The full

and linearized expressions for the NP corrections are given by

∆P`2 =
ṽ4

v4

∣∣∣∣1 + ε`uqA −
m2
P

(mu +mq)m`
ε`uqP

∣∣∣∣2 − 1

= 2 Re(ε`uqA )−
2 m2

P

(mu +mq)m`
Re(ε`uqP ) + 4

δv

v
+O(Λ−4) . (4.2)

The definitions of ṽ and δv/v can be found in eq. (3.7). The parameters ε`uqA are O(Λ−2)

in the SMEFT expansion, and they are connected to the LEFT Wilson coefficients at the

hadronic scale by:

ε`uqA ≡ −1− v2

2Vuq

([
LV,LLνedu (µq)

]∗
``qu
−
[
LV,LRνedu (µq)

]∗
``qu

)
,

ε`uqP ≡ − v2

2Vuq

([
LS,RRνedu (µq)

]∗
``qu
−
[
LS,RLνedu (µq)

]∗
``qu

)
, (4.3)

where µq = {2, 2, 4.3}GeV for q = {d, s, b}. Using eq. (B.1) we can express ε`uqA and ε`uqP

in terms of the LEFT Wilson coefficients at the EW scale, which in turn are matched to

the SMEFT Wilson coefficients by means of eq. (A.1).

Using the input values collected in table 2, from the input observable Γ(B → τν)

we obtain

|Ṽub|2 ≡ |Vub|2(1 + ∆Bτ2) = 0.00425± 0.00049 , (4.4)

6Factoring out the SM corrections induces (tiny) NP × QED corrections, which may not be the correct

ones but which are beyond the current theoretical precision.
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where we neglected the electromagnetic correction (i.e., δB` ' 0) since it induces an effect

much smaller that the current experimental sensitivity (see ref. [41] for further detail on

this issue). The error in |Ṽub| (12%) is dominated by the experimental uncertainty on

B(B → τντ ). The value used for the decay constant fB± [42] and quoted in table 2 does

not rely on the experimental value for fπ, cf. the discussion in section 3.3.

In a similar fashion we could determine |Ṽus| from the observable Γ(K → µν), which

would translate directly into a determination of the tilde Wolfenstein parameter λ̃. How-

ever, as discussed in section 3.3, this choice would lead to a relatively large uncertainty on

λ̃, which come in particular come from the lattice input for fK : the MILC09 calculation [43]

is the most precise lattice determination of fK not relying on the pion leptonic width to set

the lattice scale, with fairly large uncertainties. A more precise value of λ̃ can be obtained

by considering instead the ratio Γ(K → µν̄µ)/Γ(π → µν̄µ), which allows one to extract the

ratio |Ṽus/Ṽud| given the ratio of decay constants fK/fπ. The latter can be consistently

taken from the FLAG average [38], which combines several lattice determinations for this

ratio of decay constants without introducing any uncontrollable dependence on NP via the

pion leptonic width [38, 44–46].

In this case we have:

Γ(K− → µ−ν̄µ)

Γ(π− → µ−ν̄µ)
=
|Ṽus|2

|Ṽud|2
f2
K±

f2
π±

mK±(1−m2
µ/m

2
K±)2

mπ±(1−m2
µ/m

2
π±)2

(1 + δK/π) , (4.5)

with

|Ṽus|2

|Ṽud|2
≡ |Vus|

2

|Vud|2
(1 + ∆K/π) , (4.6)

and

∆K/π =
1+∆Kµ2

1+∆πµ2
−1

= 2 Re(εµusA −ε
µud
A )− 2

mµ

(
m2
K± Re(εµusP )

(mu+ms)
−
m2
π± Re(εµudP )

(mu+md)

)
+O(Λ−4) . (4.7)

Given the inputs in table 2, we find

|Ṽus/Ṽud| = 0.23131± 0.00050 , (4.8)

with a relative error of 0.2%, dominated by the uncertainty on the lattice determination

on the decay constant ratio.

4.2 ∆Md and ∆Ms

The mass differences ∆Mq of neutral Bq mesons (q = {d, s}) are given by [47, 48]

∆Mq = |ṼtbṼtq|2
mBqf

2
Bq
m2
W

12π2ṽ4
Bq

1 S1(mb) , (4.9)
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where Bq
i are the so-called bag parameters, defined e.g. in ref. [49].7 The quantities Ṽtb and

Ṽtq have been defined such that:

|ṼtbṼtq|2 ≡ |VtbVtq|2 (1 + ∆∆Mq) , (4.10)

with the BSM effects contained in

∆∆Mq =
ṽ4

v4

∣∣∣∣∣C(q)
1 +C̃

(q)
1

C
(q)
1,SM

+RBq

5∑
i=2

aiB
q
i

Bq
1

C
(q)
i

C
(q)
1,SM

+RBq
∑
i=2,3

aiB
q
i

Bq
1

C̃
(q)
i

C
(q)
1,SM

∣∣∣∣∣−1

= 4
δv

v
+Re

[
C

(q)
1,NP+C̃

(q)
1

C
(q)
1,SM

+RBq

5∑
i=2

aiB
q
i

Bq
1

C
(q)
i

C
(q)
1,SM

+RBq
∑
i=2,3

aiB
q
i

Bq
1

C̃
(q)
i

C
(q)
1,SM

]
+O(Λ−4) ,

(4.11)

where we have defined C
(q)
1,NP = C

(q)
1 − C

(q)
1,SM, and the definition of δv/v can be found

in eq. (3.7). Here ai = (1,−5/8, 1/8, 3/4, 1/4), and RBq ≡ [mBq/(mb + mq)]
2, where the

quark masses mb and mq are running MS masses at the scale µb = 4.3 GeV, as are all other

scale-dependent parameters in eq. (4.11). Numerical values for the bag parameters Bq
i can

be found in table 2 of ref. [49].8 It is well known that the combination

ξ2 ≡
f2
Bs
Bs

1

f2
Bd
Bd

1

(4.12)

is more precisely determined in the lattice than numerator and denominator separately

due to the presence of parametric correlations. Often this is exploited by trading one

mass difference by the observable ∆Ms/∆Md. Instead, we will take into account these

parametric correlations by writing f2
Bd
Bd

1 = f2
Bs
Bs

1/ξ
2 in the expression for ∆Md.

The contributions of various effective operators are parametrized by C
(q)
i , C̃

(q)
i . In the

SM only C
(q)
1 is generated, with C

(q)
1,SM known at NLO in QCD, and given in eq. (A.3). The

relation of the coefficients C
(q)
i , C̃

(q)
i to the LEFT Wilson coefficients at µEW is defined

in eq. (B.2), which in turn can be matched to the SMEFT Wilson coefficients by means

of eq. (A.2). For the NP contributions, we give explicitly in eq. (A.2) only the tree-level

matching conditions between the LEFT and the SMEFT, but higher order corrections can

be included trivially, once they are known (e.g. [29]). This might be relevant since non-

log-enhanced GIM-violating contributions may be numerically large in observables such

as ∆Mq. This is an important issue to keep in mind.

7The bag parameters Bqi are the matrix elements 〈Bq|Oi(µ)|B̄q〉 up to a normalization factor. With our

conventions, Bqi denote the bag parameters in the renormalisation scheme of ref. [31] at a scale µb = 4.3 GeV,

as given table 2 of ref. [49], and in agreement with the RGE factors used in appendix B. It is worth

mentioning that fπ has been used to set the scale in ref. [49]; however, this choice induces a subleading effect

on the determination of the (dimensionless) bag parameters, such that we can safely use this computation

given the current uncertainties.
8We cannot use the more recent calculation of the bag parameters by the MILC collaboration [50] because

they calculate the dimensionful combinations fBs

√
B̂qi , setting the QCD scale with fπ. The presence of

fBs in their results induces non-negligible effects coming from the use of fπ, contrary to what happens for

the dimensionless quantity computed by ETMC [49]. This is also the reason why we do not employ more

recent computations of fBs , but we rely on ref. [42].
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Γ(K+ → µ+νµ) = 3.3793(79) · 10−8 eV [5] δK/π = −0.0069(17) [51]

Γ(π+ → µ+νµ) = 2.5281(5) · 10−8 eV [5] fK±/fπ± = 1.1932(19) [38, 44–46]

Γ(B+ → τ+ντ ) = 4.38(96) · 10−8 eV [5] fB± = 184(4) MeV [42]

∆Md = 3.333(13) · 10−10 MeV [5] fBs = 224(4) MeV [42]

∆Ms = 1.1688(14) · 10−8 MeV [5] Bs
1 = 0.86(3) [49]

S1(mb) ' 1.9848 (cf. appendix A) ξ = 1.206(17) [38, 50, 52]

ṽ = 246.21965(6) GeV [5] mW = 80.379(12) GeV [5]

mµ = 105.6583745(24) MeV [5] mτ = 1.77686(12) GeV [5]

mπ± = 139.57061(24) MeV [5] mK± = 493.677(16) MeV [5]

mB± = 5.27932(14) GeV [5] mBd = 5.27963(15) GeV [5]

mBs = 5.36689(19) GeV [5]

Table 2. Set of inputs used in the numerical analysis.

Using the numerical inputs from table 2, we obtain

|ṼtbṼtd| = 0.00851± 0.00025 , and |ṼtbṼts| = 0.0414± 0.0010 . (4.13)

The errors in |ṼtbṼtd| (2.9%) and |ṼtbṼts| (2.5%) are both dominated by the uncertainties

of the f2
Bq
Bq

1 combinations. Again, the fBs value [42] quoted in table 2 does not rely on

the experimental value for fπ, according to the discussion in section 3.3.

4.3 Summary and results

To summarise, we have obtained the following numerical constraints on the tilde CKM

elements:

|Ṽus/Ṽud| = 0.23131± 0.00050 , |Ṽub| = 0.00425± 0.00049 ,

|ṼtbṼtd| = 0.00851± 0.00025 , |ṼtbṼts| = 0.0414± 0.0010 , (4.14)

with negligible correlations, except for the last two elements that present a correlation of

+87%. Moreover, we have identified the new physics contributions to the above quantities,

which can be found in eqs. (4.2), (4.7), and (4.11).

It is now possible to write our results in terms of the tilde Wolfenstein parameters W̃i,

making use of the following relations:

|Ṽus/Ṽud| = λ̃+
1

2
λ̃3 +

3

8
λ̃5 +O(λ7) ,

|Ṽub| = Ã
√
ρ̃2 + η̃2

[
λ̃3 +

1

2
λ̃5 +O(λ7)

]
|ṼtbṼtd| = λ̃3Ã

√
(1− ρ̃)2 + η̃2 +O(λ7) ,

|ṼtbṼts| = λ̃2Ã− 1

2
λ̃4Ã(1− 2ρ̃) +O(λ6) . (4.15)
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Given these definitions, one can translate eq. (4.14) into correlated constraints on the CKM

parameters W̃i. We find the following results:
λ̃ = λ+ δλ

Ã = A+ δA

ρ̃ = ρ̄+ δρ̄

η̃ = η̄ + δη̄

 =


0.22537± 0.00046

0.828± 0.021

0.194± 0.024

0.391± 0.048

 , ρ =


1 −0.16 0.05 −0.03

· 1 −0.25 −0.24

· · 1 0.83

· · · 1

 . (4.16)

Our choice of input observables leads to moderate correlations between the numerical

values of the tilde parameters, except in the (ρ̃, η̃) case. Note also that the accuracy of the

determination of λ̃ justifies retaining O(λ5) terms in eq. (2.6), and neglecting O(λ6) ones.

At leading order in the EFT expansion the NP shifts to the Wolfenstein parameters

δWj correspond to the following combinations of NP Wilson coefficients:
δλ

δA

δρ̄

δη̄

 = M(λ̃, Ã, ρ̃, η̃)


∆K/π

∆Bτ2

∆∆Md

∆∆Ms

 , (4.17)

where ∆K/π,∆Bτ2,∆∆Md
, and ∆∆Ms are the (linearized) NP contributions to the four

chosen observables, which can be found in eqs. (4.2), (4.7), and (4.11), and the matrix M

is given by

M =


1
2 λ̃−

1
2 λ̃

3 0 0 0

−Ã+ Ãλ̃2 + c Ã λ̃4 −c e Ã b e Ã 1
2Ã− a e Ã

a− bλ̃2 + c (5−4ρ̃)
2 λ̃4 c(1− 2a e) −b(1− 2a e) a(1− 2a e)

− d
2η̃ + b ρ̃

η̃ λ̃
2 − c (2d+3(ρ̃−1))

2η̃ λ̃4 c
η̃ (1− ρ̃+ d e) b

η̃ (ρ̃− d e) − d
2η̃ (1− 2a e)

+O(λ̃6) ,

(4.18)

with

a ≡ 1− 2ρ̃

2
, b ≡ η̃2 + (1− ρ̃)2

2
, c ≡ η̃2 + ρ̃2

2
, d ≡ η̃2 − ρ̃2 + ρ̃ , e ≡ λ̃2(1− aλ̃2) .

(4.19)

The numerical value of M is given by

M(λ̃, Ã, ρ̃, η̃) =


0.1070(2) 0 0 0

−0.786(20) −0.0040(9) 0.0167(6) 0.402(10)

0.286(24) 0.094(22) −0.390(10) 0.296(23)

−0.385(18) 0.200(19) 0.184(10) −0.384(19)

 . (4.20)

Eqs. (4.16)–(4.20) represent the main results of this work.

Table 3 summarises our results for the Wolfenstein parameters in the presence of

NP, and compares them to the results of the canonical SM fits. As could be expected, our

procedure of using only four input observables to determine the four Wolfenstein parameter

leads to some loss of accuracy in the limit where BSM corrections are absent, compared
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CKMfitter (SM) [14] UTfit (SM) [15] This work (SMEFT)

λ = 0.224747+0.000254
−0.000059 λ = 0.2250± 0.0005 λ̃ = 0.22537± 0.00046

A = 0.8403+0.0056
−0.0201 A = 0.826± 0.012 Ã = 0.828± 0.021

ρ̄ = 0.1577+0.0096
−0.0074 ρ̄ = 0.148± 0.013 ρ̃ = 0.194± 0.024

η̄ = 0.3493+0.0095
−0.0071 η̄ = 0.348± 0.010 η̃ = 0.391± 0.048

Table 3. Results for the Wolfenstein parameters W̃i extracted here compared to the Wolfenstein

parameters extracted from the canonical SM fits.

to the SM fits using a much larger set of observables.9 Nevertheless, in most physical

applications the error bars of our tilde parameters will be anyway a subleading effect

compared to other sources of experimental or theoretical uncertainties (as illustrated in

a few concrete examples in the next section). On the other hand our tilde parameters

can be consistently used for generic NP frameworks described by the SMEFT, unlike the

results of the SM fits. We remark that our input observables allow other solutions than

the one displayed in eq. (4.16); in particular, there is another solution with the opposite

sign of η̃. This discrete ambiguity will lead to “mirror solutions” in global fits, where the

CKM parameters differ significantly from the ones obtained in the SM context, but the

resulting shift of precisely measured flavour observables is canceled by a relatively large

(and fine-tuned) contribution from SMEFT Wilson coefficients. In this article we will not

discuss the mirror solutions any further, and focus on the SM-like solution in eq. (4.16)

where the NP effects are subleading compared to the SM contributions.

With the likelihood function in eq. (4.16) we find the following 1σ intervals for the

elements of the tilde CKM matrix defined in eq. (3.16):

Ṽ =

 0.97428(11) 0.22537(46) 0.00189(23)−i 0.00380(45)

−0.22524(46)−i 0.000156(19) 0.97340(12) 0.0421(11)

0.00764(34)−i 0.00370(44) −0.0414(10)−i 0.00083(10) 0.999114(45)

.
(4.21)

We do not give here the (non-trivial) correlations between the various tilde CKM elements,

but they are encoded in the likelihood in eq. (4.16). The NP effects absorbed in these

CKM elements should be taken into account through the method described in section 3.3;

see section 5.2 for an example. The numerical form of the matrix Ṽ is given here for

illustration purposes only: ideally one should always express all CKM input in terms

of Wolfenstein parameters if one wishes to use the approach and results of this paper

appropriately, including correlations.

9The difference of precision between our determination of λ̃ and the SM CKMfitter determination of λ

is partially due to the use of a larger set of constraints in the latter case, but mainly due to current internal

tensions between some of the constraints on λ (within the SM), which generate a smaller error on λ in the

CKMfitter statistical approach. Compared to UTfit, we obtain a more precise λ̃ because we use the new

FLAG average for fK/fπ [38].

– 18 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
2

5 Applications

In this section we discuss through a few examples how to use the tilde parameters to

analyze, in a consistent fashion, other flavour processes and set bounds on NP.

5.1 Leptonic decays of pions and D mesons

Consider the pion decay π → µν. The goal is to compare the precisely measured branching

fraction to the SM predictions so as to place constraints on effective interactions beyond

the SM. The SM prediction is proportional to |Vud|. In the presence of generic NP we

cannot use |Vud| determined by fits performed in the SM context, such as the ones provided

by CKMfitter or the PDG, as the observables used in those analyses may themselves be

affected by new physics, which might even have the same underlying effective operators.

Instead, we can use our results in eq. (4.16) where the NP effects have been absorbed

into the definition of the tilde parameters. All we need to do is to express the theoretical

prediction for B(π → µν) in terms of λ̃ defined in eq. (4.17).

The π → µν decay width can thus be written as

Γ(π → µν) =

∣∣∣∣∣1− λ̃2

2
− λ̃4

8

∣∣∣∣∣
2
f2
π±mπ±m

2
µ

16πṽ4

(
1−

m2
µ

m2
π±

)2

(1 + δπµ)
[
1 + ∆̃πµ2

]
, (5.1)

where the decay constant is fπ± = 130.2(8) MeV (from the average of ref. [38] with a

lattice scale set using QCD observables [53–55]), the electromagnetic radiative corrections

are encoded in δπµ = 0.0176(21) [39], and ∆̃πµ2 is given by

∆̃πµ2 = 2 Re(εµudA )−
2m2

π±

(mu +md)mµ
Re(εµudP ) + 4

δv

v
+ 2λ̃(1 + λ̃2)δλ+O(Λ−4, λ̃6) . (5.2)

The NP quantities εµudA,P , δv/v and δλ have been defined in eqs. (4.3), (3.7), (4.17). The

terms proportional to δλ are due to NP affecting the observables used to determine the

CKM parameters in our approach; note that they depend on the same Wilson coefficients

that also enter into εµudA,P . Their effect is to change the linear combination of Wilson co-

efficients ∆̃πµ2 probed by π → µν decays. Given the current experimental measurement,

B(π → µν) = 0.9998770(4) [5], combined with τπ = 2.6033(5) · 10−8s, we obtain the

following constraints on the linear combinations of Wilson coefficients in eq. (5.2):

∆̃πµ2 = 0.004± 0.013. (5.3)

The error is totally dominated by the lattice uncertainty on fπ± . The error of our deter-

mination of λ̃ in eq. (4.16) is completely negligible for this constraint.

Up to small O(λ4) corrections, the CKM elements Vud,us,cd,cs are only functions of

λ in the Wolfenstein parameterization. Thus, besides pion decays, there is a long list of

observables which are only functions of λ and NP parameters. A global fit to d→ u`ν and

d → u`ν transitions was performed ref. [11], where simultaneous constraints were derived

on λ and the relevant LEFT Wilson coefficients. We note that such a global approach
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obviates the need to define the tilde CKM parameters;10 however, so far it was realised

only for observables depending on λ, and extending it to the full set of the CKM parameters

will involve considerable technical difficulties. The approach in this article bypasses this

problem when setting constraints from individual observables, as has been exemplified here.

Going beyond the analysis of ref. [11], we consider the decay D → `ν. Analogously to

π → `ν, we write

Γ(D → `ν) = |λ̃|2
f2
D±mD±m

2
`

16πṽ4

(
1−

m2
`

m2
D±

)2

(1 + δD`)
[
1 + ∆̃D`2

]
, (5.4)

where fD± = 212.7 (6) MeV [46], and ∆̃D`2 is given by

∆̃D`2 = 2 Re(ε`cdA )−
2m2

D±

(mc +md)m`
Re(ε`cdP ) + 4

δv

v
− 2

δλ

λ̃
+O(Λ−4, λ̃4), (5.5)

where the NP quantities ε`cdA,P can be found again in eq. (4.3). The experimental measure-

ment B(D → µν) = 3.74 (17) · 10−4 [5] combined with the lifetime τD± = 1.040(7) · 10−12s,

and δDµ = 0.007 (6) [46], results in the following constraint:

∆̃Dµ2 = −0.089± 0.043, (5.6)

showing a small 2.1σ tension with the SM. Our analysis affects the NP interpretation of

this result, adding the δλ term in eq. (5.5). In this case this correction is enhanced by λ̃

(unlike for π → `ν where it is suppressed).

One comment about the lattice input for fD± is in order in connection with the dis-

cussion in section 3.3. The value of fD± obtained in [46] is normalised to the PDG value

f exp
π , which in principle propagates the NP contribution in π → µν into the D → µν

constraints. However, the comparison of f lattice
π and f exp

π limits these NP effects to the 1%

level, cf. eq. (5.3), which makes them subdominant compared to the 4% error in eq. (5.6)

mainly due to the experimental uncertainty on B(D → µν). To avoid this issue altogether,

lattice collaborations should quote fD± setting the scale using a QCD-dominated observ-

able free of NP. These considerations may be relevant in the future, when the experimental

error on B(D → µν) is reduced.

5.2 Exclusive hadronic W decays

We now consider the processes W → ujdk, where uj = (u, c) and dk = (d, s, b) denote

particular quark flavours. We assume that flavour tagging allows one to separate the

distinct exclusive hadronic W decays, and that it is possible to measure the partial widths

with a good precision. In the SM, the measurement of Γ(W → ujdk) can be interpreted

as an alternative probe of the CKM element Vjk. Beyond the SM, the coupling strength

of the W boson to quarks may be affected by new physics. In the SMEFT, the leading

10More precisely, the definition of λ̃ is implicit in ref. [11]. Indeed, Ṽud and Ṽus are introduced (al-

though the definition is different to this work) and the use of CKM unitarity amounts to defining the

corresponding λ̃.
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order effects can be described by the vertex corrections δgWq
L to the couplings between the

left-handed quarks and W :

LSMEFT ⊃
g̃L√

2
Wµ+ūLjγµ

(
Vjk +

[
δgWq
L

]
jk

)
dLk + h.c. (5.7)

The right-handed vertex correction δgWq
R does not affect W decays at O(Λ−2), and will be

neglected in this discussion. g̃L, g̃Y are the SU(2)L×U(1)L gauge couplings extracted from

the EW input observables α, mZ in the presence of dimension-6 operators, in analogy to

ṽ extracted from GF discussed in section 3.2. The left-handed vertex correction is related

to the parameters in the Warsaw basis as [9]

[
δgWq
L

]
jk

= [C
(3)
Hq]jlVlk +

g̃2
Lṽ

2

g̃2
L − g̃2

Y

[
− g̃Y
g̃L
CHWB −

1

4
CHD

+
1

4
[C``]eµµe +

1

4
[C``]µeeµ −

1

2
[C

(3)
H` ]ee −

1

2
[C

(3)
H` ]µµ

]
Vjk +O(Λ−4) . (5.8)

Naively, from eq. (5.7) one could conclude that each exclusive W decays probes sim-

ply
[
δgWq
L

]
jk

and thus constrains the particular combination of the Wilson coefficients

given in eq. (5.8). However, to constrain new physics, the experimentally measured partial

width has to be compared with the corresponding SM prediction. The exclusive decay

widths predicted in the SM depend on the numerical value for the specific CKM matrix

element Vjk extracted from experiment, which in turn may be affected by NP. This effect

can be disentangled in our scheme by trading Vjk in eqs. (5.7) and (5.8) for the tilde CKM

element Ṽjk defined in eq. (3.16), i.e. Vjk → Ṽjk − δVjk. We then have

Γ(W → ujdk)

Γ(W → ujdk)SM
= 1 + 2 Re

([
δgWq
L

]
jk
− δVjk

Ṽjk

)
, (5.9)

where Γ(W → ujdk)SM is the SM prediction calculated using the numerical values of

the tilde CKM elements in eq. (4.21). In this approach, the combination probed by the

exclusive decay W → ujdk is
[
δgWq
L

]
jk
− δVjk. The CKM shifts relevant for W decays, up

to O(Λ−4) and at leading order in λ̃, are given by

δVud = δVcs = −λ̃ δλ+O(λ̃4) ,

δVus = −δVcd = δλ+O(λ̃5) ,

δVub = 3Ãλ̃2(ρ̃− iη̃) δλ+ λ̃3(ρ̃− iη̃) δA+ Ãλ̃3(δρ− iδη) +O(λ̃5) ,

δVcb = 2Ã λ̃ δλ+ λ̃2 δA+O(λ̃6) . (5.10)

The corrections to the Wolfenstein parameters δλ, δA, δη̄ and δρ̄ in terms of EFT Wilson

coefficients are defined in eq. (4.17). If needed, (more lengthy) O(λ̃4) corrections to the

expressions in eq. (5.10) can be easily calculated, but we do not list them here for the sake

of simplicity.

The data on exclusive W decays are presently very limited. We are only aware of the

Delphi measurement of Γ(W → cs) [56] with the relative precision of ∼ 40%. However,

– 21 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
2

progress in flavour tagging should enable more precise measurements of Γ(W → ujdk) in

the near future. For example, ref. [23] argues that the measurement of Γ(W → cb) with the

relative precision of order ∼ 15% should be possible in ATLAS or CMS using the existing

data sets. In the scheme proposed in the present article, an LHC measurement of Γ(W →
cb) probes not only the vertex correction

[
δgWq
L

]
cb

, but also 4-quark operators affecting

the Bs meson mass difference ∆Ms. Our formalism allows for a consistent interpretation

of these measurements as model-independent constraints in the SMEFT.

5.3 A Z′ model for b → s`` anomalies

To close this section, we discuss an application of our formalism in the context of a toy

model addressing b → s`` (` = e, µ) anomalies, and in particular the ratios RK and RK∗

violating lepton-flavour universality [57–60]. Let us consider a simple BSM toy model

featuring a massive Z ′ boson coupled in an SU(3) × SU(2) × U(1) invariant way to left-

handed b and s quarks and to left-handed muons:

L ⊃ gbsZ ′ρ (q̄2γ
ρq3 + h.c.)− gµµZ ′ρ ¯̀

2γ
ρ`2. (5.11)

Here `2 = (νµ, µL) is the second-generation lepton doublet, and q2 = (V †2xuL,x, sL),

q3 = (V †3xuL,x, bL) are the second- and third-generation quark doublets in the down-type

basis. Integrating out Z ′ yields new contributions to four-fermion contact interactions in

the effective theory below the scale mZ′ . In particular, we generate a new contribution

to the effective interaction (b̄LγρsL)(µ̄Lγ
ρµL) that adds to the SM loop-level contribution

and may help to explain the RK(∗) anomalies, as pointed out by several independent anal-

yses [61–69]. Our model corresponds to the scenario CNP
9µ = −CNP

10µ in the formalism of the

effective Hamiltonian used in these references. In the LEFT notation, we have

∆[LV,LLed (mb)]µµsb = (1 + ρV,LLed )
gbsgµµ
m2
Z′

=
1.00± 0.21

(31.3 TeV)2
, (5.12)

on top of the SM one-loop contribution [LV,LLed (mb)]
SM
µµsb ≈ (12 TeV)−2. We have used the

results of ref. [61] for the best fit to b→ s`` flavour observables. The small correction ρV,LLed

takes into account the running from the Z ′ mass to the b mass.

This constrains one combination of the three toy-model parameters gbs, gµµ, and mZ′ .

In addition, other operators generated by integrating out the Z ′ boson lead to further

constraints on these parameters. First, the low-energy theory contains new contributions

to four-lepton interactions that can be probed by the trident muon production in neutrino

scattering [70–72]. Namely

∆[LV,LLνe (µEW )]µµµµ = −(1 + ρV,LLνe )
g2
µµ

m2
Z′

=
−0.02± 0.21

(246 GeV)2
, (5.13)

where ρV,LLνe accounts for the running from mZ′ to the EW scale. The numerical value in

the r.h.s. was taken from the global fit in ref. [9].

Furthermore, we generate the contribution to the ∆F = 2 operator responsible for Bs
mixing C

(s)
1 − C(s)

1,SM = −g2
bs/(2m

2
Z′), which adds up to the loop SM contribution C

(s)
1,SM
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defined in eq. (A.3). The Z ′ contribution to the Bs meson mass difference reads

∆∆Ms = Re
C

(s)
1 − C

(s)
1,SM

C
(s)
1,SM

≈ 2.3
( gbs

10−3

)2
(

100 GeV

mZ′

)2 (
1 + ρ

(s)
1

)
, (5.14)

where ρ
(s)
1 accounts for RG running from mZ′ to the EW scale. One may be tempted

to derive a constraint on the combination g2
bs/m

2
Z′ using the measured value of ∆Ms [5]

together with its SM prediction calculated using the CKM elements extracted within the

SM [73], namely ∆∆Ms =
(
∆M exp

s −∆MSM
s

)
/∆MSM

s . There is however one conceptual

difficulty. The SM prediction for ∆Ms crucially depends on the numerical value of the CKM

matrix element Vts. In the SM context this value is extracted from a global fit to multiple

observables (including ∆Ms) and it may be shifted in the presence of NP contributions.

Our approach allows us to solve this conundrum. Since the ∆Ms measurement has been

selected as one of our input observables, it serves as an input to fix the tilde Wolfenstein

parameters and by itself it does not constrain new physics. Of course, this does not mean

that there is no possibility to probe C
(s)
1 , but we need to use other observables than ∆Ms

such as the B → D(∗)`ν (` = e, µ) decays. Following the analysis of ref. [74] in the SM limit,

B → D∗`ν yields the 68% CL constraint on the CKM parameter |Vcb| = (3.90±0.07)×10−2,

while from B → D`ν one obtains |Vcb| = (3.96 ± 0.09) × 10−2. These extractions happen

to be valid also in our model, since it does not introduce NP contributions to b → c`ν

transitions. Following the scheme proposed in this article, we can then relate the extracted

|Vcb| to its tilde value, which gives us the following constraint on the model:

|Vcb| = Aλ2 +O(λ6) = Ãλ̃2

[
1− 2

δλ

λ̃
− δA

Ã

]
+O(λ6) = Ṽcb [1− 0.485 ∆∆Ms ] +O(λ6)

≈ Ṽcb

[
1− 1.1

( gbs
10−3

)2
(

100 GeV

mZ′

)2
]

+O(λ6) , (5.15)

where we used eq. (4.17) to relate δA to ∆∆Ms . We used as well that ∆K/π (and thus also

δλ), ∆Bτ2, and ∆∆Md
are zero in this model. Illustrative limits on our model are shown

in figure 1 in the case mZ′ = 100 GeV. Together with the trident constraints, B → D(∗)`ν

leaves a corner of allowed parameter space in the gµµ-gbs plane where the Z ′ couplings are

small enough. In our approach, B → D∗`ν provides the strongest constraint on gbs, which

is however weaker than what would be found if we (incorrectly) used ∆Ms to set limits.

The outcome of the two approaches could differ even more significantly in more general

situations, for example when an extra gauge boson also generates bc`ν effective operators

at low energies.

6 Conclusions and outlook

In the present article we have discussed the role played by the CKM matrix in the search for

NP in the model-independent context of the SMEFT. We recall that the determination of

the CKM parameters themselves are then affected by the presence of dimension-6 operators,

and that the results from SM global fits combining all available observables performed by
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Figure 1. Left: the parameter space in the (gµµ, gbs) plane for mZ′ = 100 GeV preferred at 68% CL

by the b→ s`` anomalies (parabolic green band), compared to the regions excluded at 99% CL. by

trident neutrino production (vertical orange band), and B → D(∗)`ν (horizontal blue bands). We

also show (dotted blue line) where the naive ∆Ms constraints would lie as applied e.g. in ref. [75].

Right: the 68% (dark green) and 95% CL (light green) regions preferred by the combination of

inputs from the B-meson anomalies, trident, the B → D(∗)`ν constraints. The dotted blue contour

shows the 68% contour when B → D(∗)`ν constraints are replaced by the naive ∆Ms ones.

CKMfitter [14] or UTfit [15] cannot be used directly to exploit other flavour constraints

involving the CKM matrix.

We have identified a set of four observables:

Γ(K → µνµ)/Γ(π → µνµ) , Γ(B → τντ ) , ∆Md , ∆Ms , (6.1)

which are deemed appropriate to determine the CKM parameters in the context of the

SMEFT, based on the accuracy of the measurements, the theoretical understanding of

their computation, the precision reached on the hadronic inputs, and the simplicity of

their calculation within the SMEFT. We have determined the NP corrections to these four

processes in the low-energy EFT (below the weak scale), and expressed these corrections

in terms of SMEFT contributions by running from the low hadronic scale to the weak scale

and performing a matching at the latter. The corrections from dimension-six operators

can then be included in the definition of the “tilde parameters” W̃j ≡ {λ̃, Ã, ρ̃, η̃} (in a

procedure similar to one-loop renormalisation), and constraints on W̃j can be extracted.

Our results for the tilde Wolfenstein parameters are:

λ̃ = 0.22537(46) , Ã = 0.828(21) , ρ̃ = 0.194(24) , η̃ = 0.391(48) . (6.2)

In this exercise, particular attention must be paid to hadronic inputs from lattice QCD

simulations: we select data with a lattice scale set by pure QCD quantities (such as bound-

state masses) and not by quantities involving the weak interaction (such as decay constants)

and potentially modified by NP.
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We have also discussed several applications (leptonic meson decays, hadronic W de-

cays, and constraints on a Z ′ model) to illustrate how our approach leads to a clear inter-

pretation of the measurements of quark-flavour observables and a separation between NP

contributions coming from the determination of the CKM parameters and those linked to

the process of interest.

The result of our analysis is a set of observables that differs from more usual choices.

Indeed, the generality of our approach prevents us from using a rather common option, i.e.

using only tree-level processes to extract the CKM parameters. It is often advocated that

SM loop-level transitions are much more sensitive than SM tree-level transitions to NP

effects, so that tree-level transitions should be used preferentially to determine the CKM

parameters. One cannot assume this premise in the general SMEFT set-up. In addition,

a hierarchy of NP effects between SM tree- and loop-level transitions is not supported

by the current B-anomalies — where the (potential) BSM contribution relative to the

SM is of the same order in b → cτν (SM tree) and b → sµµ (SM loop) transitions (see

e.g. [60]). It is also not present in well-known theoretical frameworks such as Minimal

Flavour Violation [76–78].

The present article outlines the procedure to determine the CKM parameters in

SMEFT analyses where only a subset of all flavour observables is taken into account. We

have proposed a choice of input observables that we consider optimal at this point. This

might change in the future if, e.g., new theory developments appear and/or if experimental

measurements improve the consistency or the accuracy of some of the other constraints.

Moreover, this choice among observables is not needed in a fit that includes all the measure-

ments that are most sensitive to the CKM parameters, taking into account all correlations.

In this case, all observables contribute to the bounds on all the parameters of the fit, and

the separation between the processes (mainly) used to extract the CKM parameters and

processes (mainly) used to set NP bounds is only useful in order to illustrate their different

sensitivities to each type of parameters. This approach was illustrated in studies of NP

restricted to ∆F = 2 transitions performed by UTfit [15] and CKMfitter [14, 17–19]. But

such analysis was possible because of the very simple structure of the NP scenario con-

sidered. In more general settings, and in particular in the full SMEFT case, it is at the

moment not possible to proceed in the same way. Indeed, in global SMEFT analyses so

far the CKM parameters are not treated as free variables, and NP effects affecting their

extraction are not taken into account, as discussed in refs. [79, 80]. Our work allows one to

overcome this limitation, providing an appropriate framework to consistently include such

NP effects as well as the uncertainty on the CKM parameters.

We have discarded here some of the observables because in the general SMEFT they

have complicated expressions involving unknown BSM hadronic matrix elements that can-

not be easily computed or connected to other hadronic inputs through symmetries. There

are however more specific cases of NP where the expressions of these observables are simple

and could provide interesting alternatives to the subset chosen here. The simplest example

consists in the case of NP contributions with an SM-like structure for the additional oper-

ators so that only (V − A) × (V − A) charged currents are generated (see, e.g., ref. [81]).

In practical terms, it would then be useful to include these simplified expressions to be
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used only if the necessary assumptions are satisfied by the underlying NP operators. One

would thus be able to recover in a trivial algorithmic way the setup described above where

tree-level processes are approximately free of NP, or to recover the most accurate results

from the SM global fit when the SM case is considered.

In connection with the flavour anomalies currently observed, the constraints on NP

coming for flavour physics should be assessed with a particular attention. These deviations

constitute essential probes of the physics at play at energies beyond the current LHC

frontier, and one should aim at exploiting current and forthcoming data in global analyses

combining large sets of observables from different sectors of particle physics. A careful

determination of the CKM parameters in the SMEFT will thus play an important role in

this strategy, which should ultimately provide us with new insights in the structure of the

physics at higher energies, beyond the Standard Model.
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A Matching the LEFT to the SMEFT

The relevant SMEFT operators in the Warsaw basis [20] onto which the LEFT operators

from table 1 match are collected in table 4. Here, ϕ is a Higgs field, `(e) is a left-(right-

)handed lepton field, q is a left-handed quark field and u(d) is an up-(down-)type right-

handed quark field, with {i, j, k, l} family indices, Dµ is the covariant derivative, and TA

are the Gell-Mann matrices.

We consider first the matching conditions for the LEFT operators relevant for the

semileptonic charged-current transitions collected in the left column in table 1. The tree-

level matching conditions to the SMEFT at the EW scale are given by [22, 25, 26]:[
LV,LLνedu (µEW)

]
iixk

= − 2

v2
V ∗kx + 2V ∗jx

[
C

(3)
`q

]
iijk
− 2V ∗jx

[
C

(3)
Hq

]∗
kj
− 2V ∗kx

[
C

(3)
H`

]
ii
,[

LS,RRνedu (µEW)
]
iixk

= V ∗jx
[
C

(1)
`equ

]
iijk

,
[
LV,LRνedu (µEW)

]
iixk

= −
[
CHud

]∗
kx
,[

LT,RRνedu (µEW)
]
iixk

= V ∗jx
[
C

(3)
`equ

]
iijk

,
[
LS,RLνedu (µEW)

]
iixk

=
[
C`edq

]
iixk

, (A.1)
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where we assume all SMEFT parameters given at the EW scale by default. These matching

conditions refer to the coefficients of the LEFT operators in the mass basis (where x =

{d, s, b}, i = {e, µ, τ} and k = {u, c}), which are related to the ones in the weak basis by

the CKM matrix, by virtue of eq. (2.5).

The LEFT operators relevant for B̄q − Bq mixing are collected in the second column

of table 1. The tree-level matching to the SMEFT at order 1/Λ2 is given by [22]:

[
LV,LLdd (µEW )

]
dbdb

=
[
LV,LLdd (µEW)

]SM

dbdb
+ VidV

∗
jbVkdV

∗
`b

([
C(1)
qq

]
ijkl

+
[
C(3)
qq

]
ijkl

)
,[

LV,RRdd (µEW )
]
dbdb

=
[
Cdd
]
1313

,[
LV 1,LR
dd (µEW )

]
dbdb

= VidV
∗
jb

[
C

(1)
qd

]
ij13

,
[
LV 8,LR
dd (µEW )

]
dbdb

= VidV
∗
jb

[
C

(8)
qd

]
ij13

,[
LS1,RR
dd (µEW )

]
dbdb

=
[
LS1,RR
dd (µEW )

]
bdbd

=
[
LS8,RR
dd (µEW )

]
dbdb

=
[
LS8,RR
dd (µEW )

]
bdbd

= 0,

(A.2)

and analogously for d → s. Some 1/Λ4 terms are known [22, 28], but have been dropped

here. In addition, one-loop matching corrections give non-zero contributions to LS1,RR
dd and

LS8,RR
dd , which we have also ignored, for simplicity. Some of these can be found in ref. [28].

In the SM limit only the operator LV,LLdd is non-zero, starting at one loop. The two-loop

result [82] is given by (for q = {d, s}):

C
(q)
1,SM ≡

[
LV,LLdd (µEW)

]SM

qbqb
= −

M2
W

32π2v4
(VtqV

∗
tb)

2 S1(µEW) , (A.3)

where11 S1(µEW) ' 2.3124 contains the NLO (two-loop) QCD correction to the SM match-

ing [82] at the matching scale µEW = MZ (correcting the well-known one-loop result

S0(xt) ' 2.369, where S0(x) = (x4−12x3 +15x2−4x+6x3 lnx)/4(x−1)3 is the Inami-Lin

function [83]).

In the computation of the mass differences we will use the traditional “SUSY basis”

for the ∆F = 2 operators [47], for which the matrix elements are explicitly known. These

are denoted by O
(q)
1,...,5, Õ

(q)
1,2,3, and their relation to the LEFT basis (in d = 4) is given by

[
OV,LLdd

]
qbqb

= O(q)
1 ,

[
OV,RRdd

]
qbqb

= Õ(q)
1 ,[

OV 1,LR
dd

]
qbqb

= −2O(q)
5 ,

[
OV 8,LR
dd

]
qbqb

= −O(q)
4 +O(q)

5 /Nc ,[
OS1,RR
dd

]
qbqb

= Õ(q)
2 ,

[
OS1,RR
dd

]†
bqbq

= O(q)
2 ,[

OS8,RR
dd

]
qbqb

= −Õ(q)
2 /(2Nc) + Õ(q)

3 /2 ,
[
OS8,RR
dd

]†
bqbq

= −O(q)
2 /(2Nc) +O(q)

3 /2 . (A.4)

11The function S1 evaluated at the low scale µb is S1(µb) = U11(µEW, µb)S1(µEW) ' 0.8583 × 2.3124 =

1.985, and corresponds to what is traditionally denoted by η̂B S0(xt) ' 0.83798 × 2.36853 = 1.985, where

the factor η̂B encodes NLO QCD matching corrections and running effects simultaneously (see e.g. ref. [73]).

In this way we have made the separation between EW matching and RGE running explicit. Note that in

our conventions the sign of the Wilson coefficients Ci is opposite than that in ref. [47].
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Semileptonic µ decay[
Q

(3)
H`

]
ij

= (ϕ†i
←→
D I

µϕ)(¯̀
iσ
Iγµ`j)

[
Q``
]
ijkl

= (¯̀
iγ
µ`j)(¯̀

kγµ`l)[
Q

(3)
Hq

]
ij

= (ϕ†i
←→
D I

µϕ)(q̄iσ
Iγµqj) ∆F = 2[

QHud
]
ij

= i(ϕ̃†Dµϕ)(ūiγ
µdj) + h.c.

[
Q

(1)
qq

]
ijkl

= (q̄iγ
µqj)(q̄kγµql)[

Q
(3)
`q

]
ijkl

= (¯̀
iγ
µσI`j)(q̄kγµσ

Iql)
[
Q

(3)
qq

]
ijkl

= (q̄iγ
µσIqj)(q̄kγµσ

Iql)[
Q

(1)
`equ

]
ijkl

= (¯̀m
i ej)εmn(q̄nkul)

[
Qdd

]
ijkl

= (d̄iγ
µdj)(d̄kγµdl)[

Q
(3)
`equ

]
ijkl

= (¯̀m
i σµνej)εmn(q̄nkσ

µνul)
[
Q

(1)
qd

]
ijkl

= (q̄iγ
µqj)(d̄kγµdl)[

Q`edq
]
ijkl

= (l̄iej)(d̄kql)
[
Q

(8)
qd

]
ijkl

= (q̄iγ
µTAqj)(d̄kγµT

Adl)

Table 4. Operators in the SMEFT relevant for µ decay, semileptonic and ∆F = 2 transitions.

B Renormalisation group evolution

We start with the leptonic decays P → `ν̄` discussed in section 4.1. Using three-loop QCD

running plus one-loop QED running [26, 32], the parameters εlxyX defined in eq. (4.3) are

given by

εµudA =−1.0094− v2

2Vud

(
1.0094

[
LV,LLνedu (µEW)

]∗
µµdu
−1.0047

[
LV,LRνedu (µEW)

]∗
µµdu

)
,

εµudP =− v2

2Vud

(
1.73

[
LS,RRνedu (µEW)

]∗
µµdu
−1.73

[
LS,RLνedu (µEW)

]∗
µµdu
−0.024

[
LT,RRνedu (µEW)

]∗
µµdu

)
,

εµusA =−1.0094− v2

2Vus

(
1.0094

[
LV,LLνedu (µEW)

]∗
µµsu
−1.0047

[
LV,LRνedu (µEW)

]∗
µµsu

)
,

εµusP =− v2

2Vus

(
1.73

[
LS,RRνedu (µEW)

]∗
µµsu
−1.73

[
LS,RLνedu (µEW)

]∗
µµsu
−0.024

[
LT,RRνedu (µEW)

]∗
µµsu

)
,

ετubA =−1.0075− v2

2Vub

(
1.0075

[
LV,LLνedu (µEW)

]∗
ττbu
−1.0038

[
LV,LRνedu (µEW)

]∗
ττbu

)
, (B.1)

ετubP =− v2

2Vub

(
1.45

[
LS,RRνedu (µEW)

]∗
ττbu
−1.45

[
LS,RLνedu (µEW)

]∗
ττbu
−0.018

[
LT,RRνedu (µEW)

]∗
ττbu

)
,

in terms of the LEFT Wilson coefficients at the EW scale. These are, in turn, related to

the SMEFT coefficients via eq. (A.1).

To describe B̄q − Bq mixing we use the Wilson coefficients in the SUSY basis (see

eq. (A.2)) in the MS scheme of ref. [31], at the scale µb = 4.3 GeV, in accordance with the

matrix elements of the operators provided in [49]. We call these Wilson coefficients C
(q)
1,...,5,

C̃
(q)
1,2,3. In order to relate these coefficients to the ones at the EW scale, we use the NLO

evolution matrix given in ref. [31] (in the same scheme but different basis — see section 3
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of ref. [84] for detail), running αs at four loops [85]. In the end we find, for µEW = MZ :

C
(q)
1 = 0.858

[
LV,LLdd (µEW )

]
qbqb

,

C
(q)
2 = 1.545

[
LS1,RR
dd (µEW )

]∗
bqbq
− 0.387

[
LS8,RR
dd (µEW )

]∗
bqbq

,

C
(q)
3 = −0.047

[
LS1,RR
dd (µEW )

]∗
bqbq

+ 0.312
[
LS8,RR
dd (µEW )

]∗
bqbq

,

C
(q)
4 = −0.755

[
LV 1,LR
dd (µEW )

]
qbqb
− 1.940

[
LV 8,LR
dd (µEW )

]
qbqb

,

C
(q)
5 = −1.856

[
LV 1,LR
dd (µEW )

]
qbqb

+ 0.237
[
LV 8,LR
dd (µEW )

]
qbqb

,

C̃
(q)
1 = 0.858

[
LV,RRdd (µEW )

]
qbqb

,

C̃
(q)
2 = 1.545

[
LS1,RR
dd (µEW )

]
qbqb
− 0.387

[
LS8,RR
dd (µEW )

]
qbqb

,

C̃
(q)
3 = −0.047

[
LS1,RR
dd (µEW )

]
qbqb

+ 0.312
[
LS8,RR
dd (µEW )

]
qbqb

, (B.2)

for q = {d, s}.

C NP shifts to the CKM parameters beyond linear order

The relation between the NP shifts in the Wolfenstein parameters, δW = {δλ, δA, δη̄, δρ̄},
and the NP contributions to the chosen observables, denoted by ∆ ≡ {∆K/π,∆Bτ2,∆∆Md

,

∆∆Ms}, is in general a complicated non-linear equation. However, assuming that NP is a

small perturbation one can expand that equation around the SM point to any given order,

and obtain its unique solution. Let us note that, by construction, this approach discards

possible additional solutions where the NP correction is comparable to or larger than the

SM contribution.

The generalization of eq. (4.17) to include quadratic NP terms is the following

δW =
(
1−M∆′ + F

)
M∆−M∆2 , (C.1)

where the NP corrections to the observables, ∆, should include quadratic corrections. We

have introduced the quantities

∆′ij ≡ ∂∆i/∂Wj , ∆2 ≡
{

∆2
K/π,∆

2
Bτ2,∆

2
∆Md

,∆2
∆Ms

}
, M ≡

(
O′
)−1O, F ≡

(
O′
)−1

P,

(C.2)

where M corresponds to the matrix in eq. (4.18), and

O = diag
(
Γ(K → µν)/Γ(π → µν),Γ(B → τν),∆Md,∆Ms

)
SM

(C.3)

are the SM expressions of the input observables. The matrices O′ and P are defined by

O′ij ≡ ∂Oii/∂Wj , (C.4)

Pij ≡
1

2

∂2Oii
∂Wj∂Wk

(M∆NP)k . (C.5)

All quantities above are implicitly evaluated at W = W̃ .
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