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Abstract

The sensitivity of dark matter detectors to the lightest neutralino ( ~Z1) is

considered within the framework of supergravity grand uni�cation with radia-

tive breaking of SU(2)xU(1). The relic density of the ~Z1 is constrained to obey

0:10 � 
 ~Z1
h2 � 0:35, consistent with COBE data and current measurements

of the Hubble constant. Detectors can be divided into two classes: those most

sensitive to spin dependent incoherent scattering of the ~Z1 (e.g. CaF2) and those

most sensitive to spin independent coherent scattering (high A nuclei e.g. Pb).

The parameter space is studied over the range of 100GeV � m0; m~g � 1 TeV ; 2 �

tan� � 20; and �2 � At=m0 � 3 and it is found that the latter type detector

is generally more sensitive than the former type. Thus at a sensitivity level of

R � 0:1 events/kg da, a lead detector could scan roughtly 30% of the parameter

space studied, and an increase of this sensitivity by a factor of 10 would lead

to coverage of about 70% of the parameter space. Dark matter detectors are in

general more sensitive to the high tan�, lowm~g and lowm0 parts of the parameter

space. The conditions of radiative breaking of SU(2)xU(1) enter importantly in

analysing the e�ciency of dark matter detectors.

(1Talk at Lake Louise Winter Institute - 1994.)

1. Introduction

There is strong astronomical evidence for the existance of dark matter both within our

galaxy and in other galaxies and galactic clusters. A large number of candidates for dark
matter have been proposed both in particle physics (neutralinos, neutrinos, sneutrinos,

axions, etc.) and in astronomy (brown dwarfs, neutron stars, black holes, Jupiters, etc.).
For supersymmetric theories with R parity invariance, the lightest supersymmetric par-

ticle (the LSP) is stable. For most SUSY models and for most of the parameter space

2Permanent Address: Department of Physics, Northeastern University, Boston, MA 02115
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of these models the LSP is the lightest neutralino, the ~Z1. The dark matter (DM) for

such SUSY models would then be the relic ~Z1 of the big bang which now exist in the

halo of the Galaxy (and explain the rotation curves of matter in the Galaxy). These

particles would then impinge on DM detectors. What we will discuss here is the ability

of such detectors to see these ~Z1.

Models based purely on cold dark matter (CDM) appear to be inconsistent with the

COBE and other data, and a mix with hot dark matter (HDM) in the ratio of ' 2 : 1

yields a satisfactory model. (A candidate for HDM might be massive neutrinos). In

addition there can be baryonic dark matter (B) at the
<
� 10% level. De�ning 
i = �i=�c,

where �i is the mass density of the ith constituent and �c is the critical mass density to

close the universe, then a reasonable mix is


 ~Z1
' 0:6; 
HDM ' 0:3; 
B ' 0:1 (1)

What can be determined theoretically, however, is 
 ~Z1
h2 where h = H/(100 km/s Mpc)

and H is the Hubble constant. Measurements of h give the range h ' 0:5� 0:75. Hence
one has


 ~Z1
h2 �= 0:1 � 0:35 (2)

In the following we will assume Eq. (2) is the allowed band of values for 
 ~Z1
h2. These

bounds strongly restrict the parameter space of SUSY models, and hence will constrain
the predictions of the SUSY DM detector e�ciencies. Eq. (2) represents estimated
bounds on 
 ~Z1

h2 and we will see that the results are a little sensitive to the lower
bound. However, lowering this bound generally will raise the detection rates, and so

Eq. (2) gives a conservative estimate of event rates.

2. Supergravity Gut Models

In order to calculate 
 ~Z1
h2, one needs to specify the SUSY model. We will use here

supergravity GUT models [1]. There are a number of advantages to this choice:

1. These models are consistent with the LEP results on uni�cation of the gauge

coupling constants at the GUT scale MG � 1016GeV .

2. They generate electroweak breaking naturally by radiative corrections i.e. using

the renormalization group equations (RGE) starting at scale Q =MG one �nds a

Higgs (mass)2 turning negative at Q �MZ .
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3. They depend on only four new parameters, in contrast to the low energy MSSM

which usually is chosen to have 20 new parameters (and could have as many as

137!).

In SUSY models one needs two Higgs doublets (H1 and H2) to cancel anomalies and to

give rise to masses for both u and d quarks. Running the RGE from MG down to the

electroweak scale and minimizing the Higgs potential with respect to hH1;2i one obtains

two electroweak breaking equations,

1

2
M2

Z = �2 +
�2
1
� �2

2
tan2�

tan2� � 1
; sin2� =

2m2

3

2�2 + �2
1
+ �2

2

(3)

where tan� � hH2i=hH1i; �
2

i = m2

Hi
+ �i;mHi

are the running Higgs masses, �i are
loop corrections and � is the running Higgs mixing parameter (which enters in the su-

perpotential as ��H1H2). Then all SUSY masses, widths cross sections etc., can be
determined from four parameters and the sign of �. These may be chosen as m0 (uni-
versal soft breaking spin zero mass); m~g (gluino mass); At (t-quark cubic soft breaking
parameter) and tan�. One limits the range of these parameters by imposing the exper-
imental lower bounds of LEP and the Tevatron on the SUSY masses, and also we will

require m0;m~g < 1 TeV so that no extreme �ne tuning of parameters will occur.

Since there are 32 new SUSY particles and only 4 parameters, there is considerable
constraint in the system. Two predictions that result which are relevant to dark matter
is an upper bound on the ~Z1 mass and a lower bound on tan�:

m ~Z1

<
� 150GeV ; tan� > 1 (4)

3. Calculation of ~Z1 Relic Density

For models with R parity, the ~Z1 is absolutely stable. However, the primordial ~Z1

can annihilate in the early universe, the main diagrams being shown in Fig. 1. We

consider the simplest approximation [2] where at high temperature the ~Z1 is in equilib-
rium with the background. When the annihilation rate falls below the expansion rate

of the universe, freezeout occurs at temperature Tf . The ~Z1 are disconnected from the

background and then continue to annihilate. Thus the larger the annihilation rate, the
smaller the �nal relic density. The current relic density is [2]
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Fig. 1 Annihilation diagrams of ~Z1


 ~Z1
h2 �= 2:5 � 10�11(T~vidx (5)

Here h imeans thermal average and � is the annihilation cross section at relative veloc-
ity v. Freezeout generally occurs when the ~Z1 is non-relativistic i.e. xf � kTf=m ~Z1

' 1

20
,

and so the thermal average can be taken using the Boltzman distribution:

h�vi =
Z �

0

dvv2(�v)exp[�v2=4x]=
Z �

0

dvv2exp[�v2=4x] (6)

This has led in the past to using a non-relativistic expansion for �v i.e. �v �= a +
b(v2=c2)+..., with which it becomes trivial to take the thermal average. However, as has

been pointed out [3], this expansion can be a bad approximation near a narrow s-channel
pole, even though v2=c2 << 1. For the ~Z1, the approximation turns out generally to be

quite bad near the Higgs and Z0 pole as indicated in Fig. 2 [4].

Note that the non-relativistic expansion for �v can fail over a wide range of m~g (due to

the smearing of the thermal averaging and often closeness of the h and Z poles.).
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Fig. 2 
approx/
 vs m~g for m0 = 700 GeV, tan� = 2:25; At = 0, � > 0 and

mt = 140 GeV. 
approx is calculated using �v = a + bv2 while 
 is calculated by

accurate evaluation of the integrals of Eqs. (6,7) numerically. The h and Z poles are

where the curves go from positive to negative values.

In general, the allowed values of 
 ~Z1
h2 of Eq.(2) are quite small, implying the need

for a large amount of annihilation to occur. This happens in the regions of parameter
space where 2m ~Z1

is close to mh or MZ or when the slepton/squark masses are small
(enhancing the t-channel poles). The former occurs commonly in many models, while

the latter can occur when m0 is small, as is the case in the no-scale models [4] (where
m0 is zero).

5. Expected Detector Event Rates

In the supergravity Gut models, the value of R depends on the point in this

100GeV � m0;m~g � 1TeV ; �2m0 � At � 3:5m0; 2 � tan� � 20 (7)

The parameter space is further restricted by the requirements that (i)0:10 � 
 ~Z1
h2 �

0:35, (ii) experimental bounds on SUSY masses from LEP and the Tevatron are not

violated, and (iii) radiative breaking [Eq. (3)] of SU(2)xU(1) occurs. Event rates for

the following detectors have been analyzed:

3He; 40Ca19F2;
76Ge+73 Ge; 71Ga75As; 23Na127I; 207Pb (8)

The �rst two detectors have large spin dependent ~Z1 scattering (CaF2 being the largest)

while the last four have increasingly large spin independent coherent ~Z1 scattering. We
will see that throughout most of the parameter space the heavy nuclei with large co-
herent scattering are more e�cient detectors than those with the large spin dependent

scattering.

While the di�erent parameters of Eq. (17) which de�ne the theory enter in many
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di�erent places in the calculation (e.g. in calculating the relic density in Sec. 2, the ~Z1

coe�cients of Eq. (11), Aq, Bq and Cq of Eqs. (10), (13) etc.) it is possible to exhibit

the general dependence of the event rate on them.

m~g [GeV]

Fig. 4 R[Pb] (solid) and R [CaF2] (dashed) vs m~g for tan�=6 (lower curves) and

tan�=20 (upper curves). At=1.5 m0, m0=100GeV, and � > 0.

Fig. 4 shows that the event rate decreases with the gluino mass, and that the Pb
detector (largest coherent scattering) has considerably higher event rates than CaF2

(largest spin dependent scattering). The decrease of R with m~g arises from the fact

that as m~g increases, the ~Z1 becomes more and more Bino, and one needs an interfer-

ence between the Bino and Higgsino parts of ~Z1 to generate sizable scattering in Eq.
(13). Note also that the tan�=20 curve lies higher then the tan�=6 curve. This is

in part due to the 1=cos� factor in the Cd contribution of Eq. (13) yielding a tan2�

dependence for the Cd part of the coherent scattering. This behavior can be seen more

explicitly in Fig. 5. At �xed tan�;m0 has been chosen in Fig. 5 so that 
 ~Z1
h2 is ap-

proximately equal for each curve. Thus Fig. 5 also shows that the event rate increases
with At for a �xed value of 
 ~Z1

h2. The NaI curves lie higher than the Ge curves since
127I has higher nuclear mass than 76Ge+73 Ge.
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tan�

Fig. 5 R vs tan� for NaI and Ge detectors for m~g = 275GeV; � > 0. The solid curve
is for At=m0 = 0:0, m0 = 200GeV , dashed curve for At=m0 = 0:5, m0 = 300GeV , and
dash-dot curve for At=m0 = 1:0, m0 = 200GeV . For each pair the upper curve is for
NaI and the lower for Ge.

m0[GeV]

Fig. 6 R vs m0 for m~g = 300GeV;At=m0 = 0:5; tan� = 8; � > 0. The dashed curve is
for CaF2, the solid curves (from bottom to top) are for Ge, NaI and Pb.
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Fig. 6 shows that R decreases with m0, as one might expect since the slepton pole

contribution decreases. (Actually, the situation is more complicated as m0 enters in the

radiative breaking equations, Eq. (3), which determine �, and � enters in the nuetralino

mass matrix which determines �; �; ; � of Eq. (11)). For the particular parameters cho-

sen in Fig. 6, the incoherent spin-dependent scattering for the CaF2 detector exceeds

the coherent s cattering seen by the other detectors. (This type situation rarely oc-

curs). Note also that the Ge, NaI and Pb curves sequence themselves in the order of

their atomic numbers.

Fig. 7 shows the maximum and minimum event rates for the CaF2 and Pb detec-

tors as a function of At as one varies all other parameters over the entire parameter

Fig. 7 Maximum and minimum event rates of CaF2 (dashed curve) and Pb (solid

curve) detectors for � > 0 as one varies all parameters.

space: 2 � tan� � 20; 100GeV � m0;m~g � 1TeV ;�2 � At=m0 � 3:5. One sees

that the Pb detector exceeds the CaF2 detector in sensitivity by a factor of 5-10. The
very large event rates all come from the largest tan�, while the minimum rates come

from di�erent smaller values of tan� for di�erent At. The expected rates for the other
detectos (e.g. Ge, NaI etc.) scale approximately with the Pb detector by their atomic

numbers.
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6. Conclusions

We have examined here the expected sensitivity of dark matter detectors to udes

the constraint of radiative breaking of SU(2)�U(1) as well as the requirement that

0:10 � 
 ~Z1
h2 � 0:35 consistent with the COBE data. Detectors fall into two catagories:

those that are sensitive to the spin dependent incoherent ~Z1 scattering (e.g. CaF2)

and those most senstive to the coherent scattering (e.g. Pb). The latter have event

rates that increase with the nuclear mass, and hence favor heavy nuclei. We �nd in

general that throughout almost all the parameter space, the latter type detectors are

signi�cantly more e�cient than the former.

In general the dark matter detectors are more sensitive to the high tan� and small

m~g part of the parameter space (and generally the small m0 part). At the current ex-
pected sensitivity of R > 0:1 events/kg da, one can expect to examine about 20-30%
of the parameter space (using high A nuclei) for � > 0. (The � < 0 event rates are
generally smaller.) An increase in the sensitivity by a factor of 10 would enable these
detectors to examine 60-70% of the parameter space. One would need a sensitivity of
R > 0:001 events/kg da to cover the entire parameter space.

Since the assumption that the ~Z1 is the cold dark matter is high r dark matter in
part of the parameter space will be a signi�cant aid in reducing the ambiguities that
exist in supergravity Gut models.
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