VH and VBF Higgs production ATLAS and CMS

Joe Taenzer (Tel Aviv University)

On behalf of the ATLAS and CMS collaborations

Higgs Couplings 2018 Tokyo, Japan November 26th, 2018

New results since last year

ATLAS

- $H \rightarrow \gamma \gamma$ with 80 fb⁻¹, *Preliminary* (LINK)
- $H \rightarrow ZZ$ with 80 fb⁻¹, *Preliminary* (LINK)
- $H \rightarrow WW$ with 36 fb⁻¹, Submitted to *Phys. Lett. B* (LINK)
- H (125 GeV) combination with up to 80 fb⁻¹, *Preliminary* (LINK)
 CMS
- $H \rightarrow \gamma \gamma$ with 36 fb⁻¹, Accepted for publication in **J. High Energy Phys.** (LINK)
- $H \rightarrow ZZ$ with 80 fb ⁻¹, *Preliminary* (LINK)
- $H \rightarrow WW$ with 36 fb⁻¹, Submitted to *Phys. Lett. B* (LINK)
- H (125 GeV) combination with 36 fb ⁻¹, Submitted to *Eur. Phys. J. C* (LINK)

Covered in other talks:

- ATLAS H $\rightarrow \tau \tau$ with 36 fb⁻¹, Submitted to *Phys. Rev. D* (LINK)
- CMS $H \rightarrow \tau \tau$ with 36 fb ⁻¹, Submitted to **J. High Energy Phys.** (LINK)
- V(H → bb) observation with 80 fb⁻¹ by both ATLAS and CMS (ATLAS PUBLICATION, CMS PUBLICATION)

Outline

- Higgs production/decays VH/VBF
- Simplified Template Cross-Sections (STXS)
- VH/VBF results in H \rightarrow ZZ from ATLAS / CMS
- VH/VBF results in H \rightarrow yy from ATLAS / CMS
- VH/VBF results in H \rightarrow WW from ATLAS / CMS

Higgs production modes

VBF cross-section around 1 order of magnitude less than ggF, VH cross-section around ½ that of VBF

Direct **HVV** coupling in LO **VBF**/VH production, while **ggF** has a fermion loop

Higgs decay modes

Highest BRs for 125 GeV Higgs are bb, WW, gg

Can't ignore detector signature! e.g. $H \rightarrow ZZ \rightarrow 4I$ is much cleaner than $H \rightarrow bb \rightarrow jetjet!$

Simplified Template X-Sections

Goals:

- More finely grained measurements than production mode measurements
- Reduce theoretical uncertainties folded into measurements
 → Shift dominant theory uncertainties to the interpretation level
- Isolate possible BSM effects into STXS bins designed for BSM sensitivity

Stages:

(increasing granularity)

- Stage 0 → Higgs production mode cross-section measurements in $|y_H| < 2.5$ ggF, VBF, VH, ttH
- Stage $1 \rightarrow 31$ particle level categories (bins)
 - Current data lacks sensitivity to resolve all Stage 1 categories
 - \rightarrow Reduced stage 1 measurements merge stage 1 bins where necessary

$VH/VBF H \rightarrow ZZ - ATLAS$

Event categorization and reconstruction level signal composition

Expected Composition

- Reconstructed event categories aimed at reduced stage 1 STXS measurement
- ggF production dominant even in VBF enriched VH hadronic categories (60-80% ggF)
- BDTs are used to improve the discrimination between production modes in each category

$VH/VBF H \rightarrow ZZ - ATLAS$

BDT Discriminants

Reconstructed event category	BDT discriminant	Input variables	
0j	$\mathrm{BDT}_{\mathrm{ggF}}$	$p_{ m T}^{4\ell},\eta_{4\ell},D_{ZZ^*}$	
$1j$ - $p_{\rm T}^{4\ell}$ -Low	$\mathrm{BDT}_{\mathrm{VBF}}^{1j - p_{\mathrm{T}}^{4\ell} - \mathrm{Low}}$	$p_{\mathrm{T}}^{j}, \eta_{j}, \Delta R(j, 4\ell)$	
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -Med	$\mathrm{BDT}_{\mathrm{VBF}}^{1j - p_{\mathrm{T}}^{4\ell} - \mathrm{Med}}$	$p_{\mathrm{T}}^{j},\eta_{j},\Delta R(j,4\ell)$	Discriminants in the 1-jet
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -High	-	-	VBF categories are
VBF -enriched- p_T^j -Low	$\mathrm{BDT}_{\mathrm{VBF}}$	$m_{jj}, \Delta \eta_{jj}, p_{\mathrm{T}}^{j1}, p_{\mathrm{T}}^{j2}, \eta_{4\ell}^*, \Delta R_{jZ}^{\mathrm{min}}, (p_{\mathrm{T}}^{4\ell jj})_{\mathrm{constrained}}$	designed to disentangle
$\text{VBF-enriched-}p_{\text{T}}^{j}\text{-}\text{High}$	-	-	VBF and ggF production
VH-Had-enriched	$\mathrm{BDT}_{VH ext{-}\mathrm{Had}}$	$m_{jj},\Delta\eta_{jj},p_{ m T}^{j1},p_{ m T}^{j2},\eta_{4\ell}^{*},\Delta R_{jZ}^{ m min},\eta_{j1}$	
VH-Lep-enriched	-	-	
<i>ttH</i> -enriched	-	-	

$VH/VBF H \rightarrow ZZ - ATLAS$

Cross-sections

STXS Stage 0 Cross-sections:

- VBF observed cross-section 3x larger than SM prediction
- VH observed cross-section consistent
 with SM prediction

Reduced STXS stage 1 cross-sections

9

- VBF observed cross-sections: Larger deviation from SM prediction in the low leading jet $p_{\rm T}$ category
- VH observed cross-sections are consistent with the SM predictions

VH/VBF H \rightarrow ZZ – CMS

Event categorization and kinematic discriminant definitions

Full kinematic information from each event is used

- \rightarrow Higgs decays and associated particles extracted using ME calculations
- \rightarrow Used to form kinematic discriminants, e.g.

$$\begin{split} \mathcal{D}_{bkg}^{\text{VBF+dec}} &= \frac{\mathcal{P}_{sig}^{\text{VBF+VH+dec}}(\vec{\Omega})}{\mathcal{P}_{sig}^{\text{VBF+VH+dec}}(\vec{\Omega}) + c^{\text{VBF2jet}}(m_{4\ell}) \times (\mathcal{P}_{bkg}^{\text{VBS+VVV}}(\vec{\Omega}) + \mathcal{P}_{bkg}^{\text{QCD+dec}}(\vec{\Omega}))} \\ \mathcal{D}_{bkg}^{\text{VH+dec}} &= \frac{\mathcal{P}_{sig}^{\text{VBF+VH+dec}}(\vec{\Omega})}{\mathcal{P}_{sig}^{\text{VBF+VH+dec}}(\vec{\Omega}) + c^{\text{had.VH}}(m_{4\ell}) \times (\mathcal{P}_{bkg}^{\text{VBS+VVV}}(\vec{\Omega}) + \mathcal{P}_{bkg}^{\text{QCD+dec}}(\vec{\Omega}))}' \end{split}$$

Category	Leptons	Jets	Discriminant	
VBF-2jet	4	2-3 (< 1 b-tag) 4 (0 b-tags)	D _{2jet} > 0.5	Categorization order Note: ttH not shown
VH-hadronic	4	2-3 (< 1 b-tag) 4 (0 b-tags)	$max(D_{WH}, D_{ZH}) > 0.5$	
VH-leptonic	4 + 1 (WH) 4 + 2 (ZH)	< 3 jets (0 b-tags)	-	
VBF-1jet	4	1	D _{1jet} > 0.5	10
Untagged				10

VH/VBF H \rightarrow ZZ – CMS

Kinematic discriminant distributions (2017 dataset)

Good separation between VBF/VH and other Higgs production modes \rightarrow Working as designed

Cross-sections and signal strengths

Combination of 2016 and 2017 datasets

Cross-sections and signal strengths are generally consistent with the SM

VH/VBF H $\rightarrow \gamma \gamma - ATLAS$

Event categorization and reconstruction level signal composition

- Reconstructed event categories aimed at stage 1 STXS measurement
 → 29 categories in total!
- VH leptonic categories signal composition ~70-80% VH
- Hadronic VH 25-40% of signal is VH
 → Large ggF contamination
- VBF categories signal composition varies from 25-90% VBF
 - \rightarrow Large ggF contamination

VH/VBF $H \rightarrow \gamma \gamma - ATLAS$ Mass Spectra

• Signal modeled by a double-sided Crystal Ball function

- Continuum background modeled by a function that depends on the region \rightarrow background fits are performed in $m_{_{\gamma\gamma}}$ sidebands
- Other backgrounds (e.g. V $\gamma\gamma$ for VH) are obtained from simulation
 - \rightarrow Other Higgs production modes are included in the "Total background" line in the above plots 14

VH/VBF $H \rightarrow \gamma \gamma - ATLAS$ Cross-sections

VBF and VH observed cross-sections are compatible with the SM prediction

VH/VBF H $\rightarrow \gamma \gamma - CMS$

Event categorization and reconstruction level signal composition

10-25% ggF contamination in VBF and VH hadronic categories

- Signal model for each production process: sum of up to 5 Gaussians
 → Final fit function in each category: sum of normalized function for each production process
- Background model: Fit function included as a discrete nuisance parameter
 - \rightarrow Exponential, power law, polynomial functions (and more!) are all tried
 - → Statistical fit penalized for N degrees of freedom in fit function

VH/VBF H $\rightarrow \gamma \gamma - CMS$

cross-sections and signal strengths

VBF cross-section and signal strength measurements are consistent with the SM

VH cross-sections and signal strengths slightly larger Than the SM prediction.

$VBF H \rightarrow WW - ATLAS$

BDT used to enhance discriminating power between signal (VBF) and backgrounds, including ggF!

 $\sigma_{vBF}^{*}BR_{H \rightarrow WW}$ and $\sigma_{qqF}^{*}BR_{H \rightarrow WW}$ is consistent with the SM prediction

Signal strength

 $0.62^{+0.30}_{-0.28}$ (stat.) ± 0.13 (theo syst.) ± 0.16 (exp syst.) $= 0.62^{+0.37}_{-0.36}$ = $\mu_{\rm VBF}$

$VH/VBFH \rightarrow WW - CMS$

Signicant ggF contamination in VBFtagged and VH-tagged categories.

WH-tagged (3 lepton) and **ZH-tagged** (4 lepton) very pure in WH/ZH

VH leptonic and VBF cross-sections are consistent with SM, VH hadronic crosssection is larger than the SM prediction

Summary

ATLAS

- Stage 0 and reduced Stage 1 STXS measurements from H \rightarrow ZZ and H \rightarrow $\gamma\gamma$
 - \rightarrow Both preliminary results used 80fb⁻¹ of integrated luminosity
 - \rightarrow Generally consistent with SM predictions
- VBF H \rightarrow WW Stage 0 cross-section and signal strength measurement with 36 fb⁻¹ \rightarrow Consistent with SM prediction

CMS

- Stage 0 STXS measurements from H \rightarrow ZZ, H $\rightarrow \gamma\gamma$, H $\rightarrow WW$
 - \rightarrow H \rightarrow ZZ result used 80fb⁻¹ of integrated luminosity, H $\rightarrow \gamma \gamma$ and H \rightarrow WW used 36fb⁻¹
 - \rightarrow Generally consistent with SM predictions

BACKUP SLIDES

H(125GeV) Combination ATLAS

- Combined measurements of Higgs production cross-sections in the ZZ, yy, WW, bb, $\tau\tau$,and $\mu\mu$ decay modes
- Not all analyses were performed with the same integrated luminosity:
 - $\rightarrow\,$ ZZ, yy, and $\mu\mu$ => 80 fb-1
 - \rightarrow WW and $\tau\tau$ => 36 fb-1
 - \rightarrow tt(H \rightarrow bb), ttH multi lep => 36 fb⁻¹
- Generally consistent with the SM prediction(s)!

H(125GeV) Combination CMS

- Integrated luminosity of 35.9 fb-1 for all analyses
- Generally consistent with SM predictions

decay modes

VH/VBF H \rightarrow ZZ – ATLAS

Event categorization for STXS stage 0 and reduced stage 1

$VH/VBFH \rightarrow yy - ATLAS$ Event categorization for STXS

*VBF-like: $m_{jj} > 400 \text{ GeV}, |\Delta y_{jj}| > 2.8$

[†]*VH*-like: $60 < m_{ii} < 120 \text{ GeV}$

$VH \rightarrow tautau - CMS$

Event Selection

WH selection

$p_{ m T}^{ au_{ m h}} > 20{ m GeV}, \eta^{ au_{ m h}} < 2.3, I^{ m e} < 0.1, I^{\mu} < 0.15,{ m b\ veto}$						
Channel	Trigger $(p_{\rm T}/ \eta)$	Lepton selection: $p_{\rm T}$ (GeV)	$\tau_{\rm h}$ selection: isolation			
eμτ _h	$\mu(22/2.1)$ or $e(25/2.1)$	$p_{\rm T}^{\rm e} > 15 \text{ or } 26, p_{\rm T}^{\mu} > 23 \text{ or } 15$	MVA $\tau_{\rm h}$ (60% eff.)			
$\mu\mu au_{ m h}$	$\mu(22/2.1)$	$p_{ m T}^{ar{\mu}} > 23$, $p_{ m T}^{\mu} > 15$	MVA $\tau_{\rm h}$ (60% eff.)			
$e\tau_{\rm h}\tau_{\rm h}$	e(25/2.1)	$p_{\mathrm{T}}^{\mathrm{e}} > 26$	MVA $ au_{ m h}$ (55 or 65% eff.)			
$\mu \tau_{\rm h} \tau_{\rm h}$	$\mu(22/2.1)$	$p_{\mathrm{T}}^{\hat{\mu}} > 23$	MVA $\tau_{\rm h}$ (55 or 65% eff.)			
		711 coloction				
ZH selection						
Z boson reconstructed from opposite charge, same-flavor light leptons, $60 < m_{\ell\ell} < 120 \text{ GeV}$, b veto						
	$\tau_{\rm h}$ baseline requireme	ents: $p_{\rm T}^{\rm cn} > 20$, $ \eta^{\rm ch} < 2.3$, MV	A $\tau_{\rm h}$ (65% efficiency)			
e baseline requirements: $p_{ m T}^{ m e} > 10$, $ \eta^{ m e} < 2.5$, MVA ID (90% efficiency)						
μ baseline requirements: $p_{ m T}^{\mu}>10$, $ \eta^{\mu} <$ 2.4, μ ID (> 99% efficiency) , $I^{\mu}<$ 0.25						
Channel	Trigger $(p_{\rm T}/ \eta)$	Lepton selection: $p_{\rm T}$ (GeV)	Lepton selection: isolation			
$ee\mu\tau_h$			$I^{\mu} < 0.15$			
$eee \tau_h$	$[e_1(23/2.5) \& e_2(12/2.5)]$	$ig [p_{ m T}^{ m e_1} > 24 \ \& \ p_{ m T}^{ m e_2} > 13 ig]$	e ID (80% eff.), $I^{ m e} < 0.15$			
$ee\tau_h\tau_h$	or $e_1(27/2.5)$	or $p_{\rm T}^{\rm e_1} > 28$	baseline selection listed above			
eeeµ			e ID (80% eff.), $I^{ m e} < 0.15, I^{\mu} < 0.15$			
$\mu\mu\mu\tau_{\rm h}$			$I^{\mu} < 0.15$			
$\mu\mu e \tau_h$	$[\mu_1(17/2.4) \& \mu_2(8/2.4)]$	$ig[p_{ m T}^{\mu_1} > 18 \ \& \ p_{ m T}^{\mu_2} > 10 ig]$	e ID (80% eff.), $I^{ m e} < 0.15$			
$\mu\mu\tau_{\rm h}\tau_{\rm h}$	or $\mu_1(24/2.4)$	or $p_{\rm T}^{\mu_1} > 25$	baseline selection listed above			
иµеµ			e ID (80% eff.), $I^{ m e} < 0.15, I^{\mu} < 0.15$			

$VH \rightarrow tautau - CMS$

Mtautau

$VH \rightarrow tautau - CMS$

Cross-section measurement

