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Abstract

The topological susceptibility is computed in the SU(3) gauge theory at temperatures T

above the critical temperature Tc using master-field simulations of very large lattices, where

the infamous topology-freezing issue is effectively bypassed. Up to T = 2.0 Tc no unusually

large lattice effects are observed and the results obtained in the continuum limit confirm the

expected rapid decay of the susceptibility with increasing temperature. As a byproduct,

the reference gradient-flow time t0 is determined in the range of lattice spacings from 0.023

to 0.1 fm with a precision of 2 per mille.

1. Introduction

The temperature dependence of the topological susceptibility χt in QCD is of interest

in connection with the dark-matter candidacy of the axion, a hypothetical particle

related to the so-called strong CP problem [1–4]. Computations of χt in numerical

lattice QCD are however not straightforward for various reasons. A direct sampling

of the topological charge is often impractical, for example, because the simulation

algorithms tend to get trapped in a fixed-charge sector of field space. Another source

of difficulty is the fact that the susceptibility decreases rapidly at high temperatures

and consequently becomes more and more sensitive to lattice effects.
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Most computations of the topological susceptibility at temperatures T larger than

the critical temperature Tc performed to date [5–14] rely on some form of reweighting

or the so-called integral method, where χt is obtained by integrating its derivative

with respect to T from low to high temperatures. The systematic uncertainties and

the statistical errors are generally fairly large in these calculations, particularly so

when the light quarks (which lead to an additional chiral suppression of χt) are

included.

Master-field simulations [15] bypass the topology freezing issue by simulating lat-

tices with four-dimensional volumes V satisfying

χtV ≫ 1. (1.1)

Fixed-topology effects are of order 1/V in this case [16,17] and are thus paramet-

rically smaller than the statistical errors, which decrease like V −1/2 at large V . In

the present paper, master-field simulations are used to calculate the topological sus-

ceptibility in the SU(3) gauge theory at temperatures approximately equal to 1.5Tc

and 2.0Tc. The study also serves as a first test of the feasibility of such simulations

at non-zero temperatures, where having a physically large three-dimensional volume

may be of some general interest.

In the next section, the theoretical framework is described in more detail. Since the

topological susceptibility is rapidly varying with temperature, its extrapolation to

the continuum limit requires a highly accurate scale setting. A separate computation

of the reference gradient-flow time t0 [18] was therefore performed using master-field

simulations at vanishing temperature. The computation of χt is discussed in sect. 3

and conclusions are drawn in sect. 4.

2. Theoretical framework

2.1 Lattice theory

The SU(3) Yang–Mills theory studied in this paper is set up on hyper-cubic L0×L3

lattices with spacing a and periodic boundary conditions in all directions. At high

temperatures T = 1/L0, the time extent L0 of the lattice is always taken to be much

smaller than its spatial size L. For the gauge action the Wilson plaquette action

[20] with bare coupling g0 is chosen.
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2.2 Definition of χt

Since the correlation function of the topological density

q(x) = − 1

32π2
ǫµνρσtr{Fµν(x)Fρσ(x)} (2.1)

(where Fµν denotes the field strength of the gauge potential) has a non-integrable

short-distance singularity, the topological susceptibility is only formally given by

χt =

∫

d4x 〈q(x)q(0)〉. (2.2)

A sensible definition of the susceptibility in the continuum theory must therefore be

provided before it can be computed on the lattice.

In the present context, the susceptibility is tied to the flavour-singlet U(1) chiral

symmetry of QCD, which becomes a non-anomalous symmetry when the axion field

is included in the theory. The soft breaking of the symmetry by the quark masses

then leads to the well-known formula relating the axion mass to χt, provided the

latter is defined consistently with the chiral Ward identities. When this condition is

met, χt is unambiguously determined and can be shown to be given by a singularity-

free expectation value of “density chains” [21–23].

Far easier to evaluate than the density chains is the topological charge at positive

gradient-flow time [18]. The associated susceptibility does not require any subtrac-

tion or renormalization [19] and is known to coincide with the susceptibility defined

through the density chains, at least in the pure gauge theory [24]. All this holds

in the continuum limit of the lattice theory, provided the flow time is held fixed in

physical units when the lattice spacing is taken to zero. In the present paper, the

topological susceptibility is measured in this way, the implementation of the gradient

flow and other technical details being the same as in ref. [18].

2.3 Physical regimes at high temperatures

The topological susceptibility is a potentially complicated function of the tempera-

ture T and the spatial volume L3, particularly so when L is less than 1 fm, where

the effective gauge coupling is small and the semi-classical approximation becomes

asymptotically exact†. If L is much larger than the correlation lengths in the pseudo-

scalar sector, χt is independent of L up to exponentially small terms. This regime

† In the case of a four-dimensional spherical space-time, χt can be worked out analytically in this

limit and is found to be a steep function of V [25]. At non-zero temperatures, the situation is far

more complicated already at the classical level [26,27].
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Table 1. Lattice parameters and simulation results for t0/a
2

Lattice β Nmf t0/a
2 Lattice β Nmf t0/a

2

964 5.96 1 2.7875(53) 1924 6.53 2 15.156(28)

964 6.05 4 3.7834(47) 1924 6.61 4 18.714(30)

964 6.13 8 4.8641(85) 1924 6.69 5 23.089(48)

964 6.21 4 6.219(13) 1924 6.77 6 28.494(66)

1284 6.29 3 7.785(14) 2564 6.85 3 34.819(84)

1284 6.37 5 9.755(19) 2564 6.93 5 42.82(11)

1284 6.42 7 11.202(21) 2564 7.01 7 52.25(13)

1284 6.45 11 12.196(21)

sets in at values of L of a few fermi, for all temperatures, but at high temperatures

the bound (1.1) only holds at much larger spatial sizes.

At these temperatures there is then an interesting intermediate regime, in which

L is large while the variance

〈Q2〉 = χtV, V = L3/T, (2.3)

of the distribution of the topological charge Q is much smaller than 1. It is plausible

that χt is dominated by the sectors with charge Q = ±1 in this case. Moreover,

if their contribution is assumed to be suppressed by the factor exp{−Smin}, Smin

being the minimum of the gauge action in these sectors (the instanton action), the

renormalization group implies that

χt ∝
T→∞

T−7 (2.4)

with a logarithmically varying proportionality constant. It goes without saying that

this argumentation is quite crude and that eq. (2.4) should not be taken as a solid

theoretical result.

2.4 Computation of the reference flow time t0

The extrapolation to the continuum limit of lattice results for the topological sus-

ceptibility requires a precise scale-setting. When the limit is taken, the temperature

must be held fixed in units of some physical scale such as the Sommer radius [28].

Moreover, since χt has mass dimension 4, its value must also be expressed in such

units. In view of the steep temperature dependence of χt, a relative numerical error
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Fig. 1. Plot of the simulation results for ln(t0/a
2) (diamonds) and the interpolation

(2.5),(2.6). As shown by the plot on the right, setting the scale with t0 or the available

data for the Sommer radius r0 [29,30] comes to the same within a margin of about

1% (grey band; r0 was computed using different methods above and below β = 6.5).

The sinusoidal curve is obtained from the fit function (2.5) and the one published by

Necco and Sommer for r0/a [30].

in the reference scale thus results in an approximately 11 times larger error of the

converted values of χt.

The target statistical precision of χt in the present paper is a few percent and

the reference scale must therefore be known with errors less than a few per mille to

permit unbiased continuum-limit extrapolations. This level of precision is generally

difficult to reach in practice, but can be attained with a limited computational effort

if the reference gradient-flow time t0 [18] is used to set the scale.

The values of t0/a
2 quoted in table 1 were obtained from master-field simulations

of physically large lattices. In the range of β = 6/g20 considered, the lattice spacing

decreases from about 0.10 to 0.023 fm. The lattice sizes L are at least 6 fm and

reach values above 9 fm in some cases. On all these lattices, χtV is in the thousands

and frozen-topology effects are therefore expected to be neglible. The numbers Nmf

of master fields included in the measurement of t0/a
2 were adjusted so as to have

approximately constant statistical errors of about 2 per mille. Further details of the

simulations are reported in appendix A.
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Table 2. Parameters of the high-temperature lattices

Label Lattice β Nmf a [fm] T [MeV] L [fm]

A1 6× 2563 6.15533 10 0.073 449.1 18.7

A2 8× 3843 6.35393 10 0.055 449.1 21.1

A3 12× 5123 6.65454 30 0.037 449.1 18.7

B1 6× 5123 6.35033 18 0.055 595.8 28.3

B2 8× 7683 6.56185 20 0.041 595.8 31.8

B3 12× 10243 6.87251 20 0.028 595.8 28.3

As shown in fig. 1, the data for ln(t0/a
2) rise roughly linearly with β and can be

well represented by a polynomial

ln(t0/a
2) =

4
∑

k=0

ck(β − 6)k (2.5)

of degree 4. A least-squares fit yields the values

(c0, . . . , c4) = (1.16390, 3.37888,−1.36231, 1.20666,−0.45672) (2.6)

for the coefficients. The fit approximates t0/a
2 in the range 5.96 ≤ β ≤ 7.01 with an

estimated error of 2 per mille. A comparison with more precise results previously

obtained on small lattices [24] confirms this up to β = 6.42 and the fit also reproduces

the values at β = 6.3, 6.4, . . . , 7.0 quoted in ref. [31] within errors varying from 0.2

to 1.1 percent.

2.5 Conversion to physical units

The SU(3) Yang–Mills theory is unphysical and any assignment of physical units is

therefore a bit arbitrary. Often the Sommer radius r0 is taken as the reference scale

and its physical value is set to 0.5 fm. In the range 5.96 ≤ β ≤ 6.92 of validity of the

fit curves of both r0/a [30] and t0/a
2, the ratio of scales plotted in fig. 1 averages to

0.950. The traditional choice r0 = 0.5 fm thus amounts to setting

(8t0)
1/2 = 0.475 fm. (2.7)

Throughout this paper the conversion to physical units is performed using eq. (2.7)

and the values of t0/a
2 given by the interpolation (2.5).
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0.04

0.08

0.12 T = 1.5Tc T = 2.0Tc

−0.5 0 0.5 1

Fig. 2. Normalized histograms of Re {zP (x)} at flow time t = 0.35 t0 measured on

the A1 (left) and B1 (right) lattices. In both cases, the bin size is 1/60 and the phase

factor z ∈ {1, exp(±i2π/3)} is chosen so as to cancel the phase of the average value

of the Polyakov loop.

3. Computation of the topological susceptibility

The computations reported in this section follow the lines of refs. [15,18] except for

the fact that lattices at high temperatures are simulated.

3.1 Master-field simulations

In total six lattices were simulated, at two temperatures and three lattice spacings at

each temperature, so as to allow for an extrapolation of the results to the continuum

limit (see table 2). The critical temperature Tc in the SU(3) gauge theory is 294MeV

[32] and the chosen temperatures T are thus about 1.5Tc and 2.0Tc. As will become

clear below, the bound (1.1) is well satisfied on all lattices. Moreover, the relevant

correlation lengths are much smaller than the spatial sizes L, so that the master-field

simulation strategy is expected to work out.

At high temperatures, the Polyakov loop

P (x) = 1
3
tr{W (x)} (3.1)

(whereW (x) denotes the Wilson line that passes through x and wraps around space-

time in the time direction) assumes a non-zero expectation value. The expectation

value breaks the Z3 center symmetry of the theory and its phase is spontaneously

chosen to be 0, 2π/3 or −2π/3. A technically attractive choice of order parameter
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Fig. 3. Values of χt(R) obtained on the A3 lattice at two flow times corresponding

to smoothing ranges equal to 0.28 fm (squares) and 0.47 fm (diamonds).

is the Polyakov loop at positive flow time, since its distribution does not require

renormalization [19] and unambiguously shows the increasingly strong polarization of

the loop with increasing temperature (see fig. 2). Like the freezing of the topological

charge, the spontaneous breaking of the center symmetry is associated with very

long autocorrelation times if the standard simulation algorithms are used.

Master fields representative of the theory in a pure phase can be built up in several

steps from approximately thermalized configurations on smaller lattices. If L is not

very much larger than L0, the simulation algorithm rapidly evolves the gauge field

to a field with definite polarization of the Polyakov loop. Periodic extensions of the

field in space to larger lattices preserve the polarization and long equilibration times

caused by large domains with different polarization are avoided. Reflections in space

preserve the distribution of the Polyakov loop too and additionally ensure that the

topological charge of the field and thus its effects on the correlation functions [16,17]

remain small.

3.2 Simulation results

In the continuum limit, the topological susceptibility is independent of the flow time

t at which the charge density q(x) is computed, provided t is held fixed in physical

units when the limit is taken. The choice of the flow time however has an influence on

the size of the lattice effects. In the calculations reported here, two values of t given
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Table 3. Simulation results for χt

Run R/a
√

t/t0 t20χt × 105
√

t/t0 t20χt × 105

A1 20 0.590 2.233(89) 0.983 2.089(75)

A2 26 0.590 2.33(10) 0.983 2.281(79)

A3 39 0.590 2.12(12) 0.983 2.11(11)

B1 26 0.593 0.494(26) 0.988 0.402(14)

B2 34 0.593 0.400(20) 0.988 0.372(12)

B3 52 0.593 0.343(38) 0.988 0.370(32)

in units of t0 were chosen corresponding to smoothing ranges
√
8t [18] approximately

equal to 0.28 fm and 0.47 fm.

As explained in ref. [15], χt can be obtained in master-field simulations by inte-

grating the two-point correlation function of the charge density,

χt(R) = a4
∑

x0

∑

|x|≤R

〈q(x)q(0)〉, (3.2)

up to some sufficiently large radius R, where the integral reaches its asymptotic value

within statistical errors (see fig. 3 for illustration). Reflection positivity implies that

the asymptotic value is approached from above with an exponential rate given by

the screening lengths in the pseudo-scalar channel.

The bumps in the data shown in fig. 3 and the plateaus at R ≥ 1.2 fm are char-

acteristic features of χt(R) on all lattices listed in table 2. At large T , small R and

small flow times t, χt(R) probes the two-point function of the topological density at

short distances, where perturbation theory applies. The bumps in the data are in

fact roughly matched by leading-order perturbation theory (appendix B). This com-

putation also shows that χt(R) is suppressed already at small R by the gradient-flow

smoothing of the charge density and then gets further suppressed at larger radii by

the negative (non-perturbative) long-distance contributions.

The results for the topological susceptibility quoted in table 3 coincide with the

calculated values of χt(R) at R ≃ 1.4 fm, where the asymptotic plateaus are, in all

cases, safely reached within errors.

3.3 Continuum limit

The calculated values of t20χt must be expected to depend on the lattice spacing, the

leading effects near the continuum limit being of order a2. Statistically significant

lattice effects are, however, only observed at the larger temperature considered (see
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Fig. 4. Extrapolation of the values of t20χt × 105 listed in table 3 to the continuum

limit (left: A-lattices, right: B-lattices). The data at flow time 0.35 t0 (squares) and

0.97 t0 (diamonds) are extrapolated linearly in a2, the grey points at a = 0 being the

extrapolated values.

table 3 and fig. 4). As further elucidated in subsect. 3.4, it is in fact no suprise that

the relative size of the effects increases with temperature, since the lattice expression

for the topological charge density includes non-topological contributions of order a2.

Linear extrapolation in a2/t0 of the data listed in table 3 to the continuum limit

yield results for t20χt with errors ranging from 5.3 to 14 percent. The values obtained

at the two flow times considered agree within errors, as should be the case, the ones

at the larger flow time,

t20χt = 2.25(12) × 10−5 at T
√
8t0 = 1.081, (3.3)

t20χt = 3.43(27) × 10−6 at T
√
8t0 = 1.434, (3.4)

being a bit more precise. These figures are orders of magnitude smaller than the

susceptibility t20χt = 6.67(7)×10−4 [24] at zero temperature and the observed rapid

decrease from T = 1.5Tc to T = 2.0Tc is in rough agreement with the power law

(2.4). The agreement might however be somewhat fortuitous in view of the fact that

the derivation of eq. (2.4) assumes the effective gauge coupling to be small, which is

not the case at these temperatures.

3.4 Miscellaneous remarks

Scaling behaviour. If both T and L are held fixed in physical units, the computational

effort required for the generation of a single master field is expected to increase like
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a−6 when the continuum limit is approached. With respect to the integral method,

which scales approximately like a−10, this behaviour is rather mild. However, if T is

increased at fixed a, L must grow too for the inequality (1.1) to remain true. While

the computational effort then scales like T 7 or so, the higher cost of the simulations

should be balanced against the fact that the effective statistics provided by a single

master field increases proportionally to T 8.

Improved topological charge. In all computations reported here, the standard sym-

metric expression was used for the topological charge density on the lattice, in which

the field tensor Fµν(x) is given by the so-called clover formula. A classically O(a2)-

improved expression is then

q(x) = − 1

32π2
ǫµνρσtr

{

Fµν(x)Fρσ(x)− 2
3
a2Fµν(x)[Fµρ(x), Fµσ(x)]

}

(3.5)

up to derivative terms that do not contribute to the total charge Q. Contrary to what

may be expected, the a2-correction in eq. (3.5) tends to increase the lattice-spacing

dependence of the topological susceptibility. A complete O(a2)-improvement of the

theory [33] and the gradient flow [34] is thus presumably required if the convergence

to the continuum limit is to be accelerated.

Finite-volume effects in traditional simulations. At high temperatures T , the basic

screening lengths are expected to decrease proportionally to 1/T . The approximate

susceptibility χt(R) therefore approaches its asymptotic value at large R more and

more rapidly, but as suggested by fig. 3, a significant R-dependence may persist in

a core range of R extending up to R = 1.2 fm or so. In traditional high-temperature

simulations, where the topology freezing is overcome in ways other than through a

large volume, spatial sizes L ≥ 2.4 fm are thus required to be safe of finite-volume

effects.

4. Conclusions

Dimensional analysis suggests that the topological susceptibility grows proportion-

ally to T 4 at high temperatures T , but instead it decreases rapidly as a result of a

nearly perfect cancellation of short- and long-distance contributions. This behaviour

is commonly attributed to the topological nature of the charge density q(x), i.e. to

the fact that variations of q(x) with respect to the gauge field are total derivatives.

None of the non-perturbatively well-defined expressions for the susceptibility known
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to date however embodies this property of the charge density to the extent that the

smallness of the susceptibility at high temperatures would be explained.

Master-field simulations provide new opportunities for non-perturbative studies

of QCD. At non-zero temperatures below Tc, for example, the physically large vol-

umes that become accessible in this way allow the theory to be studied in kinematic

regimes close to the thermodynamic limit, where multi-hadron states make impor-

tant contributions to the partition function. Another motivation for the use of this

new type of simulations is the fact that the topology-freezing issue (which tends to

become severe at lattice spacings a ≤ 0.05 fm) can be bypassed in a conceptually

transparent manner.

The computations of the topological susceptibility reported in the present paper

could proceed straightforwardly for this reason and led to results with unprecedented

precision. At temperatures higher than the ones considered here, master-field sim-

ulations however require larger and larger lattices to be simulated and thus become

impractical at some point. Moreover, the topological susceptibility must be expected

to be increasingly sensitive to lattice effects. To be able to control these effects, the

lattice spacing must then be decreased. This second problem is, however, not specific

to master-field simulations and will persist until an expression for the susceptibility

is found which is naturally small at high temperatures.

All simulations were performed on a HPC cluster at CERN and on the Marconi

machine at CINECA through agreements of INFN and the University of Milano-

Bicocca with CINECA. We gratefully acknowledge the computer resources and the

technical support provided by these institutions.

Appendix A. Simulation algorithm and other implementation details

Apart from some specific technical details related to the very large sizes of the simu-

lated lattices, the master-field simulations reported in this paper followed established

lattice-QCD strategies.

A.1 Simulation algorithm

All simulations were performed using the HMC algorithm [35] with trajectory length

τ = 2. The molecular-dynamics equations were integrated by applying the forth-

order integrator given by eqs. (63) and (71) in ref. [36]. This scheme proves to be

12



Table 4. Simulation parameters ∗

Run nstep Pacc τth ∆τmf

A1 13 0.95 15360 480

A2 13 0.91 10560 480

A3 17 0.93 8160 480

B1 13 0.87 3840 480

B2 17 0.89 6240 480

B3 18 0.85 6080 960

∗ τth and ∆τmf are given in units of molecular-dynamics time

highly efficient and an only mild adjustment of the step number nstep was required

on the larger lattices in order to preserve a good acceptance rate Pacc (see table 4).

Using standard MPI communication functions, the computational work was dis-

tributed over up to 32768 processing units. Most demanding from the point of view

of the memory requirements was the measurement program for the topological sus-

ceptibility, which occupied a total memory of about 16 TB in the case of the largest

lattice.

A.2 Thermalization

As already indicated in sect. 3, the master fields were generated in several steps from

smaller lattices, where thermalizations of the gauge field alternate with extensions to

the next larger lattice through reflections at the lattice planes. The plaquette action

per point is unchanged after a reflection and the topological charge vanishes, but the

gauge-field tensor changes abruptly across the reflection planes, which can give rise

to a low acceptance rate in the early phase of the subsequent thermalization. A few

update cycles with a more accurate integration of the molecular-dynamics equations

may be required in this case to get the thermalization started.

The lengths τth of the final thermalization runs listed in table 4 are much longer

than the relevant autocorrelation times. A drift in the single-field expectation values

[15] has in fact never been seen after these long thermalization phases (see fig. 5 for an

example). It may be worth noting in passing that outliers, such as the measurement

number 25 in fig. 5, must occur with some non-zero probability, as in traditional

simulations, where whole ensemble averages may be similarly outlying.

The separation ∆τmf in simulation time of the master fields included in the com-

putations of expectation values need not be particularly large, since any statistical

correlations among the fields are automatically taken into account [15]. Autocorre-

13
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Fig. 5. Relative deviation from the ensemble average of the values of the topological

susceptibility computed using single master fields (run A3, flow time 0.97 t0).

lations however lead to larger statistical errors relative to what they would be for

uncorrelated fields. On the B3 lattice, for example, the separation was duplicated

with respect to the other runs for this reason.

A.3 Use of quadruple-precision arithmetic

On the simulated lattices, significance losses of up to 11 decimal places occur when

the energy deficit ∆H is computed at the end of the molecular-dynamics evolution of

the fields. Standard IEEE 754 double-precision data and arithmetic may be barely

good enough under these conditions and it is, therefore, advisable to use quadruple-

precision artithmetic in the summation of the action densities over all lattice points.

∆H is then obtained with absolute precision given by the now practically exactly

accumulated numerical errors of the densities. Assuming these are randomly dis-

tributed, their sum scales like (V/a4)1/2 and the accumulated inaccuracies are then

far below any statistically relevant level.

A convenient portable implementation of quadruple-precision numbers is through

pairs of double-precision numbers. Algorithms for the associated arithmetic opera-

tions were published by Dekker [37] many years ago. The subject is also discussed

in a book of Knuth [38] and more extensively in an article by Shewchuk [39].
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A.4 Parallel I/O

In master-field simulations, the computer time spent for field configuration I/O may

not be negligible. Current HPC systems however permit the storage facilities to be

accessed concurrently and thus offer a high aggregate I/O bandwidth.

In the I/O programs used in the present study, the lattice is logically divided into

fairly large rectangular blocks. The part of the gauge field residing on a given block

is then written out in a portable format by one of the processing units. A single field

is thus stored in several files and advantage of the parallel capabilities of the storage

facility is taken by having many processing units write their blocks concurrently.

Appendix B. Calculation of χt(R) in perturbation theory

In the continuum theory and at flow time t > 0, the integrated correlation function

χt(R) =

∫ 1/T

0

dx0

∫

|x|≤R

d3x 〈q(x)q(0)〉 (B.1)

of the topological charge density can be straightforwardly expanded in powers of the

gauge coupling. The computation proceeds along the lines of ref. [18] except for the

fact that the time components p0 of the momenta are quantized in units of 2πT .

At high temperatures, where

8tT 2π2 ≫ 1, (B.2)

the contributions of the p0 6= 0 modes of the gauge field to the leading-order expres-

sion for the two-point function of the charge density are exponentially suppressed.

Up to these terms the latter is then given by

〈q(x)q(0)〉 = α2
s

T 2

π5(8t)3r3
γ(3

2
, r)

{

3γ(3
2
, r)− 4γ(5

2
, r)

}

, (B.3)

αs being the strong coupling,

γ(a, r) =

∫ r

0

ds sa−1e−s (B.4)
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Fig. 6. The function (B.7) assumes its maximal value 0.1583(1) at ρ = 1.236(1)

and decays like ρ−3 at large ρ.

the incomplete Γ-function and r = x2/(8t). The correlation function thus decreases

monotonically from

〈

q(0)2
〉

= α2
s

4T 2

3π5(8t)3
, (B.5)

becomes negative at some point and eventually goes to zero with a rate proportional

to |x|−6 at large distances |x|.
Equation (B.3) leads to the expression

χt(R) = α2
s

4T

π4(8t)3/2
f(ρ), ρ =

R

(8t)1/2
, (B.6)

f(ρ) = ρ−3γ(3
2
, ρ2)2, (B.7)

for the approximate susceptibility (B.1). To this order of perturbation theory, χt(R)

thus depends on the summation radius R roughly like the data plotted in fig. 3 (see

fig. 6). In particular, at the flow times chosen in the simulations, the maxima of the

bumps in fig. 3 are at R = 0.30 fm and 0.45 fm, while the leading-order expression

(B.6) has its maximum at R = 0.35 fm and 0.58 fm in these cases. The plateaus in

fig. 3, on other hand, occur at distances, where perturbation theory is not expected

to apply and instead goes to zero consistently with the vanishing of χt to all orders.
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[24] M. Cè, C. Consonni, G. P. Engel, L. Giusti, Non-Gaussianities in the topologi-

cal charge distribution of the SU(3) Yang–Mills theory, Phys. Rev. D92 (2015)

074502

[25] M. Lüscher, A semiclassical formula for the topological susceptibility in a finite

space-time volume, Nucl. Phys. B205 [FS5] (1982) 483

[26] T. C. Kraan, P. van Baal, Periodic instantons with nontrivial holonomy, Nucl.

Phys. B533 (1998) 627

[27] T. C. Kraan, P. van Baal, Monopole constituents inside SU(n) calorons, Phys.

Lett. B435 (1998) 389

[28] R. Sommer, A new way to set the energy scale in lattice gauge theories and its

applications to the static force and αs in SU(2) Yang–Mills theory, Nucl. Phys.

B411 (1994) 839

[29] M. Guagnelli, R. Sommer, H. Wittig (ALPHA collab.), Precision computation of

a low-energy reference scale in quenched lattice QCD, Nucl. Phys. B535 (1998)

389

[30] S. Necco, R. Sommer, The Nf = 0 heavy quark potential from short to interme-

diate distances, Nucl.Phys. B622 (2002) 328

[31] M. Asakawa et al., Determination of reference scales for Wilson gauge action

from Yang–Mills gradient flow, arXiv:1503.06516

[32] G. Boyd et al., Thermodynamics of SU(3) lattice gauge theory, Nucl. Phys. B469

(1996) 419
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