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Abstract

Scheduling multi-core workflows in a global HTCondor pool is a multi-dimensional problem whose
solution depends on the requirements of the job payloads, the characteristics of available resources,
and the boundary conditions such as fair share and prioritization imposed on the job matching to re-
sources. Within the context of a dedicated task force, CMS has increased significantly the scheduling
efficiency of workflows in reusable multi-core pilots by various improvements to the limitations of the
glideinWMS pilots, accuracy of resource requests, efficiency and speed of the HTCondor infrastruc-
ture, and job matching algorithms.
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Abstract. Scheduling multi-core workflows in a global HTCondor pool is 
a multi-dimensional problem whose solution depends on the requirements 
of the job payloads, the characteristics of available resources, and the 
boundary conditions such as fair share and prioritization imposed on the 
job matching to resources. Within the context of a dedicated task force, 
CMS has increased significantly the scheduling efficiency of workflows in 
reusable multi-core pilots by various improvements to the limitations of the 
GlideinWMS pilots, accuracy of resource requests, efficiency and speed of 
the HTCondor infrastructure, and job matching algorithms. 

1 Multi-core Pool Scheduling 

The CMS Submission Infrastructure (SI) Group is responsible for GlideinWMS [1] and 
HTCondor [2] pool operations in the CMS experiment at CERN, as well as setting and 
communicating our  priorities  to  the  respective  software  development  teams.  Our  group 
constructed and operates a global HTCondor pool [3] that connects Grid resources at both 
WLCG and non-WLCG sites into a single, flexible batch system for production and physics 
analysis activities in the CMS experiment. In recent years, the submission infrastructure of 
CMS has expanded to include Cloud resources both directly connected to the Global Pool 
and also accessible through federated pools. The most important federated pool is at CERN, 
which includes all of the resources pledged to CMS at the host laboratory, and is part of the 
data taking chain of the experiment.

The CMS Global Pool is at once a GlideinWMS instance and a HTCondor pool. As seen 
in  Figure  1,  in  response  to  demand  for  resources  from  job  schedulers  (schedd’s),  a 
GlideinWMS frontend queries job queues on the schedd’s and sends requests to several 
GlideinWMS factories to submit multi-core pilot jobs (also called “glideins”) to Grid and 
Cloud sites world-wide. These pilots instantiate HTCondor resources (a startd) that join one 
of the several HTCondor pools managed by the SI group. HTCondor Central Managers 
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running  one  or  more  Negotiators  then  match  these  resources  to  jobs  on  schedulers, 
primarily hosted at CERN and Fermilab, completing the circle. 

CMS schedulers flock jobs to multiple pools, the largest pool being the CMS Global 
Pool, which connects CMS Tier-1, Tier-2 and Tier-3 sites world-wide. Typically this pool 
reaches scales of 200,000 CPU cores or more. A dedicated HTCondor pool for CERN hosts 
the computing resources which serve the data taking apparatus of the experiment as well as 
CERN-based analysis. Other federated pools serve the prototype HEPCloud [4] instance in 
the U.S. as well as the CMS@home [5] effort in volunteer computing.

Scheduling  in  this  environment  is  challenging  firstly  due  to  initial  and  boundary 
conditions on the pilots. For example, there are delays from the time the frontend requests a 
pilot to the time that the pilot starts on the remote resources. Pilot jobs also have a finite 
(typically 48h) lifetime and must be properly drained in order to not kill payloads at the end 
of the pilot life, as seen in Figure 2. Secondly, pilots can become more fragmented over 
time as lower core count jobs finish asynchronously, making the matching of higher core 
count jobs impossible, even if they are from higher priority workflows.

Fig. 1. Elements of GlideinWMS and HTCondor pools in CMS.  



Fig. 2. Evolution of multi-core pilot fragmentation and draining.

2 Scheduling Efficiency 

In the context of a dedicated task force beginning in 2017, CMS made a targeted effort 
to improve the CPU efficiency of CMS workflows. CPU efficiency in the WLCG is defined 
as the measured CPU time over the wall clock time weighted by the logical CPU core 
count.  This  CPU efficiency  is  completely  factorable  into  a  contribution  from the  pilot 
infrastructure (scheduling efficiency) and from the underlying payload job. 

Note, however, that logical CPU core count is distinct from physical CPU core count. 
The  prevalence  of  hyper-threading  in  HEP  computing,  both  in  physical  and  virtual 
machines, is not taken into account in this calculation. In many cases at CERN and at other 
national laboratories the sites schedule according to memory requirements rather than CPU 
count and thus overcommit CPU.

The pilots in CMS carry no information about which particular jobs should match to 
them. Matching requirements are quite generic, based on resources offered and demanded. 
CMS has built the submission infrastructure with this flexible model in mind. However, 
with the advent of Cloud and specialized resources, we are considering how to allow sites 
to customize pilots to properly route jobs to particular resources, or to preferentially match 
certain  types  of  jobs  to  pilots.  This  functionality  is  already  existent  at  some  level  in 
allowing certain types of pilots to preferentially match to jobs from locally registered users.

As seen in Figure 3, in early 2017 the scheduling efficiency in multi-core pilots was 
quite poor (~85% on average) relative to single-core pilots, (>95%). The CMS Submission 
Infrastructure Group made a dedicated effort in the second half of 2017 to improve this 
situation, both by tuning the pilots and also requesting and integrating improvements in 
GlideinWMS and HTCondor.



Fig. 3. Improvement of the multi-core CPU scheduling efficiency over time from mid-2017 to 
mid-2018.

3 Legitimate Use Cases 

CPU is only one of the computing resources provided by sites that are scarce and need 
to be scheduled. Examples of other resources are memory, disk space, GPU’s, and local or 
wide-area network bandwidth. CMS has several types of workflow that are particularly high 
in the consumption of memory. We consider it a legitimate use case to schedule most or all 
of the memory available to a pilot for a job that may not use many CPU cores, for example. 
The result, however, is that little or no memory may be available for the remaining cores in 
the  pilot  which  leaves  CPU idle.  We consider  this  flexibility  in  how we  schedule  the 
resources a strength of our multi-core pilot model. The Submission Infrastructure group 
monitors such memory-starved pilots as well as the number of logical CPU cores left idle 
for other reasons, as can be seen in Figure 4. 

The opportunistic use of CPU cores by CMS in the high level trigger (HLT) farm at 
CERN is another use case where long-lived VM’s remain idle waiting for work. The HLT is 
a  special  resource  that  is  dedicated  to  processing  trigger  decisions  for  the  experiment. 
However, during LHC inter-fill periods, when data is not being taken by the experiment, the 
~30,000 CPU cores can be used for centralized processing in the Global Pool.

CMS also leaves a certain number of CPU cores ready for urgent calibration work at 
CERN during LHC data taking as part of a service called the CAF. These high-availability, 
low latency resources are another legitimate use case of leaving CPU idle. 

In the context of the CMS CPU Efficiency Task Force, the Submission Infrastructure 
Group sought to minimize the contributions to overall idle CPU from any other remaining 
sources, such as pilot startup and retirement procedures or inefficient job scheduling.



Fig. 4. Sources of idle CPU cores in the CMS Global Pool. Major contributions include retiring pilots 
and memory-starved pilots.

4 Pilot Improvements 

We observed that  during periods of  bursty job submission,  as seen in Figure 5,  the 
frequent expansion and contraction of the Global Pool often resulted in very poor (even as 
low as 50%) scheduling efficiency. We noted that during these periods new pilots were 
starting at sites long after the job pressure subsided. This decoupling in time of job pressure 
from resource availability was a major source of CPU wastage. 

The situation was improved partly by ceasing this bursty submission pattern, but also by 
improvements in GlideinWMS [6] to remove idle pilots in site batch queues after a tunable 
amount of time. While this may cause some churn in site batch queues, it mostly eliminated 
this source of wastage by ensuring that no pilots were starting many hours or even days 
after they were requested, as was the case before July 2017, as shown in Figure 6. In a “fire-
and-forget” pilot  model a glidein could sit  in a sites batch queue potentially for weeks 
before  it  started,  perhaps  long  after  the  work  that  triggered  the  resource  request  has 
completed. While most glideins are seen to have been requested in the previous 48 hours, 
given the bursty nature of CMS submission patterns which changed on the timescale of 
hours, even 48 hours was considered too long. 

We are aware that the pilots being generic carry no information about the job or type of 
jobs that they should match. This is an active area of consideration for future evolutions of 
the submission infrastructure in CMS.

Retirement of glideins is necessary not only because of job wall clock limits at sites, but 
also  to  counter  fragmentation  of  the  pilots,  which  can  lead  to  priority  inversions  in 
workflow matchmaking.  The  length  of  the  pilot  retirement  time  (and  consequent  CPU 
wastage while draining the glideins) is driven by the accuracy to which we know the job 
wall clock time. If job wall clock run time is poorly estimated at submission time, then 
many jobs may overrun their time limits and result in failed workflows when the pilots 
themselves hit time limits. 

In studies we found that 99% of centralized production jobs finish within their estimated 
wall clock time, while analysis jobs, which are subject to much more uncertainty due to 
user code contributions, were found to finish within three hours of their estimated time with 
99% confidence. This 3 hour uncertainty in analysis job run time estimation  came after 
many improvements  during the  year  [7].  These  improvements  allowed the  SI  group to 



shorten the retirement time to 4h from 10h, improving scheduling efficiency by several 
percent, and allowing >99% of jobs to complete within the pilot lifetime. 

Fig. 5. Bursts of job submission and draining effect on the Global Pool.  

5 HTCondor Improvements 

Multi-core pilots can be filled by jobs in different ways. Two distinct concepts are to fill 
them  breath-wise,  i.e.  as  sparsely  as  possible  so  as  to  spread  load,  or  depth-wise, 
concentrating jobs into as few pilots as possible. Depth-wise filling of multi-core pilots was 
made available from HTCondor version 8.7.5 and integrated in the Global Pool in May 
2017. Before that, it was possible for pilots to be filled randomly or even breadth-wise, 
which effectively maximized idle CPU in the pool. In depth-wise filling, nearly full pilots 
are favored for matches over sparsely-occupied glideins.

6 Conclusions 

While the individual contributions of all of the fixes we implemented are difficult to 
quantify, the overall effect was to improve the scheduling efficiency in multi-core pilots to 
be comparable to single-core glideins, after legitimate use cases such as over-committing 
memory  are  taken  into  account.  We  typically  had  over  ~98%  multi-core  scheduling 



efficiency  in  2018,  on  par  with  single-core.  Remaining  sources  of  inefficiency  in  the 
submission infrastructure are largely irreducible.

Fig. 6. Up to two-week-old glideins in the queues and running at sites in June 2017.
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