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Summary

Starting from the electric fields produced by a point charge and a dipole travelling inside a circular
vacuum chamber, in this paper we derive a formalism for a complete set of equations that describe
the electromagnetic fields and the longitudinal and transverse coupling impedances arising by the
interaction of a beam with a perfectly conducting pipe in the case of elliptic geometry.

The expressions, which are valid for any frequency and beam energy, are written in terms of
expansions of Mathieu functions, allow to range from a circular geometry to the parallel plates, and
show an interesting parallelism with the well known expressions for a circular pipe. We also obtain
that, under the approximation of low frequency, the formalism allows us to derive the Laselett
coefficients for parallel plates, circular and elliptic beam pipe.
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1 Introduction

Collective effects due to self induced electromagnetic fields in a particle accelerator are
generally studied by introducing the concepts of wake field and coupling impedance [1, 2, 3],
which represent, in time and frequency domain respectively, the response of the environment
to a point charge travelling inside the beam vacuum chamber or in any of the accelerator
devices. These effects can be very important [4], and in some cases they could compromise the
machine performance leading to partial or total beam losses [5]. For low energy accelerators
with non relativistic beams, a not negligible contribution to the total impedance is given by
the so called space charge effects [6, 7], which are generated directly by the charge distribution
and indirectly by the image charges on the pipe wall.

The study of the impedance in the non relativistic case for an elliptic cross section
has been performed in ref. [8], where, however, the choice of the field expansions has led
to complicated expressions, not allowing to easily disentangle, for example, from the total
impedance, the direct and indirect effect of space charge, important in the transverse plane
for collective effects studies of low energy accelerators. Another formulation, written as an
integral form, taking into account the finite resistivity of the beam vacuum chamber, and by
considering the classical regime of a good conductor, has been also derived in ref. [9].

For what concerns the low frequency limit of the space charge impedance in elliptic
geometry, in addition to the Laslett coefficients valid for the transverse plane in the stationary
regime [7], an equivalent radius has been introduced in ref. [10], allowing to evaluate the
longitudinal and transverse impedances using the expressions for a circular pipe. Lastly,
there also exist numerical codes that give the beam coupling impedance due to space charge
and resistive wall for arbitrary transverse geometries [11], at any frequency and beam energy.

In this paper we expand the formalism of a previous work [12], in which we derived
the longitudinal and quadrupolar (detuning) indirect space charge impedance produced by
a point charge travelling on the axis of a perfectly conducting elliptic vacuum chamber,
presenting a self consistent model for a complete set of equations for the electromagnetic
fields that allow to evaluate the longitudinal and transverse coupling impedances due to
space charge at any frequency and beam energy. The equations, that show an interesting
parallelism with respect to the circular case, allow to obtain the impedances for any value
of ellipticity, ranging from the circular shape to the parallel plates.

In the following section 2 we review the basic functions that we use to express the
electromagnetic fields and the impedances in elliptic geometry, i. e. the Mathieu functions,
taking, as reference work, the book of McLachlan [13]. Then, in Sec. 3 the longitudinal space
charge impedance produced by a circular uniform beam is derived. In Sec. 4, by applying
a procedure similar to that of ref. [12], we obtain the electric field of a dipole vertically
and horizontally displaced, and, in the following section 5, we derive the transverse dipolar
impedances, comparing them with the known expressions for a circular pipe and parallel
plates. Finally, Sec. 6 is dedicated to concluding remarks.
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Figure 1: Elliptic coordinates. The ϕ coordinate describes a series of hyperbolas having
the same foci. The µ coordinate describes confocal ellipses centered in the origin of the
coordinate system.

2 Elliptic coordinates and Mathieu functions

In order to work with elliptical geometry, it is convenient to introduce the transverse elliptical
coordinates ϕ and µ, describing respectively a set of hyperbolas having the same foci, and a
set of confocal ellipses, as shown in Fig. 1.

The relations between elliptical and Cartesian coordinates are given by{
x = F coshµ cosϕ
y = F sinhµ sinϕ,

(1)

where F is the focal distance of the ellipse, related to the major and minor semi-axes ae and
be by

F =
√
a2e − b2e. (2)

With these notations the origin of the coordinate system is given by (ϕ = π/2, µ = 0),
and the boundary of the beam pipe can be described by the simple equation

µ = µ0 = arccosh
(ae
F

)
. (3)
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As already discussed in ref. [12], the Mathieu functions represent the natural way to
express the electromagnetic fields inside an elliptical beam pipe. In particular, due to the
symmetries with respect to the four quadrants of Fig. 1, the longitudinal electric field,
produced by a point charge travelling on the axis z of a perfectly conducting elliptical
vacuum chamber, has a dependence on the variable ϕ that has been written in terms of the
orthogonal set of elliptic cosine even functions of negative argument, given in Appendix A by
Eq. (43). The field has also a dependence on µ given by the corresponding radial modified
Mathieu functions of the first and second kind (46) and (49). From these expressions, in
ref. [12], we have obtained the longitudinal and quadrupolar impedances, in elliptic geometry,
due to the indirect space charge.

For what concern the transverse dipolar impedance, we will first consider a vertical
dipole having a symmetry with respect to ±x, and, as a consequence, we will show that
the longitudinal electric field can be expressed with the elliptic sine odd functions (45) and
by the corresponding equations (48) and (51), and then, for an horizontal dipole, which
produces a field symmetric with respect to ±y, we have the elliptic cosine odd functions (44)
and, for the radial dependence, Eqs. (47) and (50).

Even if the computation of the Mathieu functions is not so spread as the Bessel ones,
however there exists some well known mathematical software that allows to evaluate these
functions as, for example, the open source scientific Python package [14]. In addition to
that, by solving the eigenvalue problems described by Eqs. (56), (58), and (57), it is possible
to write a dedicated script that evaluates also the convergence of the summations. All
the Mathieu functions that we use in this article, and that are summarised in Appendix A,
converge very quickly and require a number of terms which varies, depending on the frequency
range of interest and ellipticity, in the order of 10 - 120, allowing then a fast evaluation of
fields and impedances, without any particular issue.

3 Longitudinal space charge impedance

In ref. [12], starting from the longitudinal electric field of a Dirac δ-function beam distribution
with total charge Q moving with velocity v = βc on the axis z of the elliptical pipe, we have
derived the indirect space charge longitudinal and transverse quadrupolar impedances per
unit of length, that we write here as

dZ‖
dz

=
2πG

Q

∞∑
l=0

(−1)l
A

(2l)
0

p′2l
ce2l

(π
2
,−q

) Fek2l(µ0,−q)
Ce2l(µ0,−q)

Ce2l(0,−q), (4)

and
dZquad

y

dz
=

2πGβ

Qk0F 2

∞∑
l=0

(−1)l
A

(2l)
0

p′2l
ce2l

(π
2
,−q

) Fek2l(µ0,−q)
Ce2l(µ0,−q)

Ce
′′

2l (0,−q) (5)

dZquad
x

dz
=

2πGβ

Qk0F 2

∞∑
l=0

(−1)l
A

(2l)
0

p′2l
ce2l

′′
(π

2
,−q

) Fek2l(µ0,−q)
Ce2l(µ0,−q)

Ce2l (0,−q) (6)

with

G = jZ0
Qk0

2πβ2γ2
, (7)
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and

q =

(
k0F

2βγ

)2

, (8)

where Z0 is the vacuum impedance, k0 is the wave number in free space, equal to ω/c, and
γ the relativistic factor. The other quantities are described in Appendix A.

In order to evaluate the effects of longitudinal space charge on the beam dynamics, of
particular interest for low energy accelerators [15, 16], Eq. (4), which gives the contribution
only of the indirect effect, is not sufficient, and the direct space charge has to be taken
into account, too. By considering a transverse uniform distribution, as that described in
ref. [17], in this section we obtain the total longitudinal space charge impedance valid for an
elliptic beam pipe geometry at any frequency. In order to do that, we start from the direct
longitudinal electric field (in frequency domain) produced by a round beam with uniform
transverse density within beam radius rb, given in ref. [17], and that we write as

Ed
z =


2Gβγ

rbk0

[
βγ

k0rb
−K1

(
k0rb
βγ

)
I0

(
k0r

βγ

)]
(r ≤ rb)

2Gβγ

rbk0
I1

(
k0rb
βγ

)
K0

(
k0r

βγ

)
(r > rb).

(9)

Differently from the cited article, we are now interested in the indirect field generated
inside an elliptical vacuum chamber. We observe that the direct electric field in Eq. (9) for
r > rb depends on K0(r) as that of the point charge of ref.[12]. There is only a difference
in the multiplying coefficient. By using then the same method, writing the modified Bessel
function of second kind in terms of a summation of Mathieu functions, we can easily obtain
the indirect field for the elliptic geometry as

Ei
z = −4πGβγ

rbk0
I1

(
k0rb
βγ

) ∞∑
l=0

(−1)l
A

(2l)
0

p′2l
ce2l (ϕ,−q)

Fek2l(µ0,−q)
Ce2l(µ0,−q)

Ce2l(µ,−q). (10)

We are now able to express the total field produced by a uniform transverse beam dis-
tribution inside an elliptical vacuum chamber as a sum of Eqs. (9) and (10):

Etot
z = Ed

z + Ei
z. (11)

Indeed this field satisfies the boundary conditions, beeing zero on the surface µ = µ0.
The longitudinal impedance per unit length can then be evaluated as

dZ‖
dz

= −
Etot
z

(
ϕ = π

2
, µ = 0

)
Q

= j
Z0

πr2bk0

[(
k0rb
βγ

)
K1

(
k0rb
βγ

)
− 1

+2π

(
k0rb
βγ

)
I1

(
k0rb
βγ

) ∞∑
l=0

(−1)l
A

(2l)
0

p′2l
ce2l

(π
2
,−q

) Fek2l(µ0,−q)
Ce2l(µ0,−q)

Ce2l(0,−q)

]
. (12)

If we introduce the quantity

qr =
ae − be
ae + be

, (13)
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Figure 2: Dependence of space charge longitudinal impedance with wave number. Compari-
son between Eq. (12) and analytic solutions for parallel plates and circular pipe with rb = 5
mm, be = 1 cm, and β = 0.5.

then the above equation can be compared with those of ref. [17] when the pipe tends to
become circular (qr → 0) and for parallel plates (qr → 1). Of course the equation can be
used to obtain the space charge impedance for any intermediate value of the ellipticity. In
the approximation of low frequency, for a circular pipe of radius b, we also have the classical
expression of the space charge longitudinal impedance [6]

dZ‖
dz

= j
Z0ω

2πβ2γ2c

(
1

2
+ log

be
rb

)
. (14)

In Fig. 2 we show a comparison between the absolute value of the space charge impedance
given by Eq. (12) in the extreme cases of circular pipe (qr = 10−3) and parallel plates
(qr = 0.8) with the analytic solutions of ref. [17] as a function of βγ/(k0rb), which is inversely
proportional to the wave number and, then, to the frequency. It is important to underline
that, despite this term appears as independent variable of the Bessel functions for both the
circular pipe and parallel plates, however the space charge impedance changes with energy
(and with beta) even if the term is kept constant.

In the same figure we also show the low frequency approximation given by Eq. (14).
When k0 decreases, the low frequency approximation coincides with the solution of the
circular pipe.
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4 Electromagnetic fields of a dipole

In order to evaluate the transverse impedance due to space charge, we first consider the
electric field produced by two charges forming a dipole moving with velocity βc in the free
space. Let’s suppose that the dipole moment is oriented along y and equal to P = 2Qd,
where 2d is the distance between the two charges. The longitudinal electric field in any
position of the free space for r � d is given by [18]

Ed,y
z = jZ0

Pk20
2πβ3γ3

sin θK1

(
k0r

βγ

)
= Gd sin θK1

(
k0r

βγ

)
, (15)

with θ the angle with respect to the x axis in cylindrical coordinates.
Using a procedure similar to that of ref. [12], we first move from cylindrical to elliptic

coordinates by writing

K1

(
k0r

βγ

)
= K1

(
k0F

2βγ

√
e2µ + e−2µ − 2 cos(2ϕ+ π)

)
, (16)

and

sin θ =
y

r
=

2 sinhµ sinϕ√
e2µ + e−2µ − 2 cos(2ϕ+ π)

. (17)

We then transform the modified Bessel function of the second kind by using the relations
(8.407) and (8.532) of ref. [19]. After some mathematical manipulations, we obtain

K1

(
k0F

2βγ

√
e2µ + e−2µ − 2 cos(2ϕ+ π)

)
=

R
2

ν1ν2

∞∑
k=0

(k + 1)Ik+1(ν1)Kk+1(ν2)C
1
k [cos(2ϕ+ π)] (18)

where

ν1 =
k0F

2βγ
e−µ, ν2 =

k0F

2βγ
eµ, R =

k0F

2βγ

√
e2µ + e−2µ − 2 cos(2ϕ+ π), (19)

and C1
k is the Gegenbauer function (see Appendix B for details).

Therefore, the longitudinal electric field of Eq. (15) can be written as

Ed,y
z = Gd

2Fk0 sinhµ

βγν1ν2

∞∑
k=0

(k + 1)Ik+1(ν1)Kk+1(ν2)C
1
k [cos(2ϕ+ π)] sinϕ. (20)

In Appendix B we show that the last two terms of the above summation can be written
as sum of se2l+1(ϕ,−q) with known coefficients.

Considering Eq. (65), by using then the relations that give the Bessel functions of index
k in terms of those of index k ± 1, we then obtain

Ed,y
z = Gd

∞∑
m=0

(−1)mse2m+1(ϕ,−q)
∞∑
r=0

A
(2m+1)
2r+1(

∞∑
k=r

{[Ik(ν1)− Ik+2(ν1)]Kk+1(ν2) + [Kk(ν2)−Kk+2(ν2)]Ik+1(ν1)}

)
. (21)
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In Appendix C, we show that the last summation in round brackets can be reduced to
the sum of only two addenda, namely:(

∞∑
k=r

{[Ik(ν1)− Ik+2(ν1)]Kk+1(ν2) + [Kk(ν2)−Kk+2(ν2)]Ik+1(ν1)}

)
=

Ir(ν1)Kr+1(ν2) +Kr(ν2)Ir+1(ν1). (22)

In the same Appendix a further simplification is performed, by expressing the sum with
the index r in Eq. (21) as the radial modified Mathieu functions of second kind Gek2m+1.
Therefore, the final expression of the longitudinal direct electric field of a vertical dipole in
free space in elliptic coordinates is given by

Ed,y
z = πGd

∞∑
m=0

(−1)m
A

(2m+1)
1

p′2m+1

se2m+1(ϕ,−q)Gek2m+1(µ,−q). (23)

It is important to observe that Eq. (23), which is equivalent to Eq. (15) since the electric
field must exhibit the same configuration independently from the coordinate system that has
been adopted, is expressed in terms of a product of Mathieu functions with separate elliptic
coordinates ϕ and µ, as done in ref. [12] for the field produced by a point charge.

In order to determine the indirect field scattered by the elliptic boundary conditions, due
to the symmetric reasons discussed in Sec. 2, we expand this field in terms of the Mathieu
functions se2m+1 and Se2m+1, with the expansion coefficients determined in such a way to
give a zero value electric field on the elliptic surface µ = µ0. Finally, by using the orthogonal
properties of se2m+1, we easily obtain

Ei,y
z = −πGd

∞∑
m=0

(−1)m
A

(2m+1)
1

p′2m+1

se2m+1(ϕ,−q)
Gek2m+1(µ0,−q)
Se2m+1(µ0,−q)

Se2m+1(µ,−q). (24)

The total longitudinal electric field is then given by the sum of direct and indirect fields:

Et,y
z = πGd

∞∑
m=0

(−1)m
A

(2m+1)
1

p′2m+1

se2m+1(ϕ,−q)[
Gek2m+1(µ,−q)−

Gek2m+1(µ0,−q)
Se2m+1(µ0,−q)

Se2m+1(µ,−q)
]
. (25)

This field satisfies the boundary conditions on the contour of the ellipse representing the
beam vacuum chamber. Equation (25) is our final result, expressed in a compact form, to
calculate the longitudinal electric field, at any frequency and transverse position, produced
by a dipole in an elliptic vacuum chamber of any dimension and aspect ratio.

It is interesting to observe that Eq. (25) is formally very similar to the well-known
longitudinal electric field generated by a dipole in a perfectly conducting beam pipe of
radius be [18]:

Et
z = Gd sin θ

K1

(
k0r

βγ

)
−
K1

(
k0be
βγ

)
I1

(
k0be
βγ

) I1(k0r
βγ

) , (26)
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with the pair of modified Bessel functions of first and second order I1(x) and K1(x) replacing
the summation of the pair of modified Mathieu functions of first and second order Se2m+1

and Gek2m+1, and sin θ replacing the elliptic sine odd functions. The equation can therefore
be used to fully describe and rapidly compute the longitudinal electric field produced by a
dipole inside a beam vacuum chamber having elliptical cross sections.

As we show in Appendix D, Eq. (26) can be also derived from Eq. (25) in the limit when
the elliptic pipe tends to become round, that is when F → 0.

For what concerns the electric field produced by a dipole oriented along the horizontal
axis x = 0, we start from an equation similar to Eq. (15), but with a cos θ dependence
instead of sin θ. The cosine can be written in terms of elliptic coordinates as

cos θ =
x

r
=

2 coshµ cosϕ√
e2µ + e−2µ − 2 cos(2ϕ+ π)

, (27)

so that we find again Eq. (20), but, instead of the term (sinhµ... sinϕ) we have now
(coshµ... cosϕ). This gives a different expansion of the Gegenbauer function in terms of
the elliptic cosine odd functions, and, as shown in Appendix E, after some mathematical
manipulations, we obtain a longitudinal electric field given by

Et,x
z = πGd

∞∑
m=0

(−1)m
B

(2m+1)
1

s′2m+1

ce2m+1(ϕ,−q)[
Fek2m+1(µ,−q)−

Fek2m+1(µ0,−q)
Ce2m+1(µ0,−q)

Ce2m+1(µ,−q)
]

(28)

valid for a dipole displaced horizontally and very similar to that of a vertical dipole.

5 Transverse space charge impedances

From the longitudinal electric fields produced by a dipole displaced in the vertical and
horizontal planes, we obtain, in this section, the transverse coupling impedances. While in
the longitudinal case the direct and indirect space charge effects are important since both
affect the coherent motion, for the transverse case the direct term acts incoherently on the
beam, and therefore, only the indirect space charge impedance is derived here for collective
effects studies.

In particular the vertical and horizontal impedances per unit length can be written as 1

dZdip
y

dz
= − β

Pk0

∂Ei,y
z

∂y

∣∣∣∣
ϕ=π

2
,µ=0

= − β

Pk0

[
∂Ei,y

z

∂µ

∂µ

∂y
+
∂Ei,y

z

∂ϕ

∂ϕ

∂y

]∣∣∣∣
ϕ=π

2
,µ=0

(29)

dZdip
x

dz
= − β

Pk0

∂Ei,x
z

∂x

∣∣∣∣
ϕ=π

2
,µ=0

= − β

Pk0

[
∂Ei,x

z

∂µ

∂µ

∂x
+
∂Ei,x

z

∂ϕ

∂ϕ

∂x

]∣∣∣∣
ϕ=π

2
,µ=0

. (30)

1Here we use the transverse impedance definition of ref. [18], compatible, for example with the code
IW2D[21]. In other papers, as in [7], there is an additional 1/β multiplying factor that has to be taken into
account for beam dynamics studies.
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By using Eqs. (1), the partial derivatives can be simplified giving

dZdip
y

dz
= − β

FPk0

∂Ei,y
z

∂µ

∣∣∣∣
ϕ=π

2
,µ=0

(31)

dZdip
x

dz
=

β

FPk0

∂Ei,x
z

∂ϕ

∣∣∣∣
ϕ=π

2
,µ=0

, (32)

so that, from Eqs. (24) and (92), we obtain respectively

dZdip
y

dz
= j

Z0k0
2Fβ2γ3

∞∑
m=0

(−1)m
A

(2m+1)
1

p′2m+1

se2m+1

(π
2
,−q

) Gek2m+1(µ0,−q)
Se2m+1(µ0,−q)

Se′2m+1(0,−q), (33)

and

dZdip
x

dz
= −j Z0k0

2Fβ2γ3

∞∑
m=0

(−1)m
B

(2m+1)
1

s′2m+1

ce′2m+1

(π
2
,−q

) Fek2m+1(µ0,−q)
Ce2m+1(µ0,−q)

Ce2m+1(0,−q), (34)

where with Se′2m+1 and ce′2m+1 we have indicated the derivatives of the functions evaluated
in 0 and π/2 respectively.

These equations allow to evaluate the dipolar space charge impedances for any value of
ellipticity, frequency and beam energy. Moreover, the summations converge very rapidly
allowing a fast computations of the impedances.

If we start from the indirect field in Eq. (26), and by considering the derivative of the
electric field with respect to r, we obtain the transverse space charge impedance in circular
geometry, that can be written as

dZdip
⊥
dz

= j
Z0k

2
0

4πβ3γ4

K1

(
k0be
βγ

)
I1

(
k0be
βγ

) . (35)

The impedance given by this equation can be compared with the impedances of Eqs. (33)
and (34) in the limit of qr → 0.

As a further term of comparison, in elliptic geometry, if we assume that the frequency
tends to zero, a transverse impedance can be obtained by considering the stationary forces
produced by the beam. In this case the asymptotic expressions of the impedances, which do
not depend on frequency any more, can be written in terms of the Laslett coefficients as [7]

dZdip
⊥
dz

= j
Z0

πβγ2

(
ξV,H1 − εV,H1

b2e

)
, (36)

with ξ1 and ε1 summarised in Table 1 for circular, elliptic, and parallel plates geometries.
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Table 1: Laslett coefficients for circular, elliptic, and parallel plates geometries [7].

Geometry Circular Elliptic Parallel plates

εV1 0 b2e
12F 2

[
(1 + k′2)

(
2K(k)
π

)2
− 2

]
π2

48

εH1 0 − b2e
12F 2

[
(1 + k′2)

(
2K(k)
π

)2
− 2

]
−π2

48

ξV1
1
2

b2e
4F 2

[(
2K(k)
π

)2
− 1

]
π2

16

ξH1
1
2

b2e
4F 2

[
1−

(
2K(k)k′

π

)2]
0

In the table, K(k) is the complete elliptic integral of the first kind, k =
√

1− k′2, and k′

is the complementary modulus given by

k′ =

(
1 + 2

∑∞
s=1(−1)sqs

2

r

1 + 2
∑∞

s=1 q
s2
r

)2

. (37)

An alternative way of writing Eq. (36) and giving the same results in the static condition
for the elliptic geometry, has been found in ref. [10]. If we write the impedance due to the
indirect space charge effect as

dZdip
⊥
dz

= j
Z0

2πβγ2b2eq
, (38)

the equivalent radius beq depends on the ellipticity and it is given by [10]

beq,v = be
2
√

6qr

(1− qr)
√
−1 + ϑ4

2(0, qr) + ϑ4
3(0, qr)

, (39)

beq,h = be
2
√

6qr

(1− qr)
√

1 + 2ϑ4
2(0, qr)− ϑ4

3(0, qr)
, (40)

for the vertical and horizontal planes, respectively, and with ϑn(z, qr) the Jacobi theta func-
tions.

In Figs. 3 and 4, in blue, red, and black, we show the absolute value of the indirect space
charge impedances given by Eqs. (33) and (34) for three values of qr. The impedances are
shown as a function of the quantity βγ/(k0be), and we have considered β = 0.5 and b = 3.5
cm.

The case with qr = 10−3 (black curve) agrees very well with the transverse impedance of
the circular pipe of Eq. (35) (dashed orange curve). The comparisons for parallel plates, both
in y and x, and obtained with qr = 0.8, have been done by using the code IW2D [21] with
a very low resistivity (blue curve compared with dashed yellow one). We can also see from
the figures that, when k0 decreases (low frequency, asymptotic value), the expressions with
the Laslett coefficients for circular and parallel plates, represented with brown and magenta
lines respectively, and obtained with Eq. (36), agree with our results. Moreover, for the case
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Figure 3: Dependence of space charge vertical impedance with wave number for be = 3.5 cm
and β = 0.5. Comparison of Eq. (33) (black, blue and red curves) with the circular pipe case
given by Eq. (35) (dashed orange curve), with IW2D code results for parallel plates (dashed
yellow curve), and with the asymptotic expressions (36) and (38) valid for low frequency
(brown, magenta and green lines).
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Figure 4: Dependence of space charge horizontal impedance with wave number for be = 3.5
cm and β = 0.5. Comparison of Eq. (34) (black, blue and red curves) with the circular
pipe case given by Eq. (35) (dashed orange curve), with IW2D code results for parallel
plates (dashed yellow curve), and with the asymptotic expressions (36) and (38) valid for
low frequency (brown, magenta and green lines).
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Figure 5: Adimensional equivalent radius beq/b as a function of qr for the vertical and
horizontal plane compared with Eqs. (39) and (40).

of elliptic geometry (evaluated here for qr = 0.1 and represented with the red curve), we can
only compare our solution in terms of the Mathieu functions with the asymptotic expression
of Eq. (36) or Eq. (38) (green line).

In addition to the comparison of the impedance, if we divide Eqs. (33) and (34) by
jZ0/(2πβγ

2), and compare the results with Eq. (38), it is possible to obtain the vertical
and horizontal equivalent radius as a function of qr (valid only for low frequency in the
asymptotic approximation):

1

b2eq,v
=

πk0
Fβγ

∞∑
m=0

(−1)m
A

(2m+1)
1

p′2m+1

se2m+1

(π
2
,−q

) Gek2m+1(µ0,−q)
Se2m+1(µ0,−q)

Se′2m+1(0,−q), (41)

and

1

b2eq,h
= − πk0

Fβγ

∞∑
m=0

(−1)m
B

(2m+1)
1

s′2m+1

ce′2m+1

(π
2
,−q

) Fek2m+1(µ0,−q)
Ce2m+1(µ0,−q)

Ce2m+1(0,−q). (42)

The corresponding adimensional equivalent radii (beq,(v/h)/b), compared with those given
by Eqs. (39) and (40), give an excellent agreements as shown in Fig. 5. The vertical and
horizontal asymptotic values, equal respectively to 2

√
3/π and 2

√
6/π, can be obtained

directly from the Laslett coefficients.

6 Conclusions

In this paper we have developed a set of equations which use the Mathieu functions and
give the electromagnetic fields produced by a point charge and a dipole inside a perfectly
conducting vacuum chamber of elliptic geometry.
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From the fields we have then derived the space charge coupling impedances, which
are valid for any frequency, beam energy, and ellipticity. Furthermore, the fields and the
impedances, written in terms of summations of angular and radial Mathieu functions, can
be quickly evaluated due to the rapid convergence of the series.

The developed theory can be extended to include the case of resistive wall impedance [22],
and, in general, can be used as reference for the study of coupling impedances in elliptic
geometry, as, for example, the evaluation of the electromagnetic fields generated by a beam
passing through a step transition between two confocal elliptical waveguides.
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A The Mathieu functions

In this Appendix we summarise all the Mathieu functions used in the paper, considering,
as reference work, the book of McLachlan [13]. In particular, the periodic angular ordinary
Mathieu functions are given by four series of orthogonal equations, the elliptic cosine even,
cosine odd, sine even and sine odd functions. For our problem we need only the first two
and the last one with negative argument −q, expressed by:

ce2l(ϕ,−q) = (−1)l
∞∑
r=0

(−1)rA
(2l)
2r cos(2rϕ) (43)

ce2l+1(ϕ,−q) = (−1)l
∞∑
r=0

(−1)rB
(2l+1)
2r+1 cos[(2r + 1)ϕ] (44)

se2l+1(ϕ,−q) = (−1)l
∞∑
r=0

(−1)rA
(2l+1)
2r+1 sin[(2r + 1)ϕ], (45)

and the corresponding radial modified Mathieu functions of the first and second kind given
respectively by

Ce2l(µ,−q) = (−1)l
∞∑
r=0

(−1)rA
(2l)
2r cosh(2rµ) (46)

Ce2l+1(µ,−q) = (−1)l
∞∑
r=0

(−1)rB
(2l+1)
2r+1 cosh[(2r + 1)µ] (47)

Se2l+1(µ,−q) = (−1)l
∞∑
r=0

(−1)rA
(2l+1)
2r+1 sinh[(2r + 1)µ], (48)
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and

Fek2l (µ,−q) =
p′2l

πA
(2l)
0

∞∑
r=0

A
(2l)
2r Ir(ν1)Kr(ν2) (49)

Fek2l+1 (µ,−q) =
s′2l+1

πB
(2l+1)
1

∞∑
r=0

B
(2l+1)
2r+1 [Ir(ν1)Kr+1(ν2)− Ir+1(ν1)Kr(ν2)] (50)

Gek2l+1 (µ,−q) =
p′2l+1

πA
(2l+1)
1

∞∑
r=0

A
(2l+1)
2r+1 [Ir(ν1)Kr+1(ν2) + Ir+1(ν1)Kr(ν2)] , (51)

with

p′2l = (−1)l
ce2l(0,−q) ce2l(π2 ,−q)

A
(2l)
0

(52)

s′2l+1 = (−1)l+1 ce
′
2l+1(

π
2
,−q)ce2l+1(0,−q)
√
qB

(2l+1)
1

(53)

p′2l+1 = (−1)l
se2l+1(

π
2
,−q)se′2l+1(0,−q)
√
qA

(2l+1)
1

, (54)

and ν1 =
√
qe−µ and ν2 =

√
qeµ. Here Ir(x) and Kr(x) are the modified Bessel functions of

first and second kind, and se′2l+1 and ce′2l+1 are the derivatives of the respective functions.

The expansion coefficients A
(2l)
2r , A

(2l+1)
2r+1 , and B

(2l+1)
2r+1 , are defined in such a way that the

angular functions are orthogonal [13], so that, for example, we have∫ 2π

0

ce2l(ϕ,−q)ce2p(ϕ,−q)dϕ =

{
0 l 6= p

π l = p
. (55)

They can then be obtained by solving an eigenvalue problem for the following truncated
matrices:

aA
(2l)
0 − qA(2l)

2 = 0

[a− 4]A
(2l)
2 − q

(
2A

(2l)
0 + A

(2l)
4

)
= 0[

a− (2r)2
]
A

(2l)
2r − q

(
A

(2l)
2r−2 + A

(2l)
2r+2

)
= 0 (r ≥ 2)

(56)

(a− 1 + q)B
(2l+1)
1 − qB(2l+1)

3 = 0[
a− (2r + 1)2

]
B

(2l+1)
2r+1 − q

(
B

(2l+1)
2r−1 +B

(2l+1)
2r+3

)
= 0 (r ≥ 1)

(57)

(a− 1− q)A(2l+1)
1 − qA(2l+1)

3 = 0[
a− (2r + 1)2

]
A

(2l+1)
2r+1 − q

(
A

(2l+1)
2r−1 + A

(2l+1)
2r+3

)
= 0 (r ≥ 1).

(58)

where the terms ’a’ represent the eigenvalues and the expansion coefficients are the eigen-
vectors of the three truncated linear equations’ systems.
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B The Gegenbauer function

From Eq. (8.937) of [19], we have that

C1
k [cos(2ϕ+ π)] sinϕ =

sin [(k + 1)(2ϕ+ π)]

sin(2ϕ+ π)
sinϕ = (−1)k

sin [(k + 1)2ϕ)]

2 cosϕ
. (59)

Due to the symmetry considerations of Sec. 2, we want to write Eq. (59) in terms of the
elliptic sine odd functions (45). To do that, we write

sin [(k + 1)2ϕ)]

cosϕ
=

∞∑
m=0

L2k+1
2m+1se2m+1(ϕ,−q). (60)

In order to find the expansion coefficients L2k+1
2m+1 we use the normalisation condition for

the elliptic sine function, so that∫ π

−π
se2t+1(ϕ,−q)

sin [(k + 1)2ϕ)]

cosϕ
dϕ = πL2k+1

2t+1 . (61)

If we now substitute the expansion (45) in the above equation we obtain that

L2k+1
2t+1 =

(−1)t

π

∞∑
r=0

(−1)rA
(2t+1)
2r+1

∫ π

−π
sin[(2r + 1)ϕ]

sin [(k + 1)2ϕ)]

cosϕ
dϕ. (62)

The integral is equal to 2π(−1)k−r if r ≤ k, otherwise it is zero, so that

L2k+1
2t+1 = 2(−1)t+k

k∑
r=0

A
(2t+1)
2r+1 . (63)

Therefore, the Gegenbauer function times the sine can be written finally as

C1
k [cos(2ϕ+ π)] sinϕ =

(−1)k

2

∞∑
m=0

L2k+1
2m+1se2m+1(ϕ,−q). (64)

with the known expansion coefficients given by Eq. (63).
If we further write sinhµ in terms of ν1 and ν2, after some manipulations, Eq. (20)

becomes

Ed,y
z =

Gd

2

∞∑
m=0

se2m+1(ϕ,−q)
∞∑
k=0

L2k+1
2m+1(−1)k{

2(k + 1)

ν1
Ik+1(ν1)Kk+1(ν2)−

2(k + 1)

ν2
Ik+1(ν1)Kk+1(ν2)

}
. (65)
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C A relation on the summation of Bessel functions

Let’s consider the last summation of Eq. (21) of Bessel functions. All the terms with inter-
mediate indexes simplify each other, so that we obtain

(
∞∑
k=r

{[Ik(ν1)− Ik+2(ν1)]Kk+1(ν2) + [Kk(ν2)−Kk+2(ν2)]Ik+1(ν1)}

)
=

Ir(ν1)Kr+1(ν2) +Kr(ν2)Ir+1(ν1)

− lim
n→∞

[Ir+n+4(ν1)Kr+n+3(ν2) +Kr+n+4(ν2)Ir+n+3(ν1)]. (66)

Since

lim
n→∞

[Ir+n+4(ν1)Kr+n+3(ν2) +Kr+n+4(ν2)Ir+n+3(ν1)] = 0e−(2n)µ → 0, (67)

we can then write the electric field of Eq. (21) as

Ed,y
z = Gd

∞∑
m=0

(−1)mse2m+1(ϕ,−q)
∞∑
r=0

A
(2m+1)
2r+1 [Ir(ν1)Kr+1(ν2) + Ir+1(ν1)Kr(ν2)]. (68)

We now recognise in the last summation a term proportional to the Mathieu functions
Gek2m+1 of Eq. (51), so that we have finally

Ed,y
z = πGd

∞∑
m=0

(−1)m
A

(2m+1)
1

p′2m+1

se2m+1(ϕ,−q)Gek2m+1(µ,−q). (69)

D Derivation of the longitudinal field of a dipole from

an elliptical pipe to a circular one

Let’s start from Eq. (25) in the limit when ae → be, which also means that F → 0 and
q → 0. Moreover, we have

µ0 = arccosh

(
be
F

)
→∞, µ = arccosh

(√
r2

F 2
+ sin2 θ

)
→∞. (70)

When q = 0 all the coefficients of the Mathieu expansions A
(2l+1)
2r+1 are zero except the first

one (r = l = 0) which is 1, so that the electric field (25) becomes

Et,y
z = πGd

A
(1)
1

p′1
se1(ϕ, 0)

[
Gek1(µ, 0)− Gek1(µ0, 0)

Se1(µ0, 0)
Se1(µ, 0)

]
. (71)

Since A
(1)
1 = 1, we have

se1(ϕ, 0) = sinϕ = sin θ. (72)
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Moreover, from Eq. (19) we have that

ν1(µ) = ν1(µ0)→ 0, (73)

and

ν2(µ) =
k0F

2βγ
eµ → k0r

βγ
, ν2(µ0) =

k0F

2βγ
eµ0 → k0be

βγ
, (74)

so that

Gek1 (µ, 0) =
p′1
π

[
I0(0)K1

(
k0r

βγ

)
+ I1(0)K0

(
k0r

βγ

)]
=
p′1
π
K1

(
k0r

βγ

)
, (75)

and, analogously,

Gek1 (µ0, 0) =
p′1
π
K1

(
k0be
βγ

)
. (76)

Finally, if, instead of Eq. (48), we use, for Se(2l+1), the expansions in terms of Bessel
functions given in ref. [13],

Se2l+1(µ,−q) =
p′2l+1

A
(2l+1)
1

∞∑
r=0

(−1)rA
(2l+1)
2r+1 [Ir(ν1)Ir+1(ν2)− Ir+1(ν1)Ir(ν2)] , (77)

we obtain that

Se1(µ, 0) = p′1I1

(
k0r

βγ

)
, Se1(µ0, 0) = p′1I1

(
k0be
βγ

)
, (78)

so that the longitudinal electric field reduces to

Et
z = Gd sin θ

K1

(
k0r

βγ

)
−
K1

(
k0be
βγ

)
I1

(
k0be
βγ

) I1(k0r
βγ

) , (79)

which is the longitudinal electric field of a vertical dipole in a circular perfectly conducting
vacuum chamber.

E Longitudinal electric field of an horizontal dipole

For a dipole oriented along the horizontal axis, the electric field of Eq. (20) becomes

Ed,x
z = Gd

2Fk0 coshµ

βγν1ν2

∞∑
k=0

(k + 1)Ik+1(ν1)Kk+1(ν2)C
1
k [cos(2ϕ+ π)] cosϕ. (80)

The last two terms in the summation can be written as

C1
k [cos(2ϕ+ π)] cosϕ =

sin [(k + 1)(2ϕ+ π)]

sin(2ϕ+ π)
cosϕ = (−1)k

sin [(k + 1)2ϕ)]

2 sinϕ
, (81)
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which, due to the symmetry considerations of Sec. 2, can be written in terms of the elliptic
cosine odd functions (44). To do that, we write

sin [(k + 1)2ϕ)]

sinϕ
=

∞∑
m=0

M2k+1
2m+1ce2m+1(ϕ,−q), (82)

that, due to the normalisation condition, gives∫ π

−π
ce2t+1(ϕ,−q)

sin [(k + 1)2ϕ)]

sinϕ
dϕ = πM2k+1

2t+1 . (83)

so that

M2k+1
2t+1 =

(−1)t

π

∞∑
r=0

(−1)rB
(2t+1)
2r+1

∫ π

−π
cos[(2r + 1)ϕ]

sin [(k + 1)2ϕ)]

sinϕ
dϕ. (84)

The integral is equal to 2π if r ≤ k, otherwise it is zero, so that

M2k+1
2t+1 = 2(−1)t

k∑
r=0

(−1)rB
(2t+1)
2r+1 . (85)

Therefore, the longitudinal electric field becomes

Ed,x
z = Gd

Fk0 coshµ

βγν1ν2

∞∑
m=0

ce2m+1(ϕ,−q)
∞∑
k=0

M2k+1
2m+1(k + 1)(−1)kIk+1(ν1)Kk+1(ν2), (86)

with the known expansion coefficients given by Eq. (85).
By writing now coshµ in terms of ν1 and ν2, after some mathematics, we obtain an

equation similar to Eq. (21) of the vertical dipole:

Ed,x
z = Gd

∞∑
m=0

(−1)mce2m+1(ϕ,−q)
∞∑
r=0

(−1)rB
(2m+1)
2r+1(

∞∑
k=r

(−1)k {[Ik(ν1)− Ik+2(ν1)]Kk+1(ν2)− [Kk(ν2)−Kk+2(ν2)]Ik+1(ν1)}

)
. (87)

Let’s now consider the last summation, for which all the terms with intermediate indexes
simplify each other, so that we remain with

(
∞∑
k=r

(−1)k {[Ik(ν1)− Ik+2(ν1)]Kk+1(ν2)− [Kk(ν2)−Kk+2(ν2)]Ik+1(ν1)}

)
=

(−1)r {Ir(ν1)Kr+1(ν2)−Kr(ν2)Ir+1(ν1)

− lim
n→∞

[Ir+n+4(ν1)Kr+n+3(ν2)−Kr+n+4(ν2)Ir+n+3(ν1)]}. (88)
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Since
lim
n→∞

[Ir+n+4(ν1)Kr+n+3(ν2)−Kr+n+4(ν2)Ir+n+3(ν1)] = 0(e−(2n)µ), (89)

we can write the electric field of Eq. (87) as

Ed,x
z = Gd

∞∑
m=0

(−1)mce2m+1(ϕ,−q)
∞∑
r=0

B
(2m+1)
2r+1 [Ir(ν1)Kr+1(ν2)− Ir+1(ν1)Kr(ν2)]. (90)

We now recognise in the last summation a term proportional to the Mathieu functions
Fek2m+1 of Eq. (50), so that the direct field can be written finally as

Ed,x
z = πGd

∞∑
m=0

(−1)m
B

(2m+1)
1

s′2m+1

ce2m+1(ϕ,−q)Fek2m+1(µ,−q). (91)

For what concerns the indirect field scattered by the elliptic boundary conditions, due to
the symmetric reasons discussed in Sec. 2, we expand it in terms of the Mathieu functions
ce2m+1 and Ce2m+1, with the expansion coefficients determined in such a way to give a zero
value electric field on the elliptic surface µ = µ0, so that we easily obtain

Ei,x
z = −πGd

∞∑
m=0

(−1)m
B

(2m+1)
1

s′2m+1

ce2m+1(ϕ,−q)
Fek2m+1(µ0,−q)
Ce2m+1(µ0,−q)

Ce2m+1(µ,−q), (92)

and, therefore, the total field is given by Eq. (28).
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