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Abstract: Monolithic Active Pixel Sensors (MAPS) produced in High Voltage CMOS (HV-
CMOS) technology are being considered for High Energy Physics applications due to the ease of
production and the reduced costs. Such technology is especially appealing when large areas to be
covered and material budget are concerned. This is the case of the outermost pixel layers of the
future ATLAS tracking detector for the High Luminosity LHC. For experiments at hadron colliders,
radiation hardness is a key requirement which is not fulfilled by standard CMOS sensor designs that
collect charge by diffusion. This issue has been addressed by depleted active pixel sensors in which
electronics are embedded into a large deep implantation ensuring uniform charge collection by drift.
Very first small prototypes of hybrid depleted active pixel sensors have already shown a radiation
hardness compatible with the ATLAS requirements. Nevertheless, to compete with the present
hybrid solutions a further reduction in costs achievable by a fully monolithic design is desirable.
The H35DEMO is a large electrode full reticle demonstrator chip produced in AMS 350 nm HV-
CMOS technology by the collaboration of Karlsruher Institut für Technologie (KIT), Institut de
Física d’Altes Energies (IFAE), University of Liverpool and University of Geneva. It includes
two large monolithic pixel matrices which can be operated standalone. One of these two matrices
was characterised at beam test before and after irradiation with protons and neutrons. Results
demonstrated the feasibility of producing radiation hard large area fully monolithic pixel sensors in
HV-CMOS technology. H35DEMO chips with a substrate resistivity of 200 Ωcm irradiated with
neutrons showed a radiation hardness up to a fluence of 1 × 1015 neq/cm2 with a hit efficiency of
about 99 % and a noise occupancy lower than 10−6 hits in a LHC bunch crossing of 25 ns at 150 V.
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1 Introduction

Monolithic Active Pixel Sensors (MAPS) produced with CMOS process are becoming of great
interest for High Energy Physics (HEP) experiments. In particular Depleted MAPS (DMAPS) first
proposed in [1] give the possibility of having a fast monolithic detector with a large depleted region
and reduced thickness for HEP applications. In DMAPS the signal is generated by charge drift
instead of diffusion resulting in a faster charge collection with respect to normal MAPS and less
prone to the effects of radiation damage. This technology is being investigated for the upgrade
of the ATLAS detector at the High Luminosity Large Hadron Collider (HL-LHC) with the aim
of covering large areas in the outer pixel layers of the Inner Tracker (ITk) using cost-effective
detectors [2]. First prototypes of depleted active pixel sensors produced in H18 AMS [3] CMOS
technology and capacitive coupled to ATLAS FE-I4 chips have already demonstrated to resists large
radiation fluences and thus be interesting candidates for the LHC experiments [4]. The next step
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towards a final module for the ITk will be the development of a full scale monolithic prototype.
The H35DEMO, was thus developed with the main purpose of demonstrating the feasibility of
producing large area devices and investigate full size monolithic structures. For this first large area
prototype the 350 nm technology (H35) was chosen instead of the 180 nm technology (H18) to
contain production costs and investigate its use for less demanding radiation applications such as
strip detectors.

2 The H35DEMO demonstrator

TheH35DEMO [5] is a large area demonstrator chip produced in AMS 350 nmHighVoltage CMOS
(HV-CMOS) technology on four different substrate resistivities: 20, 80, 200 and 1000 Ωcm. The
design was carried out by the collaboration of Karlsruher Institut für Technologie (KIT), Institut
de Física d’Altes Energies (IFAE) and University of Liverpool. The layout of the chip, shown in
figure 1, consists of four independent pixel matrices: two analog matrices of 23 × 300 pixels meant
to be capacitive coupled to ATLAS FE-I4 readout ASICS [6]; and two monolithic matrices of
16 × 300 pixels including digital electronics in the periphery to be operated standalone. Additional
passive test structures without electronics are present at the edge of the chip. In particular a 3 × 3
pixel matrix for Transient Current Technique (TCT) studies was extensively measured before and
after irradiation, and results have been published in ref. [7].

The total dimensions of the chip are (18.49 × 24.40)mm2. In all four matrices the pixel size
is (50 × 250) µm2, the same as in the FE-I4. The sensor part is a p-n junction obtained by a Deep
N-Well over a p-type substrate. Analog electronics are embedded and shielded inside the same
Deep N-Well also acting as collecting electrode. The chip is produced with a single side process
on 700 µm thick wafers with P-Well rings surrounding the N-Wells on the top surface where the
negative High Voltage (HV) for reverse bias is applied. The two analog matrices contain three
different flavours of active pixels each combining the presence or the absence of additional bias
rings between the Deep N-Wells, high or low gain, and Linear transistors (LT) or Enclosed Layout
Transistors (ELTs). An extensive description and characterisation of these matrices can be found in
ref. [8]. This paper will be dedicated to the characterisation of the monolithic part of the chip and
in particular of the CMOS matrix. A detailed description of analog and digital architectures of the
standalone matrices can be found in refs. [5, 9]. In the following only the characteristics relevant to
the presented measurements will be discussed.

2.1 The monolithic CMOS matrix

The pixels of the monolithic CMOSmatrix combine high gain and LTwithout employing additional
Deep P-Wells under the P-Well rings, as the pixels in the central columns of the second analogmatrix
(flavour 7). Layout and cross section of a pixel cell are shown in figure 2. The Deep N-Well is
divided into three parts to reduce the total capacitance of the pixel maintaining an uniform depletion
of the bulk. The analog electronics are embedded in the central well and mainly include a Charge
Sensitive Amplifier (CSA), a shaper and a second stage amplifier.

A sketch of the pixel and the periphery arrangement including block diagrams of the analog
and digital electronics is shown in figure 3. Each pixel is connected to a digital ReadOut Cell
(ROC) placed in the periphery of the matrix where the response of the analog stage is processed.
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Figure 1. Layout of the H35DEMO chip. The two large standalone matrices are represented in green, the
two analog matrices in blue and the test structures in violet. The different flavours of pixels are highlighted:
Flavours 1 (2) indicates pixels including discriminators without (with) time-walk compensation. Flavour 3
indicates pixels combining additional DP for high voltage bias and ELTs in the feedback circuitry. Flavour 4
(5) indicates pixels with no additional DP and ELTs (LTs) in the feedback circuitry. Flavour 6 (7) indicates
high gain pixels with (without) additional DP for high voltage. Flavour 8 indicates low gain pixels without
additional DP for high voltage.
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Figure 2. The pixel cell of the monolithic CMOS matrix. The pixel layout (a) and a sketch of the cross
section (b) are shown. In the latter DN and DP indicate Deep N-Wells and Deep P-Wells, respectively while
SN and SP indicates shallow n and p-type implantations, respectively.

– 3 –



The ROCs are divided into two blocks arranged in matrices of 60 columns and 40 rows such that
each ROC column is connected to two and a half columns of analog pixels. In the ROC a CMOS
comparator is implemented to discriminate the signal generated by a crossing particle from the
noise. When the signal crosses the comparator threshold, column, row and time-stamp relative to
the threshold crossing time are stored. The right part of the matrix, i.e. columns from 150 to 299,
includes an additional CMOS comparator. This can be set to a lower threshold to generate a second
time-stamp which is stored only if the signal passed the threshold of the first comparator. The aim of
this scheme is to improve the timing performance by reducing the size of the time-walk effect. The
digital readout of the pixel matrix implements a column drain architecture with priority encoding
where the information in the highest row is the first to be sent to the End Of Column (EOC). Data
from the left most column of each half matrix is then serialised and sent out of the chip at the clock
speed without zero suppression.

Figure 3. Arrangement of the pixel CMOSmatrix and its periphery with block diagrams of analog and digital
front-end electronics. The analog front-end electronics are integrated on pixel while the digital electronics
are placed in the periphery [9].

2.2 The monolithic NMOS matrix

The monolithic NMOS matrix integrates comparators made of NMOS transistors directly on pixel.
The pixels in the left half of the matrix, consisting of columns from 0 to 149, employ standard
NMOS comparators, while the pixels in the right half, columns 150 to 299, include more complex
NMOS comparators to compensate for time walk by making the propagation time independent of
the amplitude of the input signal. Due to the space occupied by the additional electronics inside
the pixel, the Deep N-Well is not separated as in the other matrices, leading to a larger capacitance.
The digital front-end in the ROC is the same as in the left part of the CMOS matrix. In this case the
CMOS comparators in the periphery allow to translate the low voltage output levels of the NMOS
comparators to CMOS signals for the digital electronics.

– 4 –



3 The readout system

A Data Acquisition (DAQ) system dedicated to read out the monolithic matrices of the H35DEMO
chipwas developed at IFAE, Barcelona and is shown in figure 4. The hardware is based on theXilinx
ZC706 FPGA development board1 and a custom designed carrier board where the chip is attached
and wire-bonded. This, so called Standalone PCB, includes low voltage regulators to power the
different matrices of the chip and Low Voltage Differential Signaling (LVDS) for communications.
Through the Standalone PCB it is possible to apply the bias to the junction, provide an external
test pulse for characterisation and tuning, and monitor the analog output of the CSA of pixel in the
first column of both NMOS and CMOS matrices. Additional pins and connections on the board are
implemented to monitor different signals of the chip for debugging purposes.

A first version of the Standalone PCB was produced which allowed to fully wire-bond and
program the two monolithic matrices only. In this configuration the leakage current of the sensor
was observed to be of the order of milliamps due to floating potentials in the pixels of the analog
matrices. Even if it was possible to operate non-irradiated chips in these conditions, such large
leakage current becomes particularly critical for irradiated devices due to the risk of thermal
runaway. The problem was solved with the design of a second version of the Standalone PCB
allowing for wire-bonding and programming of the analog matrices. All the presented results were
obtained using this second version of the standalone PCB with the exception of the non-irradiated
80 Ωcm chip which was measured at beam tests on the first version of the standalone PCB.

A Trigger Board was developed to add external trigger capabilities to the system enabling
integration with particle tracking telescopes for beam test measurements. This board consists of
one LEMO connector to accept TTL trigger input signals and a second LEMO connector used to
deliver a TTL busy signal. Both connectors are terminated on 50 Ω. A trigger-busy scheme is used
to synchronise the H35DEMO data taking with an external DAQ reference system: After receiving
a trigger pulse the H35DEMO DAQ system issues a busy signal to prevent the external reference
system to further process and send triggers until all data of the H35DEMO is readout and processed.
The same functions can be alternatively delegated to an RJ45 connector also present on this board.
The DAQ is completed by a series of FMC adapter cards enabling connections between the FPGA
board and the other components of the system.

A H35DEMO specific FPGA firmware was developed for the Xilinx board which allows to
program the shift registers of all four pixel matrices independently and operate one of the two
monolithic matrices at the time in continue acquisition mode or in trigger acquisition mode. In the
trigger acquisition mode three parameters (trigger delay, event block and dead time) can be tuned to
define the time window in which the output data from the chip is stored following a trigger signal.
The firmware also implements zero suppression and supports Direct Memory Access (DMA).

A software written in C++ and using a Graphical User Interface (GUI) written in QT 2 is used
to steer and synchronise the operations of the FPGA, the external power supplies, and the pulse
generator, for debugging, tuning and data taking. It communicates with a server running on the
on-board operating system of the ZC706 via ethernet connection using a TCP/IP protocol.

1Xilinx: All Programmable, [https://www.xilinx.com]
2Qt Group, www.qt.io
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Figure 4. The readout system developed at IFAE for the characterisation of the monolithic matrices of the
H35DEMO chip.

Examples of a test injection scan and a source scan obtained with this DAQ system for the
CMOS monolithic matrix are shown in figure 5. In the test injection scan 100 pulses per pixel are
injected directly in the pre-amplifier while for the source scan the signal was generated by a 90Sr
radioactive source of beta electrons placed on top of the matrix.
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Figure 5. Test of the functionalities of the CMOS monolithic matrix. In (a) and (b) the response over the
matrix surface to a test injection of 100 pulses per pixel and 90Sr beta electrons are shown, respectively.

4 Samples and irradiations

H35DEMO chips with 200 Ωcm resistivity substrate were irradiated with neutron in the TRIGA
Mark II research reactor of the Jožef Stefan Institute (JSI) in Ljubljana [11] up to a fluence
of 2 × 1015 neq/cm2 and at the KIT Zyclotron [10] with 23 MeV protons up to a fluence of
1 × 1015 neq/cm2, equivalent to a Total Ionisation Dose (TID) of about 150 Mrad. For neutron
irradiations at JSI there is also a low TID of about 0.1 Mrad per 1014 neq/cm2, which is due to
gamma emission [12]. Two chips, one with a substrate resistivity of 80 Ωcm and one of 20 Ωcm
were also irradiated with neutrons at JSI to 1.5 × 1015 neq/cm2. After irradiation all samples were
subject to an average annealing due to shipping and handling of about 1 week at room temperature
before being measured. A list of the available modules and correspondent irradiation fluences can
be found in table 1.

All irradiated devices were found to be programmable and working after irradiation, it was
however not possible to measure all modules at beam tests due to the limited beam time and because
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Table 1. Overview of the measured modules and their irradiations.

Device Resistivity Irradiation fluence Irradiation Beam test
name [Ωcm] [1014 neq/cm2] facility facility
E3 200 5 JSI FNAL3
E5 200 5 JSI FNAL3, SPS
E7 200 10 JSI SPS, DESY
E10 200 1 KIT DESY
H7 200 10 KIT DESY
D5 200 - - FNAL, SPS, DESY
UG20-2 20 - - FNAL
UG80-1 80 - - FNAL
UG1k 1000 - - -
UG20-1 20 15 JSI -
UG80-2 80 15 JSI -
D4 200 15 JSI -
D6 200 15 JSI DESY
D7 200 10 JSI -
D9 200 20 JSI DESY

of handling damage or assembly failures in some standalone PCBs.
An analog injection test was performed to check the basic functionalities of the electronics

after irradiation. This consists of injecting a certain number of large amplitude test pulses in each
analog pixels and measure how many of these pulses are detected. In non-irradiated devices all the
pulses are detected by all pixels, and the results of the scan is an uniform map of the pixel matrix
as shown in figure 5(a). Since the injection is performed directly in the pre-amplifier, the effect of
Non-Ionising Energy Loss (NIEL) in the silicon bulk for irradiated devices have negligible impact
in this type of tests and thus only the behaviour of analog and digital electronics is investigated.

After neutron irradiation up to 1 × 1015 neq/cm2, the whole matrix still responds to injection,
while for larger neutron fluences and for proton irradiations some pixels are unresponsive and some
others respond up to five times more than expected. In neutron irradiated chips this behaviour
shows up especially when chips are operated at temperatures below 0 ◦C. This effect is observed
to be in general larger after proton irradiations probably due to the significantly higher TID with
respect to neutron irradiations. The largest number of mis-behaving pixel is observed after proton
irradiation to the fluence of 1 × 1015 neq/cm2, the resulting analog injection test maps are shown
in figure 6. As can be evinced from these maps, the effect cannot be associated with cross talk
between pixels neither in the analog matrix (figure 6(a)) nor in the the ROC pixels of the digital
periphery (figure 6(b)). In the latter it is otherwise evident that the pattern comes from a crosstalk
between adjacent row address digital lines: When in the row address appears the pattern ”101”,
the central bit, which is at 0, flips to 1 giving as output systematically the wrong row address.

3Results of irradiated modules from FNAL beam test are not reported in this paper, but can be found in ref [9].
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Annealing was observed to increase the number of misbehaving pixels in all irradiated devices.
Also neutron irradiated chips which did not present misbehaving pixels just after irradiation, began
to show this crosstalk effect after accumulating few days at room temperature due to transportation
and handling. This design problem was identified and corrected for the next generations of AMS
prototypes for ATLAS. Anyhow, as a workaround to still perform measurements on the H35DEMO
prototype it was possible to recover the uniformity of the chip response by increasing the digital
voltage (VDDD) of the chip from 3.3 V up to 5 V depending on the irradiation levels and types.
This prevents the cross talk, but at the same time increases the noise especially in the pixels close
to the digital periphery.
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Figure 6. Analog scan of the CMOS matrix of a 200 Ωcm chip irradiated with protons to a fluence of
1 × 1015 neq/cm2. In (a) the hits are shown in the pixel matrix representation, while in (b) the disposition
of the pixels is shown as it is mapped to the ROC matrix. In both maps for each pixel the number of hits
recorded is normalised to the number of injected pulses. The digital part of the chip is powered with 3.3 V.
The correspondence between each two and a half column of pixels in the analog part and the ROC columns
in the digital part is sketched in (c) for one sub-matrix.
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5 Current-Bias (I-V) characterisation

The leakage current of the p-n junction as function of applied bias (IV) was measured at stable
temperature in a climate chamber. As shown in figure 7, devices with a resistivity of 20, 80 and
200 Ωcm experience the breakdown between 165 and 185 V before irradiation and mostly above
140 after irradiation. A steep increase of the current around 30 V is instead observed in the 1 kΩcm
sample before irradiation. This was initially mistaken for a breakdown. Instead by measuring the
module at −35 ◦C, thus reducing the leakage current below the instrument compliance to explore
larger voltage biases, a second plateau is observed over 60 V. After this step the real breakdown
occurs at about 165 V similarly to what observed for the other devices. This behaviour was also
observed in 1 kΩcm samples used for CCPD studies [8], and was explained by the Rise-And-Flatten
(RAF) effect [13]. Due to the very high leakage current, it was not possible to operate and measure
this device at beam tests.

Irradiated devices show an increase of the leakage current with the fluence consistent with
the linear expectation within the large uncertainties on the annealing times due to transport and
handling.
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Figure 7. Current as a function of the bias voltage applied to the full device. Results of modules measured in
a climate chamber before irradiation mostly at 20 ◦C and after irradiation at −35 ◦C are shown in (a) and (b),
respectively.

6 Threshold tuning and noise

By setting dedicated internal Digital to Analog Converter (DAC) registers and applying external
voltages through a DAC on the PCB, three main parameters can be tuned in the chip which have
an effect on the threshold of the CMOS matrix. These are the feedback current of the in-pixel
pre-amplifier (VNFBPix), the gain of the pre-amplifier (tuned by changing the voltage difference
between nBLPix and ThPix) and the threshold of the discriminator in the periphery with respect
to the baseline. The latter is set over the noise by changing the voltage difference between two
global parameters (Th and nBL) which affect the whole matrix, and can be fine adjusted for each
pixel with dedicated trim registers implemented in the chip. A trim global step register (VPTrim)
allows to define the amount of adjustment obtained by moving each trim register. The trim registers
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are disabled in the default configuration of the left sub-matrix, but not in the right one where a
correction towards larger thresholds and proportional to the value of the VPTrim global register is
always applied. The tuning strategy for the presented measurements aimed at obtaining the lowest
possible threshold on the left sub-matrix by changing the global parameters and subsequently rising
the threshold on the right sub-matrix to minimise the noise level by increasing the VPTrim register.
The fine tuning of the off-pixel trim registers of the CMOS matrix was not showing significant
improvements in the threshold distribution and was therefore omitted.

The charge injection circuit included in each pixel allows to use an external test pulse to
measure the 50 % occupancy point which defines the value of the threshold. The variation of the
mean threshold distribution of the pixels in the CMOS left sub-matrix as a function of the global
register settings is shown in figure 8. When changing the off-pixel threshold settings a linear
response is observed, while changing the global gain register the behaviour of the mean threshold
distribution is well described in the measured range by an error function.
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Figure 8. Mean threshold in the CMOS left sub-matrix as a function of the global parameter difference for
the off-pixel threshold nTh−nBL (a) and the gain nThPix−nBLPix (b). The threshold response to the gain is
shown for two different settings of the off-pixel threshold. The uncertainties on the mean threshold value is
the sigma of the Gaussian fit to the threshold distribution. The data points are fit with a first order polynomial
and an error function for the off-pixel threshold and the gain, respectively.

The correspondent equivalent injected charge was measured using an x-ray fluorescence setup
at CERN with different target materials (Iron, Copper, Germanium, Zirconium, Molybdenum) and
a 55Fe radioactive source emitting gammas. The integral of the photon spectrum is obtained by
measuring the average response frequency (number of hits per second) of the pixels while scanning
over the threshold range. This method relies on the assumption of full charge collection from photon
interaction. The result of the measurements is shown in figure 9. The calibration of the injected
voltage to charge in unit of number of electrons extrapolated by a linear fit to the data is used in the
following.

An example of threshold tuning and correspondent noise for a 200 Ωcm chip before irradiation
is shown in figure 10. The module was kept at the constant temperature of 20 ◦C inside a climate
chamber. A threshold of 840 e with a sigma dispersion of about 230–250 e was obtained. Typical
threshold noise values before irradiation are usually contained below 500 e and in the case of the
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Figure 9. Calibration of the mean threshold obtained by external voltage injection to charge in unit of number
of electrons. The charge was generated in the sensor by the interaction in silicon of photons generated by
x-ray fluorescence emission of several material: Iron (Fe), Copper (Cu), Germanium (Ge), Zirconium (Zr)
and Molybdenum (Mo). An additional point was obtained using the gamma emission of an 55Fe radioactive
source.

tuning presented the mean noise is about 320–330 e with a sigma of about 40 e. After irradiation the
minimum achievable threshold is usually between 1000 and 2200 e, depending on the irradiation
dose, with a higher mean noise between 500 and 600 e but mostly contained within 700 e. An
example is shown in figure 11 for a chip irradiated with neutrons to 1 × 1015 neq/cm2. The lowest
thresholds were obtained for the left sub-matrix only.
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Figure 10. Threshold (a) and noise (b) distributions in the CMOS matrix of a non-irradiated detector with a
bulk substrate of 200 Ωcm.

7 Beam test campaigns: setups and analysis method

Beam test campaigns were carried out at the CERN Super Proton Synchrotron (SPS) in the H8 beam
line with 180 GeV pions, at the MTEST facility of the Fermilab National Accelerator Laboratory
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Figure 11. Threshold (a) and noise (b) distributions in the CMOS matrix of a detector with a bulk substrate
of 200 Ωcm irradiated with reactor neutrons to a fluence of 1 × 1015 neq/cm2.

(FNAL) with 120 GeV protons, and at Deutsches Elektronen-Synchrotron (DESY) with electrons
and positrons between 4 GeV and 5 GeV. At CERN and Fermilab the UniGe FE-I4 telescope [14]
was used as reference to measure the particle trajectories. It consists of six ATLAS FE-I4B planar
pixel sensors from the IBL production read out with the RCE system [15]. An AIDA EUDET-type
telescope [16] made of six MIMOSA26 tracking planes and an FE-I4B planar pixel sensor as time
reference was instead employed at DESY. With both telescope systems the trigger-busy signals
described in section 2 were used to synchronise the data with the IFAE readout system. In the case
of the FE-I4 telescope the signals are handled by the RCE directly, while at DESY the AIDA TLU
and the EUDAQ software are used to synchronise and merge the data of the EUDET telescope, the
FE-I4B reference plane readout by a USBPix3 DAQ system [17], and the IFAE readout system.

In the FE-I4 telescope the trigger signal is given by the coincidence of hits in the first and last
planes. As consequence of a trigger, hits in the telescope planes are integrated over a maximum
time of 400 ns, i.e. 16 LHC bunch crossings. In the IFAE readout system, instead, a time window
of about 7.5–10 µs is selected to save the data coming from the H35DEMO chip. This large time
window is necessary given the readout architecture of the chip in order to accommodate for the full
readout of the EOCs of each half matrix containing the data related to the trigger event.

In the case of the EUDET telescope instead, particles are triggered by the coincidence of four
scintillators overlapping over the area of aMIMOSA sensors, two are placed in front of the upstream
arm and two behind the downstream arm. Since the integration time of the MIMOSA26 is much
larger than the one necessary to read out the H35DEMO, additional tracks may be reconstructed
which are not associated to the main particle triggered by the scintillators. To avoid an underestima-
tion of the efficiency, an FE-I4 pixel module which has a triggered readout with a timing precision
of 25 ns is used as reference. For the analysis, only tracks pointing to a correspondent hit in the
FE-I4 reference plane are selected.

For the reconstruction of reference tracks and extrapolation of the impact point on the detectors
under test the Proteus software [18] was used for the FE-I4 telescope data, while for the EUDET
telescope data the reconstruction and analysis frameworksEUTelescope andTBmonIIwere used [19,
20].
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A report of the very first beam test campaign at CERN SPS in 2016 can be found in ref. [21].
In this campaign the readout system was still a preliminary version showing stability problems
and limitations that required a re-synchronisation of the events in the offline analysis. An upgrade
of the readout system and a better understanding of the H35DEMO chip allowed to improve the
integration with the FE-I4 telescope for better stability of the data taking. The results presented in
this paper are obtained with this last version of the IFAE readout system.

8 Beam test results

A full characterisation at different irradiation levels of chips with a substrate resistivity of 200 Ωcm
was possible due to the large availability of these devices coming from the same wafer. Just few
chips of other resistivities were instead available for these studies and thus were only measured and
compared before irradiation.

8.1 Operations and tunings

Non-irradiated chips produced with three different resistivities, 20, 80 and 200 Ωcm, were mounted
on standalone PCBs and the CMOSmonolithic matrix was measured in the beam at Fermilab. They
were operated at room temperature with active heat dissipation using a fan blowing on the back of
the device. A tuning of the CMOS matrix was performed aiming at the lowest threshold. After
such tuning the left and right part of the matrix resulted in different threshold distributions and are
thus considered separately in the analysis. The measured mean of the threshold distributions for the
different chips was measured in both parts of the CMOS matrix and are summarised in table 2.

Table 2. Overview of the threshold distributions and digital voltage settings in the CMOS matrix for the
chips measured at beam tests. Neutron and proton irradiations are indicated with n and p, respectively.

Device Resistivity Irradiation fluence Mean threshold Mean threshold VDDD
name [Ωcm] [1014 neq/cm2] (type) left [e] right [e] [V]
UG20-1 20 0 1350 1500 3.3
UG80-2 80 0 1300 1700 3.3
D5 200 0 800 1100 3.3
E5 200 5 (n) 1700 - 3.3
E7 200 10 (n) 1700 - 3.3
E10 200 1 (p) 2100 - 3.9
H7 200 10 (p) 1700 - 4.5
D6 200 15 (n) 1700 - 3.9
D9 200 20 (n) 2450 - 4.0

With the 200 Ωcm sample it was possible to reach thresholds as low as 800 e. In the 20 and
80 Ωcm resistivity samples instead the tuning procedure resulted in a larger threshold of 1300 e for
the left part of the matrix and 1700 e for the right part of the matrix due to the noise that was found
to be higher than for the 200 Ωcm chips. In the 80 Ωcm the larger noise may come from the large
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leakage current observed in the first version of the standalone PCB as explained in section 3, while
for the 20 Ωcm chips the higher noise may be connected with the substrate resistivity.

After irradiation the chips were operated at an environmental temperatures between −15 and
−25 ◦C using a chiller based cooling box at SPS, and between −35 and −45 ◦C with dry ice at
DESY. Due to the address crosstalk problem described in section 4, chips irradiated with neutron to
fluences of more than 1 × 1015 neq/cm2 and proton irradiated chips were operated increasing VDDD
as described in table 2. Moreover, the threshold optimisation and the analysis was performed only
for the left sub-matrix because of difficulties in obtaining an uniform tuning at low thresholds for
irradiated chips in both left and right sub-matrices.

8.2 Cluster properties

The cluster size distribution measured at beam tests for modules before and after irradiation is
shown in figure 12. In these studies the beam was always impinging perpendicularly to the pixel
surface, therefore a cluster size larger than one is expected only due to charge sharing out of lateral
diffusion or eventually delta electrons. Before irradiation the fraction of cluster size two is about
8–9 % in the 80 and 200 Ωcm samples, while in the 20 Ωcm a percent of clusters size two of about
15 % is observed. This difference is anyhow marginally significant given an uncertainty of up to 2
degrees in the alignment which leads to an uncertainty in the cluster fraction estimation of about
5 %.

After irradiation events with a cluster size larger than one are reduced by a factor 8-9 with
respect to events before irradiations. This is expected due to charge trapping which reduces diffusion
and the higher thresholds at which the chips were operated. The effect of the threshold variation on
the cluster size was measured on the chip irradiated with neutrons to 1 × 1016 neq/cm2 and found
to be less than 1 %.
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Figure 12. Cluster size distribution for particles crossing perpendicularly to the detector surface. In (a) the
cluster size of non-irradiated samples of different resistivities is compared. In (b) results of 200 Ωcm samples
after irradiation to different fluences are shown.
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8.3 Efficiency before irradiation

The hit efficiencymeasured as a function of the bias voltage is shown in figure 13(a). For resistivities
of 80 and 200 Ωcm the hit efficiency is above 99 % already applying a bias voltage of 50 V, while
for the 20 Ωcm sample it was necessary to bias the junction with at least 160 V to obtain the same
results. This is explained with the lower depletion depth expected for such low resistivity [7, 22]
which leads to a lower charge signal. Indeed, at lower voltages the hit efficiency decreases and a
difference between the left and the right part of the CMOS matrix arises due to the slightly different
threshold levels. This hit efficiency difference decreases as the bias voltage, and thus the signal,
increases. This is the expected behaviour when the threshold is very close to the collected charge.

Figure 13(b) shows the hit efficiency distribution over the CMOSmatrix when biased to 100 V.
In the 20 Ωcm sample and faintly also in the 80 Ωcm sample, it is possible to appreciate the different
efficiency between left and the right sub-matrices which is uniform within each sub-matrix. In the
case of 200 Ωcm, instead, the hit efficiency is uniform over the whole pixel area.
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(b) Hit efficiency maps at 100 V

Figure 13. Hit detection efficiency of the CMOSmatrix before irradiation for different substrate resistivities.
In (a) the hit efficiency is shown as a function of the bias voltage. The performance of the left and right sub-
matrices are shown separately due to difference in the threshold settings which became significant especially
with low signals. Points are shifted of few Volts for better visibility. In (b) the hit efficiency distribution
over the matrix surface at 100 V is shown for three different resistivities (from top to bottom): 20, 80 and
200 Ωcm.

8.4 Efficiency after irradiation

The hit efficiency measured after irradiation as function of the bias voltage for the 200 Ωcm samples
is shown in figure 14. An efficiency over 98 % was obtained for all modules irradiated up to
1 × 1015 neq/cm2 either with protons or neutrons by applying a bias voltage larger than 120 V. For
larger irradiation fluences an efficiency lower than 60 % was found up to the measured voltage
of 160 V which is close to the breakdown. A larger bias voltage and lower thresholds would be
necessary to operate this technology at fluences larger than 1 × 1015 neq/cm2. In chips exposed to
the same type of irradiation a correlation between the fluence and the hit efficiency is observed. A
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larger efficiency is instead measured in the chip irradiated with protons to 1 × 1015 neq/cm2 with
respect to the one irradiated with neutrons to the same fluence despite the higher threshold of
the first one. This can be explained by the larger depletion depth which is obtained with proton
irradiation with respect to neutron irradiation as observed in TCT measurements due to acceptor
removal effect [22]. For almost all irradiated samples up to 1 × 1015 neq/cm2 the same efficiency
as measured before irradiation is recovered with a bias voltage of 150 V. The only exception is the
H7 sensor irradiated with protons for which the measurements were limited to 120 V by the lower
breakdown voltage.
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Figure 14. Hit detection efficiency as a function of the bias voltage of the CMOS matrix for samples
irradiated to different fluences. In (a) the full hit efficiency scale is shown, while (b) shows a zoom over the
high efficiency region. Neutron irradiation is indicated by (n) and proton irradiation by (p) in the legends. A
systematic uncertainty of 0.3 % is assigned to all measurements.

The hit efficiency over the left sub-matrix is shown in figure 15 for the highest measured voltage
point. As before irradiation, the efficiency is uniform over the sub-matrix surface for all irradiation
types and fluences. The expected fluctuations close to the boundary of the acceptance window of
the telescope trigger are observed due to the low track statistics.

In figure 16 the efficiency of a sample irradiated with neutrons to 1 × 1015 neq/cm2 was
measured as a function of the threshold while biased to 150 V. With a threshold equal or lower
than 1.8 ke an efficiency of about 99 % was achieved. The efficiency gets just below 95 % with a
threshold of about 2 ke and then dramatically drops below 70 % for larger threshold values. The
correspondent distribution of the hit efficiency over a pixel cell is shown in figure 16(b). When
the global hit efficiency is close to 99 %, the hit efficiency is distributed uniformly over the pixel
surface. As the threshold is increased inefficient regions are observed close to the boundaries of
the cells and in particular in the corners between four pixels. This is due to charge sharing between
neighbouring pixels which reduces the charge signal in each channel increasing the probability of
falling below threshold.

From these results we can conclude that a bias voltage equal or larger than 130 V and a
maximum threshold of 1.8 ke are necessary to operate 200 Ωcm samples with an efficiency larger
than 97 % up to irradiation fluences of 1 × 1015 neq/cm2.
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Figure 15. Hit efficiency maps of 200 Ωcm chips after irradiation. Measurements are shown for the highest
measured voltage. The fluence Φ is expressed in units of 1 MeV neq/cm2. Neutron irradiation is indicated
by (n) and proton irradiation by (p) in each map header. The measured area is limited on left side of the
maps by the acceptance of trigger of the tracking telescope and edges are removed from the analysis to avoid
smearing effects due to the telescope resolution. Note the different scale used in the efficiency for the two
most irradiated devices with respect to the others.
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Figure 16. Hit detection efficiency of the CMOS left sub-matrix after neutron irradiation to a fluence of
1 × 1015 neq/cm2 and biased to 150 V. In (a) the hit efficiency is shown as a function of the threshold.
Error bars indicates the sigma of the gaussian fit to the correspondent threshold distribution. A systematic
uncertainty of 0.3 % is assigned to all measurements. In (b) the hit efficiency is shown for different threshold
settings, from left to right: 1490, 2110 and 3090 e. The hit efficiency maps of the pixel cells are obtained
displaying the reconstructed track impact point expressed in pixel coordinates and projecting the data for all
identical structures onto the same image.
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9 Noise occupancy and power consumption

In order to fully evaluate the performance of the chip the results of the hit efficiency need to be
evaluated together with the noise occupancy. For the ATLAS experiment a noise occupancy per
pixel of less than 10−6 hits in 25 ns, i.e. a LHC bunch crossing, is required.

The noise occupancy of the left sub-matrix was measured for irradiated and non-irradiated
200 Ωcm chips in a climate chamber at stable temperatures: Non-irradiated devices were kept at
20 ◦C, while irradiated devices were cooled down to −35 ◦C. This is estimated to be equivalent
to a temperature on chip, when configured, of approximately 30 ◦C and −25 ◦C, respectively. All
chips were operated at the voltage for which the highest hit efficiency was measured and in the same
conditions as they were operated at beam tests. An acquisition window of 5 minutes was used in
absence of radioactive sources to integrate the noise hits. Given the small dimensions of the matrix
the cosmic muon background is considered negligible.

Noise occupancy results as a function of the threshold are showed in figure 17. Before
irradiation the noise occupancy in the full left sub-matrix reaches a maximum of 2 × 10−8 at the
lowest measured threshold of 900 e, otherwise it falls below 10−9 with thresholds higher than
1100 e. After irradiation the noise occupancy can be still kept below 10−6 in the case of neutron
irradiations even with thresholds between 1300 and 1800 e with which a hit efficiency of about 99 %
was achieved at beam tests. This correspond to a noise occupancy per pixel of about 4 × 10−10 ,

well below the ATLAS requirements.
A power consumption of about 97 µW per pixel was measured using the DAC settings with

which the chips were operated at the beam test. This includes a contribution of 91 µW per pixel
from the digital part which is powered with 3.3 V, and 6 µW per pixel from the analog part which
is powered with 2 V. These results are consistent with the simulations published in ref. [5]. No
significant variation of the power consumption of the chip was observed after irradiation apart from
the need of rising the digital voltage to avoid the mentioned crosstalk effect discussed in section 4.
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10 Conclusions and outlook

Very first results of the characterisation of the H35DEMO chip have been presented demonstrating
the feasibility of producing largemonolithic devices using a cost-effectiveCMOSprocess to fulfil the
requirements in terms of radiation hardness for the ATLAS experiment at HL-LHC. The monolithic
CMOS matrix of the H35DEMO was operated for minimum ionising particle detection using the
DAQ system developed at IFAE. Before irradiation a comparison of the performance of different
resistivities measured at beam tests showed best results for 80 and 200 Ωcm with respect to the usual
20 Ωcm resistivity substrates commonly used in the industrial CMOS process. Devices with higher
resistivity substrates were able to reach a detection efficiency around 99 % with a bias voltages
lower than 80 V.

After irradiation several problems have been identified in the monolithic part of this first
large area prototype which need to be considered in the designs of future chips. Nevertheless, a
characterisation of detection performance was possible up the radiation fluences expected for the
outermost pixel layer of the ATLAS experiment at HL-LHC. The results demonstrated the radiation
hardness of this large electrode design after neutron irradiation up to a fluence of 1 × 1015 neq/cm2

showing an hit efficiency of 99 % at 150 V with an occupancy of less than 1 × 10−6 noise hits in
a LHC bunch crossing of 25 ns. A hit efficiency of more than 98 % was also measured for proton
irradiated chips with 130 V after a particle fluence of 1 × 1015 neq/cm2.

The performance of this technology could be taken farther by improving the tuning capabilities
to reduce the threshold dispersion, and implement the possibility of effectively masking single
pixels. Moreover, the performance of this chip is also limited by the H35 process which was chosen
to contain the costs and eventually investigate this technology for less demanding applications in
terms of radiation hardness. In particular, by moving to a CMOS process in 180 nm that allows to
fit more functionalities within a smaller pixel area, the radiation hardness of the digital part will be
improved and at the same time the capacitance of the pixel reduced. Moreover, the power dissipation
will also improve given the lower bias voltages required for the electronics in this technology with
respect the H35. The H18 technology is not only available at AMS, but also in other foundries, such
as TSI [23] in the United States, giving the flexibility of moving the process to another foundry in
case of issues and in view of large productions.

The ATLASPix, a series of large area HV-CMOS chips has been already designed in CMOS
180 nm H18 AMS technology and the first prototype, the ATLASPix1, has been already produced
and successfully tested before irradiation [24]. The ATLASPix2 has been also submitted for
production at TSI in June 2018. This new generation of monolithic prototypes for ATLAS aims
at moving towards a final demonstrator by consolidating the radiation hardness features of this
design and including all the functionalities required by the ATLAS experiment. In particular it
will have to investigate the possibility of matching the requirements in terms of timing and in-time
efficiency which were not met by previous prototypes as shown by the measurements preformed on
CCPDs [4, 8].

– 19 –



Acknowledgments

This work was partially funded by: the Generalitat de Catalunya (AGAUR 2014 SGR 1177),
the MINECO, Spanish Government, under grants FPA2015-69260-C3-2-R, FPA2015-69260-C3-
3-R (co-financed with the European Union’s FEDER funds) and SEV-2012-0234 (Severo Ochoa
excellence programme), under the Juan de la Cierva programme; the European Union’s Horizon
2020 Research and Innovation programme under Grant Agreement no. 654168; and the PhD
fellowship program of La Obra Social La Caixa-Severo Ochoa. The authors would like to thank
A. Dierlamm and F. Bögelspacher (KIT) as well as V. Cindro and I. Mandic (JSI) for the excellent
support for the irradiations, and S. Kühn and S. Dungs for the availability and support with the
x-ray fluorescence setup at CERN.

References

[1] I. Perić et al., A novel monolithic pixelated particle detector implemented in high-voltage CMOS
technology, Nucl. Instrum. Meth. A 582 (2007) 876.

[2] ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report, Tech. Rep.
CERN-LHCC-2010-013, ATLAS-TDR-19, CERN, September 2010,
[https://cds.cern.ch/record/1291633].

[3] AMS AG, Austria Mikro Systeme, [http://ams.com].

[4] M. Benoit et al., Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes, JINST 13
(2018), P02011.

[5] E. Vilella et al., Prototyping of an HV-CMOS demonstrator for the High Luminosity-LHC upgrade,
JINST 11 (2016) no. 1, C01012.

[6] M. Garcia-Sciveres et al., The FE-I4 pixel readout integrated circuit, Nucl. Instrum. Meth. A 636
(2011) S155.

[7] E. Cavallaro et al., Studies of irradiated AMS H35 CMOS detectors for the ATLAS tracker upgrade,
JINST 12 (2017) no. 1, C01074.

[8] M. Benoit et al., Test beam measurement of ams H35 HV-CMOS capacitively coupled pixel sensor
prototypes with high-resistivity substrate, JINST 13 (2018) no.12, P12009.

[9] R. Casanova et al., Design and characterization of the monolithic matrices of the H35DEMO chip,
PoS TWEPP-17 (2018) 029.

[10] Irradiation Center at the Karlsruhe Institute of Technology (KIT),
[http://www.etp.kit.edu/english/irradiation_center.php].

[11] The Reactor Center Podgorica of the Jožef Stefan Institute, [http://www.rcp.ijs.si].

[12] I. Mandić et al., Bulk Damage in DMILL npn Bipolar Transistors Caused by Thermal Neutrons Versus
Protons and Fast Neutrons, IEEE Transaction on Nuclear Science 51 (2004) no. 4.

[13] D M S Sultan et. al., Characterization of the first double-sided 3D radiation sensors fabricated at
FBK on 6-inch silicon wafers, JINST (2015), no. 10, C12009.

[14] M. Benoit et al., The FE-I4 telescope for particle tracking in testbeam experiments, JINST 11 (2016)
P07003.

– 20 –

https://cds.cern.ch/record/1291633
http://ams.com
http://www.etp.kit.edu/english/irradiation_center.php
http://www.rcp.ijs.si


[15] R. Herbst et al., Design of the SLAC RCE Platform: A general purpose ATCA based data acquisition
system, in Proceedings of RTSD 2014, Seattle, WA, USA, November 8-15, 2014.

[16] I. Rubinskiy et al., An EUDET/AIDA Pixel Beam Telescope for Detector Development, Phys. Proc. 37
(2012) 923.

[17] V. Filimonov et al., A serial powering pixel stave prototype for the ATLAS ITk upgrade, JINST 12
(2017) no. 03, C03045.

[18] M. Kiehn et al., Proteus pixel telescope reconstruction, [https://gitlab.cern.ch/unige-fei4tel/proteus].

[19] EUTelescope - A Generic Pixel Telescope Data Analysis Framework, [http://eutelescope.web.cern.ch].

[20] TBmonII Test Beam Analysis Framework, [https://bitbucket.org/TBmon2/tbmon2/overview].

[21] S. Terzo et al., Characterisation of novel prototypes of monolithic HV-CMOS pixel detectors for high
energy physics experiments, JINST 12 (2017) no. 06, C06009.

[22] J. Anders et al., Charge collection characterisation with the Transient Current Technique of the ams
H35DEMO CMOS detector after proton irradiation, JINST 13 (2018), P10004.

[23] TSI Semiconductors Corp., [http://www.tsisemi.com].

[24] M. Kiehn et al., Performance of CMOS pixel sensor prototypes in ams H35 and aH18 technology for
the ATLAS ITk upgrade, Nucl. Instrum. Meth. A (2018) In Press.

– 21 –

https://gitlab.cern.ch/unige-fei4tel/proteus
http://eutelescope.web.cern.ch
https://bitbucket.org/TBmon2/tbmon2/overview
http://www.tsisemi.com

	1 Introduction
	2 The H35DEMO demonstrator
	2.1 The monolithic CMOS matrix
	2.2 The monolithic NMOS matrix

	3 The readout system
	4 Samples and irradiations
	5 Current-Bias (I-V) characterisation
	6 Threshold tuning and noise
	7 Beam test campaigns: setups and analysis method
	8 Beam test results
	8.1 Operations and tunings
	8.2 Cluster properties
	8.3 Efficiency before irradiation
	8.4 Efficiency after irradiation

	9 Noise occupancy and power consumption
	10 Conclusions and outlook

