Measurement of $B^+ \rightarrow J/\psi \, \rho^+$ at LHCb

Jascha Grabowski¹

 $^{1}\mbox{Heidelberg}$ University

Terascale Workshop 2018 DESY Hamburg 18-11-27

Penguin Pollution in $B_s^0 \rightarrow J/\psi \phi$

- New physics could enlarge angle ϕ_s from *CPV* between mixing and decay, see <u>S. Stemmle's</u> talk
- $\phi_s^{\rm tree}$ predicted precisely for "Golden mode" $B_s^0 o J/\psi \, \phi$

$$\phi^{
m obs}_s = \phi^{
m tree}_s + \Delta \phi^{
m NP}_s$$

Penguin Pollution in $B_s^0 \rightarrow J/\psi \phi$

• New physics could enlarge angle ϕ_s from *CPV* between mixing and decay, see <u>S. Stemmle's</u> talk

• ϕ_s^{tree} predicted precisely for "Golden mode" $B_s^0 \rightarrow J/\psi \phi$, but additional shift from penguin decay:

 $\phi_s^{\rm obs} = \phi_s^{\rm tree} + \Delta \phi_s^{\rm NP} + \Delta \phi_s^{\rm peng}$

⇒ Need to measure $\Delta \phi_s^{\text{peng}}$ to probe for $\Delta \phi_s^{\text{NP}}$ ⇒ Measure CPV in decays with similar topology, but CKM suppressed tree amplitude ⇒ Use SU(3)_f to infer $\Delta \phi_s^{\text{peng}}$ current exp. precision

 $\sigma(\phi_s^{
m obs}) pprox 31$ mrad $\Delta \phi_s^{
m peng} = 3 \pm 14$ mrad

Penguin Pollution in $B_s^0 \rightarrow J/\psi \phi$

- New physics could enlarge angle ϕ_s from CPV between mixing and decay, see S. Stemmle's talk
- ϕ_s^{tree} predicted precisely for "Golden mode" $B_s^0 \rightarrow J/\psi \phi$, but additional shift from penguin decay:

 $\phi_s^{\rm obs} = \phi_s^{\rm tree} + \Delta \phi_s^{\rm NP} + \Delta \phi_s^{\rm peng}$

⇒ Need to measure $\Delta \phi_s^{\text{peng}}$ to probe for $\Delta \phi_s^{\text{NP}}$ ⇒ Measure CPV in decays with similar topology, but CKM suppressed tree amplitude ⇒ Use SU(3)_f to infer $\Delta \phi_s^{\text{peng}}$ current exp. precision

 $\sigma(\phi^{
m obs}_{s})pprox$ 31 mrad $\Delta\phi^{
m peng}_{s}=3\pm$ 14 mrad

Can use \mathcal{A}^{CP} of SU(3)_f related decays like $B^+ \to J/\psi \, \rho^+$ to constrain $\Delta \phi_s^{peng}$

Jascha Grabowski

Measurement of $B^+ \rightarrow J/\psi \rho^+$ at LHCb

Strategy $B^+\!\to J\!/\psi\,\rho^+$

- Use data corresponding to 3 fb⁻¹ taken in RunI
- Reconstruct $J/\psi \rightarrow \mu^+\mu^-$ and $\rho^+ \rightarrow \pi^+(\pi^0 \rightarrow \gamma\gamma)$
- hadronic environment \Rightarrow large background due to γ and of π^0 from pp collision
- Neural net to reduce both combinatoric background from random γ and π^0 and partially reconstructed background from e.g. $B^+ \rightarrow J/\psi K^{*+}$, where $K^{*+} \rightarrow \pi^+(K^0 \rightarrow \pi^0 \pi^0)$
- 2D fit in $M_{\pi^+\pi^0}$ and $M_{J/\psi \pi^+\pi^0}$ to distinguish $B^+ \to J/\psi \rho^+$ from swave $B^+ \to J/\psi \pi^+\pi^0$
- use $B^+ \to J/\psi K^+$ as normalisation channel to measure $\mathcal{B}(B^+ \to J/\psi \rho^+) = \frac{\mathcal{B}(B^+ \to J/\psi K^+)}{\mathcal{B}(\pi^0 \to \gamma\gamma)} \times \frac{\varepsilon_{B^+ \to J/\psi K^+}}{\varepsilon_{B^+ \to J/\psi \rho^+}} \times \frac{N_{fit,B^+ \to J/\psi \rho^+}}{N_{fit,B^+ \to J/\psi K^+}}$
- for charged B^+ no flavour-tagging needed to measure asymmetry: $\mathcal{A}^{CP}(B^+ \to J/\psi \rho^+) \approx \frac{N^{B^-} - N^{B^+}}{N^{B^-} + N^{B^+}}$

$$B^+ \rightarrow J/\psi \, \rho^+$$
 and $B^+ \rightarrow J/\psi \, \pi^+ \pi^0$ PDFs

Need 2D fit to distinguish non-resonant $B^+ \rightarrow J/\psi \pi^+ \pi^0$ from $B^+ \rightarrow J/\psi \rho^+$

Jascha Grabowski

Measurement of $B^+
ightarrow J\!/\psi \,
ho^+$ at LHCb

Partially Reconstructed Backgrounds

correlations between $M_{\pi^+\pi^0}$ and $M_{J/\psi\,\pi^+\pi^0}$ \Rightarrow include in pdf

 $B^+ \to J/\psi \, K^{*+}$ with $K^{*+} \to \pi^+ K^0$ and $K^0 \to \pi^0 \mathscr{R}^0$

- simultaneous for 2011 and 2012 with independent yields, shared pdf shapes and $B^+ \to J/\psi \, \pi^+ \pi^0$ fraction
- large combinatoric background component from random π^0 from PV described with polynomial in $M_{\pi^+\pi^0}$ and exponential in $M_{J/\psi \pi^+\pi^0}$

• fit simultaneously for
$$\mathcal{B}(B^+ \to J/\psi \rho^+) = \frac{\mathcal{B}(B^+ \to J/\psi \kappa^+)}{\mathcal{B}(\pi^0 \to \gamma\gamma)} \times \frac{\varepsilon_{B^+ \to J/\psi} \kappa^+}{\varepsilon_{B^+ \to J/\psi} \rho^+} \times \frac{N_{fit,B^+ \to J/\psi} \rho^+}{N_{fit,B^+ \to J/\psi} \kappa^+}$$

leading systematic uncertainties:

-
$$\pi^{0}$$
 reconstruction efficiency: $\pm 0.24 imes 10^{-5}$

- pdf shapes: $\pm 0.15 \times 10^{-5}$

$$\mathcal{B}(B^+
ightarrow J/\psi \,
ho^+) = (3.81^{+0.25}_{-0.24}({
m stat}) \pm 0.35({
m syst})) imes 10^{-5}$$

Jascha Grabowski

CP Asymmetry

- simultaneous for 2011 and 2012 with independent yields, shared pdf shapes and $B^+ \rightarrow J/\psi \, \pi^+ \pi^0$ fraction
- split samples by charge of π^{\pm}
- fix $\mathcal{A}^{\mathrm{fit}}$ of $B^0_s \to J/\psi \phi$ and $B^+ \to J/\psi K^{*+}$ to known values
- fit for $\mathcal{A}^{C\!P}(B^+ \to J\!/\psi \,\rho^+) = rac{N^-_{
 m sig} N^+_{
 m sig}}{N^-_{
 m sig} + N^+_{
 m sig}} \mathcal{A}^{
 m prod}(B^+)$
- many uncertainties cancel in ratio, largest remaining:

-
$$\mathcal{A}^{\mathrm{prod}}(B^+)$$
, $\mathcal{A}^{C\!P}(B^+ \to J/\psi \, K^{*+})$: $\pm 0.6\%$

- pdf shapes: $\pm 0.5\%$

$$\mathcal{A}^{CP} \; (B^+ \to J\!/\psi \, \rho^+) = (-4.5^{-5.6}_{+5.7}(\mathrm{stat}) \pm 0.8(\mathrm{syst}))\%$$

Controlling Penguin Pollution in $B_s^0 \rightarrow J/\psi \phi$

- Now one can use $\mathcal{A}_{CP}^{dir}(B^+ \to J/\psi \rho^+) = \frac{2a\sin\theta\sin\gamma}{1-2a\cos\theta\cos\gamma+a^2}$
- a, $\theta \approx$ relative strength and strong phase between penguin and tree
- constrain $\Delta \phi_s^{\text{peng}}(a, \theta)$ with $\tan \Delta \phi_s^{\text{peng}} = -\frac{2a\epsilon\cos\theta\sin\gamma - a^2\epsilon^2\sin2\gamma}{1-2a\epsilon\cos\theta\cos\gamma + a^2\epsilon^2\cos2\gamma}$
- $\epsilon = \frac{\lambda^2}{1-\lambda^2} \approx 0.05$ relative CKM suppression of penguin between $b \rightarrow ccs$ and $b \rightarrow ccd$

$$\mathcal{A}^{C\!P} \; (B^+ \to J\!/\psi \,
ho^+) = (-4.5^{-5.6}_{+5.7}({
m stat}) \pm 0.8({
m syst}))\%$$

 $\begin{array}{l} \text{blue area: constraint for} \\ \mathcal{A}^{CP}_{\mathrm{dir}}(B^0 \to J/\psi\,\rho^0) = (-6.3\pm5.6_{\mathrm{stat}}\pm^{1.9}_{1.4\mathrm{syst}})\% \\ \Rightarrow \text{ can expect similar/better constraint from} \\ B^+ \to J/\psi\,\rho^+ \end{array}$

Jascha Grabowski

Conclusion

■ ultimate precision on ϕ_s depends also on the exact determination of the penguin pollution $\Delta \phi_s^{\text{peng}} \Rightarrow$ determine it with *CP* observables from SU(3)_f related modes

■ LHCb measured from ≈ 1600
$$B^+ \to J/\psi \rho^+$$
 decays in Run I
 $\mathcal{B}(B^+ \to J/\psi \rho^+) = (3.81^{+0.25}_{-0.24}(\text{stat}) \pm 0.35(\text{syst})) \times 10^{-5}$
 $- \mathcal{B}(B^+ \to J/\psi \rho^+)_{\text{BaBar}} = (5.0 \pm 0.7_{\text{stat}} \pm 0.3_{\text{syst}}) \times 10^{-5}$
■ measured \mathcal{A}^{CP} $(B^+ \to J/\psi \rho^+) = (-4.5^{-5.6}_{+5.7}(\text{stat}) \pm 0.8(\text{syst}))\%$

-
$$\mathcal{A}^{CP}(B^+ \rightarrow J/\psi \, \rho^+)_{\mathsf{BaBar}} = (-11 \pm 12_{\mathrm{stat}} \pm 8_{\mathrm{syst}})\%$$

Thanks for your attention!

Backup

[JINST 3 (2008) S08005]

- Forward spectrometer designed for study of beauty and charm physics
- momentum resolution (0.5 1.0)% up to 200 GeV
- impact parameter resolution (15 +29/p_T [GeV]) μm
- tracking and PID efficiency >90%

•
$$A(B^+ \rightarrow J/\psi \rho^+) = V_{cd} a e^{i\theta} e^{i\gamma} A$$

 $ae^{i\theta} \approx$ relative strength of topology and strong phase difference of penguin wrt tree, $\epsilon = \frac{\lambda^2}{1-\lambda^2} \approx 0.05$ relative CKM suppression of penguin between $b \rightarrow ccs$ and $b \rightarrow ccd$

• $A(B^+ \rightarrow J/\psi \rho^+) = V_{cd}(1 - \frac{\partial e^{i\theta}e^{i\gamma}}{\partial A} \Leftarrow \text{penguin not suppressed}$

 $ae^{i\theta} \approx$ relative strength of topology and strong phase difference of penguin wrt tree, $\epsilon = \frac{\lambda^2}{1-\lambda^2} \approx 0.05$ relative CKM suppression of penguin between $b \rightarrow ccs$ and $b \rightarrow ccd$

■ $A(B^+ \to J/\psi \rho^+) = V_{cd}(1 - ae^{i\theta}e^{i\gamma})A \Leftarrow$ penguin not suppressed ■ $A'(B^0_s \to J/\psi \phi) = V_{cs}(1 + \epsilon a'e^{i\theta'}e^{i\gamma})A' \Leftarrow$ penguin suppressed

 $ae^{i\theta} \approx$ relative strength of topology and strong phase difference of penguin wrt tree, $\epsilon = \frac{\lambda^2}{1-\lambda^2} \approx 0.05$ relative CKM suppression of penguin between $b \rightarrow ccs$ and $b \rightarrow ccd$

Jascha Grabowski

• $A(B^+ \rightarrow J/\psi \rho^+) = V_{cd}(1 - ae^{i\theta}e^{i\gamma})A \Leftarrow \text{penguin not suppressed}$

•
$$A'(B^0_s \to J/\psi \phi) = V_{cs}(1 + \epsilon a' e^{i\theta'} e^{i\gamma}) \mathcal{A}' \Leftarrow \text{penguin suppressed}$$

• $SU(3)_f$: $a'e^{i\theta'} = ae^{i\theta}$

 $ae^{i\theta} \approx$ relative strength of topology and strong phase difference of penguin wrt tree, $\epsilon = \frac{\lambda^2}{1-\lambda^2} \approx 0.05$ relative CKM suppression of penguin between $b \rightarrow ccs$ and $b \rightarrow ccd$

Can use \mathcal{A}^{CP} $(B^+ \to J/\psi \rho^+)$ to constrain $\Delta \phi_s^{\text{peng}}$

Systematic Uncertainties Branching Ratio

■ reconstruction efficiency of π^0 determined from $B^+ \rightarrow J/\psi K^{*+}$ with $K^{*+} \rightarrow \pi^0 K^+$, dominant uncertainty:

 $\sigma(\mathcal{B}(B^+
ightarrow J\!/\psi\,K^{*+})) = 5.6\%$

 Most fit shapes determined from simulated samples, models and parameters varied to assess uncertainty

Source of uncertainty	rel. uncertainty [%]
Trigger efficiency	1.4
track reconstruction efficiency	0.5
π^0 reconstruction efficiency	6.3
Hadron identification efficiency	2.1
Muon identification efficiency	0.4
Selection efficiency $B^+ o J\!/\psiK^+$	0.1
Selection efficiency $B^+ o J\!/\psi ho^+$	1.8
Multiple candidates	1.2
Fit shapes	4.0
$B^+\! ightarrow J\!/\psi ho^+$ polarization	2.2
Fit ranges	1.6
Nonresonant line shape	1.5
Neglecting interference	2.8
Quadratic sum	9.1