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1 Introduction

Monopole operators in three-dimensional Euclidean gauge theories are local operators

whose insertion is defined by prescribing a Dirac monopole singularity at the insertion

point for a U(1) gauge field, with U(1) embedded into the gauge group [1–3]. In an abelian

theory with gauge field A, for an insertion at the origin in R3, the monopole configuration is

F = dA = −q
2
? d

(
1

r

)
, q ∈ Z , (1.1)

with r the radial coordinate in R3. Dirac quantization of the magnetic flux imposes q ∈
Z. The monopole singularity is spherically symmetric and carries no spin. As a local

operator it has charge q under the global U(1) topological symmetry whose conserved

current is j = ?F . Monopole operators are rather ubiquitous in studies of three-dimensional

gauge theories. For instance, they can serve as order parameter for symmetry broken

phases in second order phase transitions [4–7], they are dual to elementary fields under

dualities [8–14], they are crucial to understanding the vacuum structure of supersymmetric

theories [15], they arise in non-perturbative corrections to superpotentials [16, 17], they

can be used to deform the action and trigger RG-flows leading to infrared dualities [18–

21], they participate in infrared symmetry enhancement mechanisms [22]. The higher

dimensional cousin of the monopole operator is the most studied ’t Hooft loop in four

dimensional gauge theories. Although this is not necessary, one can “dress” a monopole

insertion with uncharged matter fields inserted at the same point. This plays an important

role in monopole operator counting problems in non-abelian theories [15].

In a theory with Chern-Simons term at level k ∈ Z, a monopole of magnetic charge

q acquires a gauge charge kq. To obtain a gauge invariant operator one must dress the

– 1 –



J
H
E
P
0
3
(
2
0
1
9
)
0
7
4

monopole with the insertion of charged matter fields. This is usually understood by using

the state-operator map in a CFT. Under this map, monopole operators are described

as states of the theory on the cylinder R × S2, in the sector where there is a magnetic

flux of charge q on S2. The dressing arises as excitations of the matter fields in this

monopole background [23]. Because of the monopole background, the spacetime spin of the

charged fields is modified. This phenomenon manifests itself in the form of the “monopole

spherical harmonics” studied in [24, 25], which are the spherical harmonics of a scalar

field of charge one in the q-monopole background. The smallest angular momentum of the

scalar field harmonics is |q|2 . In this context, the excitations of a scalar field dressing a

monopole background provide non-zero spin to the gauge invariant monopole states, and

the corresponding monopole operators of the CFT on R3 have non-trivial spin.

It is not obvious how to realize these monopole operators as local operators on R3.

In particular we cannot simply insert charged fields φ(x) at the insertion point, since on

one hand it would not account for the extra spin carried by the dressing, and on the other

hand regular solutions to the equation of motions have the charged fields set to zero at

the location of the monopole insertion. No such issue arises for dressing with uncharged

matter fields.

In this note we overcome these difficulties and propose a realization of the monopole

operator insertions by giving a singular behavior to the charged matter fields and dressing

the monopole with matter modes that appear in the singular expansion. We consider

abelian gauge theories with minimally coupled matter fields. Our primary example is the

theory of a single charged boson, which we study in section 2. Our prescription is to require

a profile for the scalar field φ that satisfies its equation of motion in the vicinity of the

insertion point and to impose Gauss’s law, which arises from the gauge field equation of

motion. We find that these constraints can be met only if one allows for profiles where φ

and φ are related by a modified conjugation relation, with φ diverging at the origin and φ

vanishing at the origin, or vice-versa. The relation between φ and φ can be understood as

inherited from the standard complex conjugation of the Lorentzian theory on R×S2. The

profiles for kq > 0 take the form

φ =
∑
j,m

ajmr
−βj− 1

2Yqjm

φ =
∑
j,m

ajmr
βj− 1

2Y qjm

(1.2)

with βj = 1
2

√
(2j + 1)2 − q2 and Yqjm are the monopole harmonics with background mag-

netic charge q. The allowed values of the angular momentum are j = |q|
2 + n, n ∈ Z≥0.

The moduli |ajm| are constrained by Gauss’s law, while the phases eiλjm , defined by

ajm = |ajm|eiλjm , are dynamical variables.

Removing a ball of radius ε around the insertion point and requiring a boundary term

on the S2 boundary that cancels the boundary piece of the bulk field variation, we find that

in the ε→ 0 limit the monopole insertion must be dressed with a factor
∏
j,m(e−iλjm)njm ,

where njm is a collection of positive integers satisfying
∑

jm njm = kq and in terms of
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which the |ajm| moduli are fixed (see Equations 2.26), (2.27), (2.28). This dressing term

also restores the gauge invariance of the monopole insertion in the Chern-Simons theory.

Because the dressing factors e−iλjm have spin j, the monopoles transform in non-trivial

Spin(3) representations, which are easily worked out in this simple theory. Our findings

mimic to a large extent the construction of monopole states of the theory on R × S2 in

Hamiltonian quantization as presented in [23].

We extend our construction to the abelian theory with a charged fermion field in

section 3. The only qualitative difference with respect to the scalar field case is that

the “occupation numbers” njm of each fermion mode take values 0 or 1 only, due to the

fermionic statistic.

We then carry on to study supersymmetric monopoles in section 4. The simplest in-

stance arises in supersymmetric N = 2 SQED theory with a single charged chiral multiplet

and Chern-Simons level k. To define a supersymmetric monopole insertion one starts by

requiring a half-BPS monopole singularity (4.2). In this background the singular profiles

for the boson and fermion fields are slightly modified (or rather simplified). By study-

ing the BPS conditions we find that 1
4 -BPS monopoles can be constructed if one restricts

the singular profiles and dressing factors to certain scalar and fermion modes which obey

BPS conditions (see Equation (4.15)). A schematic summary of the construction of BPS

monopoles is given in table 1. In an infrared CFT, the BPS monopoles belong to short mul-

tiplets at threshold A1, or A1, in the language of [26]. We compute the quantum numbers

of the BPS monopoles, including their dimension, as a function of the infrared R-charges

of the fields. We compare our results with the superconformal index of the abelian SQED

theory and find an exact agreement.

The analysis in this paper should be understood as performed in a small coupling limit

of the theories, which is the large k limit (or the small gYM coupling limit if one uses

a Yang-Mills UV regulating term). However most of the qualitative results, such as the

monopole operator content and their spin representations, does not change as continuous

couplings are turned on, including quadratic and quartic scalar potentials, which might be

fine-tuned to reach infrared interacting CFTs.1 Because they can acquire large anomalous

dimensions, it is difficult to assess the fate of non-supersymmetric monopole operators

along RG-flows in strongly coupled theories (small k).

Although we study only simple abelian theories, the construction presented in

this note should generalize to other abelian theories and non-abelian theories without

major modifications.

Acknowledgments

I thank Stefano Cremonesi for valuable comments on the draft and Mark Mezei for discus-

sions related to the topic.

1The Chern-Simons level is not a continuous coupling, but it is likely that the spectrum of monopoles

that we describe is correct at any value of k. This is certainly the case for BPS monopoles.
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2 CS theory with a charged boson

We consider a U(1) Chern-Simons theory at level k ∈ Z with a complex scalar field φ of

charge one. The action is

S =
ik

4π

∫
A ∧ dA+

∫
dx3DµφDµφ , (2.1)

with Dµφ = (∂µ − iAµ)φ. Often one introduces a Yang-Mills term which acts as a UV

regulator to the action. In this discussion we will not need it.2 The equations of motion

(eom) are

(i)
k

2π
F + ?(φDφ− φDφ) = 0 ,

(ii) D2φ = 0 .
(2.2)

To define a local monopole operator of magnetic charge q, we require that the gauge field

has a Dirac monopole singularity at the origin in Euclidean space

1

2π

∫
S2

F = q ∈ Z , (2.3)

which, in a convenient gauge, corresponds to the gauge field profile

A =
q

2
(±1− cos θ)dϕ ,

F = dA =
q

2
sin θ dθdϕ = −q

2
? d

(
1

r

)
, q ∈ Z ,

(2.4)

where we used the spherical coordinates r ≥ 0, θ ∈ [0, π], ϕ ∼ ϕ + 2π. We will denote

ω2 = sin θ dθdϕ the volume form of the unit S2.

The eom (i) implies Gauss’s law constraint on the magnetic flux emanating from

the origin ∫
S2

?(φDφ− φDφ) = − k

2π

∫
S2

F = −kq . (2.5)

Therefore we need to require a certain profile at the origin for the field φ as well, compatible

with Gauss’s law. We will require a profile compatible with the eom (ii) close to the origin.

Equation (ii) is modified (compared to the free scalar theory) by the presence of the

non-trivial gauge connection. To solve for the eom (ii) we must use the so-called monopole

scalar harmonics Yqjm on S2 [24], which are not functions but sections of the gauge bundle

over S2. They are eigenfunctions of the modified Laplacian on the sphere with magnetic

background flux q,

~L2
qYqjm = j(j + 1)Yqjm , Lq,zYqjm = mYqjm ,

Lq,z := −i∂ϕ − q , ~L2
q := −∇2

S2 +
2q

sin2 θ
(cos θ − 1)Lz ,

(2.6)

2Also we do not introduce potential terms in the action (mass term and quartic potential). The idea is

that we study the local operators in the limit of vanishing couplings, to make things simple. Our findings

however will not depend on continuous deformations of the action and will be valid, for instance, in the

critical theory with a quartic interaction, which flows to a non-trivial IR fixed point.
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with m = −j,−j+1, · · · , j−1, j. They obey the orthonormal relations
∫
S2 ω2Y qjmYq′j′m′ =

δqq′δjj′δmm′ and Y qjm := Y ∗qjm = (−1)q+mY−q,j,−m. An important difference with respect

to the standard scalar harmonics is that the allowed values for j are j = |q|
2 +n, for n ∈ Z≥0.

The smallest value is j = |q|
2 .

Using the ansatz φ = g(r)Yqjm(θ, ϕ) and writing the Laplacian in spherical coordinates,

∇2φ = 1
r2
∂r(r

2∂rφ) + 1
r2
∇2
S2 , the eom (ii) reduces to

0 = −∂r(r2∂rg(r))− q2

4
g(r) + j(j + 1)g(r) . (2.7)

This admits a singular and a regular solution g(r) = r−βj−
1
2 and g(r) = rβj−

1
2 respec-

tively, with

βj =
1

2

√
(2j + 1)2 − q2 >

1

2
. (2.8)

We can thus solve the eom (ii) with the scalar profiles

φ =
a

rβj+
1
2

Yqjm , (2.9)

or

φ = arβj−
1
2Yqjm , (2.10)

with a ∈ C. However, if we adopt the standard reality condition φ = φ∗, we find that no

such profile can solve Gauss’s law (2.5). Actually, with φ = φ∗ the left-hand-side of (2.5)

is imaginary, whereas we need it real. Instead, if we think of φ and φ as independent fields

of charge 1 and −1 respectively, with the equations of motions D2φ = 0, D2φ = 0, we have

the solutions

φ =
a

rβj+
1
2

Yqjm , φ = ārβj−
1
2Y qjm , (2.11)

with ∫
S2

?(φDφ− φDφ) = −2βjaa . (2.12)

Thus Gauss’s law is satisfied with

aa =
kq

2βj
. (2.13)

While we do satisfy Gauss’s law, we remark that the solutions do not satisfy the local

equations (i) in (2.2). Trying to impose a solution to (i) seems a too strong requirement

and we find that imposing only Gauss’s law, which is the integrated equation, will fit our

purposes.3 We conclude that, assuming kq > 0, one should impose the profiles at the origin

φ =
eiλ

rβj+
1
2

√
kq

2βj
Yqjm + sub ,

φ = e−iλrβj−
1
2

√
kq

2βj
Y qjm + sub ,

(2.14)

3See also section 3.1.4 in [23] for a comment and a possible explanation on this point.
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where the phase eiλ, λ ∼ λ+ 2π, is a fluctuating field and “sub” denotes subleading terms

in small r. The angle λ cannot be chosen as a fixed background because it transforms

under gauge transformations:

A→ A+ dΛ , λ→ λ+ Λ(0) , (2.15)

where Λ(0) is the evaluation at the origin of the gauge parameter. If kq < 0, one has to

exchange the roles of φ and φ, i.e. changing βj → −βj in the profiles (2.14).

The surprising feature of the profiles (2.14) is that the leading behavior of φ is related

to that of φ by an unusual reality condition φ = r2βjφ∗. In general one can think of

φ and φ as independent complex fields and define a half-dimensional slice in field space

to integrate on in the path integral. The choice of slice should make the action positive

definite. The standard choice is φ = φ∗, but there could be other choices. We will not

study how to choose a slice, or define proper reality conditions, compatible with (2.14) and

simply assume that it can be done. We notice that if we perform a conformal map to the

cylinder R×S2 and a Wick rotation to Lorentzian signature, the reality condition that we

observe in (2.14) becomes usual complex conjugation. We will also not study the precise

form of the subleading term “sub”.

When introducing a diverging profile at the origin, a common procedure is to cut

a small ball Bε of radius ε > 0 and allow for a boundary term on S2
ε = ∂Bε. Such a

boundary term is fixed, in principle, by requiring a well-defined variation principle, namely

the cancellation of boundary terms coming from the field variation of the action. The

variation of the scalar action produces the boundary term

δS|bdy = −
∫
S2
ε

ω2ε
2(δφ ∂rφ+ ∂rφ δφ)

= −
∫
S2
ε

ω2ikq|Yqjm|2δλ+O(εα)

= −ikqδλ+O(εα) ,

(2.16)

with α > 0. To cancel this term (in the limit ε→ 0) we should thus add the boundary term4

Sbdy = ikq

∫
S2
ε

ω2|Yqjm|2λ = ikqλ . (2.17)

Therefore we find that we should insert e−ikqλ at the origin to complete the operator inser-

tion.5 This result agrees nicely with the analysis of the gauge invariance of the monopole

operator. Let us explain this point.

Under a field variation A → A+ δA the Chern-Simons action changes by a bulk plus

a boundary term

δSCS =
ik

2π

∫
δA ∧ F +

ik

4π

∫
S2
ε

δA ∧A . (2.18)

4In our conventions the integrand of the path integral is e−S−Sbdy .
5Describing this insertion as a local operator insertion in terms of φ and φ is not convenient.
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In order for the boundary term δA ∧ A to cancel we can fix one component of the gauge

field to zero, say Aθ = 0, on the boundary [27]. This is compatible with the presence of

the Dirac monopole singularity. The variation δSCS reduces only to the bulk term

δSCS =
ik

2π

∫
δA ∧ F . (2.19)

Specializing to a gauge transformation δA = dΛ, we find

δΛSCS =
ik

2π

∫
dΛ ∧ F = − ik

2π

∫
S2
ε

ΛF . (2.20)

We see that δΛSCS is a boundary term which is non-vanishing in the presence of a non-zero

magnetic flux (2.4). In the limit ε→ 0, we have

δΛSCS = −ikqΛ(0) . (2.21)

Note that the transformation is compatible with Λ being 2π-periodic, since kq ∈ Z. This

gauge variation is nicely canceled by the gauge variation of the dressing factor e−ikqλ,

δΛ(e−ikqλe−SCS) = 0 . (2.22)

The insertion of e−ikqλ = (e−iλ)kq can be thought of as a dressing with kq modes of φ at

the origin.

To summarize, with kq > 0, a monopole insertion at the origin Mq(0) is defined in

the path integral formulation by requiring the Dirac monopole singularity (2.4), the scalar

profiles (2.14) and the insertion of e−ikqλ, with λ the phase defined in (2.14). For kq < 0,

the scalar profiles are exchanged (βj → −βj) and the dressing e−ikqλ = (eiλ)−kq can be

thought of as a dressing with −kq modes of φ at the origin.

Generalization and spin of monopoles. As such this operator does not transform

nicely under Spin(3) rotations. If we label λ = λjm the phase appearing in the profile (2.14),

we observe that eiλjm (or e−iλjm) transforms as a component of the spin j representation.

The dressing operators e−ikqλjm = (e−iλjm)kq however do not transform in a representation

of the rotation group, or rather transform into operators that we have not yet discussed .

To find the missing operators, we need to generalize the monopole insertions.

The generalization goes as follows. Assuming kq > 0, we require, in addition to the

monopole flux singularity (2.4), the scalar field profile at the origin

φ =
∑
j≥ |q|

2

j∑
m=−j

ajm

rβj+
1
2

Yqjm + sub ,

φ =
∑
j≥ |q|

2

j∑
m=−j

ajmr
βj− 1

2Y qjm + sub ,

(2.23)

with ajm = (ajm)∗, and with only a finite number of non-zero ajm ∈ C.
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Gauss’s law (2.5) imposes the constraint

∑
j≥ |q|

2

j∑
m=−j

2βj |ajm|2 = kq . (2.24)

The boundary contribution in the variation of the action is now canceled by adding the

boundary term

Sbdy =
∑
j≥ |q|

2

j∑
m=−j

∫
S2
ε

ω2|Yqjm|2i(2βj)|ajm|2λjm

=
∑
j≥ |q|

2

j∑
m=−j

i(2βj)|ajm|2λjm .

(2.25)

Now recall that the phases λjm are 2π periodic, so, for the boundary term exp(−Sbdy) to

make sense, we must impose the quantization conditions 2βj |ajm|2 := njm ∈ N for all j,m.

To satisfy Gauss’s law (2.24) one must then choose a collection of non-negative integers

njm, such that
∑

j,m njm = kq. The scalar profiles become

φ =
∑
j≥ |q|

2

j∑
m=−j

eiλjm

rβj+
1
2

√
njm
2βj

Yqjm + sub ,

φ =
∑
j≥ |q|

2

j∑
m=−j

e−iλjmrβj−
1
2

√
njm
2βj

Y qjm + sub ,

(2.26)

with

Gauss’s law :
∑
j≥ |q|

2

j∑
m=−j

njm = kq , (njm ∈ Z≥0) (2.27)

and the monopole insertion is completed by the dressing operator

Dressing term :
∏
j≥ |q|

2

j∏
m=−j

exp(−injmλjm) . (2.28)

Once again the dressing operator restores the gauge invariance of the monopole insertion,

since the phases λjm all transform as λjm → λjm + Λ(0) under a gauge transformation.

This defines the insertion at the origin of a monopole operator Mqn with n = (njm)

with njm ≥ 0 and |n| :=
∑

jm njm = kq. As is sometimes done in the literature, one

can think heuristically of the dressing as the insertion of kq factors, where each factor is

thought of as a ∂nφ insertion at the origin, with φ an operator of spin |q|2 and n = j − |q|2 .

This is however more of a book-keeping device rather than a correct statement.

For kq < 0 we need to invert the roles of φ and φ by exchanging the profiles in (2.26)

(this is implemented by βj → −βj , njm → −njm) and dressing the insertion with −kq

– 8 –
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factors eiλjm . Heuristically we dress the monopole with modes of φ instead of φ. Gauss’s

law becomes in this case ∑
j≥ |q|

2

j∑
m=−j

njm = −kq > 0 . (2.29)

We can now reconsider the question of the transformation under SU(2) = Spin(3)

rotations. From the definition of the profiles (2.26) we understand that the operators

e−iλjm for |m| ≤ j form a spin j representation, which we denote j.

We deduce that the set of operators Mqn with fixed nj :=
∑j

m=−j njm (satisfy-

ing
∑

j nj = kq), transform in the tensor product representation
⊗

j≥ |q|
2

[j⊗nj ]sym, where

[. . .]sym takes the symmetric product of the factors in the bracket.Mqn

∣∣∣∣ j∑
m=−j

njm = nj

 −→ SU(2) rep
⊗
j≥ |q|

2

[j⊗nj ]sym . (2.30)

This is a reducible representation.6 In the minimal case k = q = 1, the occupation numbers

n of the monopoles Mqn have a single non-zero entry njm = 1. In this case the 2j + 1

monopoles with nj = 1 form a spin j representation, the smallest spin being j = q
2 = 1

2 .

These monopole operators, with these spin quantum numbers, exist in the theory

deformed by a scalar mass term and scalar quartic potential, since continuous deformations

do not affect the SU(2) representations in which the monopole transform. We can think

about the monopole operators in the theory with critical quadratic and quartic interactions,

which flows to an infrared CFT. Ideally one would like to know the conformal dimension

of these monopoles in the CFT. Computing the dimension of the monopole operators

(or any unprotected operator) is a notoriously hard problem in a strongly coupled field

theory. In the limit of large number of charged fields Nf � 1 the infrared theory is

effectively weakly coupled and the monopole dimension can be computed pertubatively

in 1/Nf [1, 28] (see also a d = 4 − ε approach in [29]). In the Chern-Simons theory, ’t

Hooft-like limits were considered (with large k,Nf or large k,Nc and fixed ratio). The

monopole dimension is then extracted from the leading contribution to the free energy of

the theory on S1
β×S2 in the small temperature limit β →∞ [23, 30, 31], sometimes relying

on numerical evaluations. These results are not directly applicable to the theory of a U(1)

gauge group with a single flavor.7

3 CS theory with a charged fermion

We consider a U(1) gauge theory with Chern-Simons kinetic term at level k ∈ Z and a

fermion ψ of U(1) charge 1. The Euclidean action is

S =
ik

4π

∫
A ∧ dA+

∫
d3x iψ /Dψ , (3.1)

6It contain the symmetric traceless representations and the traces.
7In the large k limit, the saddle point analysis of [23] should be valid, even with a single charged scalar,

which corresponds to taking large κ. The results presented for the bosonic theory are numerical. We were

not able to isolate a result which applies to our situation.
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with Dµψ = (∇µ − iAµ)ψ. The fermions ψ, ψ have two complex components ψα, ψα,

α = 1, 2. In the path integral formulation of the theory, we adopt a regularization of

the fermion determinant in the background of the gauge field A that produces a phase

exp(− iπ
2 η(A)), where η(A) is the APS eta invariant [32–34]. We refer to [35] for an in-

depth discussion. If we add a mass term with parameter m and integrate out the fermion

field, the low-energy effective Chern-Simons level is kIR = k − 1
2 + sgn(m)1

2 [9]. This

corresponds to a one-loop quantum correction to the bare Chern-Simons level and should

be understood as the physical Chern-Simons level. For a massless fermion we have a bare

Chern-Simons term at level k and the phase given by the APS eta invariant. This is often

imprecisely referred to as the theory at level k − 1
2 .

The equation of motions (eom) are

(i)
ik

2π
(?F )µ + ψγuψ = 0 ,

(ii) /Dψ = 0 .

(3.2)

We define the Dirac monopole singularity with magnetic charge q ∈ Z as in (2.4). In the

fermionic theory Gauss’s law stems from eom (i) and is given by8

kq =
k

2π

∫
S2

F = i

∫
S2

?(ψγµψ dxµ) = i

∫
S2

ω2r
2 ψγrψ . (3.3)

Therefore we should supplement the Dirac monopole singularity with a singular fermion

profile such that this constraint is satisfied. To accomplish this, we study the solutions

of the eom (ii) is the vicinity of the monopole insertion. The solutions are expressed in

terms of the so-called spin 1
2 monopole harmonics on S2, which were studied in [1, 31].

In the notation of [31] (appendix A), there are two types of spin 1
2 harmonics, explicitly

given by9,10

Tqjm(n̂) =

√ j+m
2j Yq,j− 1

2
,m− 1

2
(n̂)√

j−m
2j Yq,j− 1

2
,m+ 1

2
(n̂)

 , for j ≥ |q|
2

+
1

2
,

Sqjm(n̂) =

−√ j−m+1
2j+2 Yq,j+ 1

2
,m− 1

2
(n̂)√

j+m+1
2j+2 Yq,j+ 1

2
,m+ 1

2
(n̂)

 , for j ≥ |q|
2
− 1

2
,

(3.4)

where n̂ is a unit vector parametrizing S2 (replacing (θ, ϕ)), and |m| ≤ j. In the notation

of [1] they correspond to φj− 1
2
,j,m = Tqjm, φj+ 1

2
,j,m = Sqjm, obeying ~L2φ`jm = `(`+1)φ`jm,

~J2φ`jm = j(j + 1)φ`jm, J3φ`jm = mφ`jm. Importantly the Tqjm harmonics exist only

8If we had considered a massive fermion, the Chern-Simons level appearing in Gauss’s law should be

replaced by the one-loop corrected level kIR ∈ Z discussed above. For a massless fermion the situation is

more subtle. Consistency with the monopole spectrum obtained in radial quantization indicates a posteriori

that the bare Chern-Simons level k is the one appearing in Gauss’s law (and not the half-integer k − 1
2

for

instance). We do not fully understand this point.
9We correct here some typos in [31].

10This form assumes a frame where γa, a = 1, 2, 3, are the standard Pauli matrices.

– 10 –



J
H
E
P
0
3
(
2
0
1
9
)
0
7
4

for j ≥ |q|
2 + 1

2 , and the Sqjm harmonics only for j ≥ |q|
2 −

1
2 , with the understanding

that j − |q|2 + 1
2 ∈ Z.

A solution to the eom with total angular momentum (j,m) is of the form

ψ = t(r)Tqjm + s(r)Sqjm , (3.5)

for j ≥ |q|
2 + 1

2 , or simply ψ = s(r)Sqjm for j = |q|
2 −

1
2 . Solving the eom in cylindrical

coordinates around the origin is a little tedious. Fortunately this was accomplished in [1].

The final result is11

j =

∣∣∣∣q2
∣∣∣∣− 1

2
: ψ =

a

r
Sqjm , (3.6)

with a ∈ C and |m| ≤ j (this corresponds to zero-modes of the theory on R× S2), and

j ≥ |q|
2

+
1

2
: ψ = a1r

βj−1

[
− q

2
Tqjm +

(
j +

1

2
− βj

)
Sqjm

]
+ a2r

−βj−1

[
q

2
Tqjm +

(
j +

1

2
+ βj

)
Sqjm

]
,

(3.7)

with |m| ≤ j, βj given in (2.8), and a1, a2 ∈ C two constants. The solution with a2 = 0

goes to zero at r = 0, while the solution with a1 = 0 diverges at r = 0.

As in the bosonic case, the standard conjugation relation ψ = ψ† does not lead to

solutions of Gauss’s law (3.3). For j = | q2 | −
1
2 , we can solve (3.3) close to the origin by

requiring a profile

ψ =
a

r
Sq,| q

2
|− 1

2
,m + sub , ψ = −iψ† . (3.8)

For j ≥ |q|2 + 1
2 , it is not possible to solve (3.3) by assuming a profile solving the eom and

having ψ ∝ ψ†. Instead we can consider the profiles

ψ = ar−βj−1

[
q

2
Tqjm +

(
j +

1

2
+ βj

)
Sqjm

]
+ sub ,

ψ = iarβj−1

[
q

2
T qjm −

(
j +

1

2
− βj

)
Sqjm

]
+ sub ,

(3.9)

with T qjm = T †qjm and Sqjm = S†qjm.

The modulus |a| = (aa)1/2 is fixed by solving Gauss’s law as a function of k, q and j.

Using the computations of the appendix of [1],12 we find that the fermion profile is

ψ = eiλr−βj−1

√
k

j + 1
2

[
q

2
Tqjm +

(
j +

1

2
+ βj

)
Sqjm

]
+ sub ,

ψ = ie−iλrβj−1

√
k

j + 1
2

[
q

2
T qjm −

(
j +

1

2
− βj

)
Sqjm

]
+ sub ,

(3.10)

where it is understood that Tqjm = 0 for j = |q|
2 −

1
2 .

11The equations are solved for the theory on the cylinder in [1]. The solutions in flat space are easily

obtained by performing the Weyl rescaling back from R× S2 to R3, taking into account that ψ has scaling

dimension one, ψR3 = 1
r
ψR×S2 .

12To reproduce these computations, one would need at some point to compute integrals of three Y

functions which are given in terms of Wigner 3j symbols, as found in [25].
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Because the profile of ψ is divergent we can think of regularizing the operator by

cutting a ball Bε of radius ε > 0 around the origin and study the limit ε→ 0. Varying the

fermion action at finite ε produces a boundary term

δSfermion|bdy =

∫
S2
ε

ω2ε
2ψγrψ δλ

ε→0−−→ − ikqδλ ,

(3.11)

where S2
ε = ∂Bε and we have used the fact that the fermion background satisfies Gauss’s

law (3.3) to reach the final result in the limit ε→ 0. To cancel this boundary term (in the

limit ε→ 0) we add to the operator insertion the dressing term

e−ikqλ . (3.12)

As in the scalar theory, the dressing factor has gauge charge −kq, compensating for the

gauge transformation of the Chern-Simons term and restoring the full gauge invariance of

the monopole operator insertion.

There is however an issue with the dressing factor. The phase e−iλ, as defined by the

fermion profile (3.10), is a Grassmann-odd field. Therefore it vanishes when raised to a

power two or bigger. Thus the dressing term (e−iλ)kq vanishes, except for kq = 1. To be

able to define monopole operators with higher values of kq we need more fermion modes.

Generalization. The monopole insertion can be generalized. We assume kq > 0. Since

this is analogous to the scalar field case, we only go through the main lines, skipping details.

We can require a singular profile of the fermion field

ψ =
∑

j≥ |q|
2
− 1

2

j∑
m=−j

eiλjmr−βj−1
√

njm

q(j + 1
2)

[
q

2
Tqjm +

(
j +

1

2
+ βj

)
Sqjm

]
+ sub ,

ψ =
∑

j≥ |q|
2
− 1

2

j∑
m=−j

ie−iλjmrβj−1
√

njm

q(j + 1
2)

[
q

2
T qjm −

(
j +

1

2
− βj

)
Sqjm

]
+ sub ,

(3.13)

where it is understood that Tqjm = 0 if j = | q2 | −
1
2 , and njm are positive and satisfy∑

j≥ |q|
2
− 1

2

∑j
m=−j njm = kq. The required dressing term is then

Dressing term :
∏

j≥ |q|
2
− 1

2

j∏
m=−j

exp(−injmλjm) , (3.14)

The periodicity of the phases λjm = λjm + 2π implies njm ∈ Z≥0. Because exp(−iλjm) are

Grassmann-odd fields, there should at most one power of each such factor in the dressing

operator. This means that njm ∈ {0, 1}.
This defines the insertion of the monopole operator M̃qn with n = (njm), satisfying

Gauss’s law :
∑

j≥ |q|
2
− 1

2

j∑
m=−j

njm = kq , njm ∈ {0, 1} . (3.15)
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Spin of the monopoles. From the definition of the fermion profile we observe that

the phases eiλjm transform in the spin j representation. It follows that the set of

monopole operators M̃qn with fixed nj :=
∑j

m=−j njm transform in the SU(2) represen-

tation
⊗

j≥ |q|
2
− 1

2

[j⊗nj ]anti−sym, where [. . .]anti−sym takes the anti-symmetric product of the

factors in the bracket. In the minimal case where k = q = 1, the bare monopole has gauge

charge one and a single occupation number njm is non-zero for each dressed monopole.

The 2j + 1 monopoles M̃qn with nj = 1 transform in the spin j representation, and the

minimal spin is j = q
2 −

1
2 = 0 corresponding to a scalar operator.

For kq < 0, we must exchange the roles of ψ and ψ, by exchanging the profiles in (3.13)

and dress the monopole singularity with −kq factors of eiλjm . Heuristically we dress the

monopole with modes of ψ, instead of ψ. Gauss’s law becomes in this case

∑
j≥ |q|

2
− 1

2

j∑
m=−j

njm = −kq , njm ∈ {0, 1} . (3.16)

4 BPS monopoles in N = 2 Chern-Simons SQED

Supersymmetric Chern-Simons theories with charged matter admit many monopole op-

erators which can defined by allowing bosonic and fermionic singular profiles. With the

minimal amount of supersymmetry, 3d N = 1 gauge theories do not admit monopole

operators preserving supersymmetries. This is simply because the Dirac monopole back-

ground (2.4) breaks all supercharges. With N = 2 supersymmetry, it is still true that the

gauge field monopole background breaks all supersymmetries, but it is possible to preserve

half of them by requiring a singular behavior for the scalar field in the vector multiplet.

An N = 2 vector multiplet is composed of the fields (A, σ, λ, λ,D): a gauge field A, a

real scalar σ, a two-components fermion λ and a real auxiliary scalar D. We provide the

supersymmetry transformations of the abelian vector multiplet in appendix A. The BPS

equations are

0 = δλ =
i

2
εµνργµεFνρ −Dε+ iγµε∂µσ

= iγµε((?F ) + dσ)µ −Dε ,

0 = δλ =
i

2
εµνργρεFµν +Dε− iγµε∂µσ

= iγµε((?F )− dσ)µ +Dε ,

(4.1)

where ε and ε are two independent two-component complex spinors, parametrizing the

N = 2 supersymmetry transformations with generators Qα and Qα, α = 1, 2.

A half-BPS monopole operator of magnetic charge q ∈ Z is defined by imposing the

Dirac monopole singularity for the gauge field and a singular profile for σ [2]:

BPS monopole : F = −q
2
? d

(
1

r

)
+O(1) ,

σ = u
q

2r
+O(1) ,

(4.2)

– 13 –



J
H
E
P
0
3
(
2
0
1
9
)
0
7
4

with u ∈ {+1,−1} andD = 0. This profile obeys ?F+udσ = 0, preserving the supercharges

Qα, α = 1, 2 for u = +1 and Qα, α = 1, 2, for u = −1.

In the absence of a Chern-Simons term the monopole profile (4.2) defines a gauge

invariant local half-BPS chiral operator.13 We now consider an abelian theory with Chern-

Simons term at level k. The N = 2 Chern-Simons action is

SN=2
CS =

ik

4π

∫
d3x
[
εµνρAµ∂νAρ − λλ+ 2Dσ

]
. (4.3)

In the absence of Yang-Mills (or rather Maxwell) kinetic term, σ and λ are auxiliary

fields. We consider the theory with a single chiral multiplet with matter fields (φ, ψ, F ) of

U(1) charge +1, comprising a complex scalar φ, a two-component complex spinor ψ and a

complex auxiliary scalar F , with action

Schi =

∫
d3x
[
DµφDµφ− iψγµDµψ + FF

+ φ(σ2 + iD)φ+ iψσψ + iψλφ− iφλψ
]
.

(4.4)

To define the insertion of a monopole operator of magnetic charge q we can proceed as

described in the previous sections by requiring a Dirac monopole singularity for the gauge

field and a singular profile for the charged matter fields φ and/or ψ. This leads to a variety

of monopole operators with various spins that we do not analyze here. All these monopole

break all supersymmetries as explained.

To find a supersymmetric monopole in the N = 2 Chern-Simons theory, we start by

requiring a half-BPS singular profile (4.2) with magnetic charge q ∈ Z, for the vector

multiplet fields. We take u = −1 and look for monopole operators that preserve Qα.

To define the monopole operators we must require a singular profile for matter fields.

The analysis of the scalar field profiles is only slightly modified compared to section 2.

The modification arises because of the coupling of φ to σ. In the vicinity of the origin the

equation of motion for φ is now

DµDµφ−
q2

4r2
φ = 0 , (4.5)

due to the singularity (4.2) of σ. The effect of the extra term is to simplify the parameter

βj to j + 1
2 , making the radial profiles of the solutions that of a free scalar field. The rest

of the analysis is unaffected.14

A similar modification occurs for the fermion modes, which are analysed as in section 3.

The equation of motion for ψ in the supersymmetric background becomes

i /Dψ + i
q

2r
ψ = 0 . (4.6)

13The generalization to a non-abelian Yang-Mills theory does not present difficulties and is well-known [3].
14When we regularize the insertion by removing a ball Bε, we must add extra boundary terms to preserve

supersymmetry. A standard calculation shows that we must add Ssusy
bdy =

∫
S2
ε
ω2ε

2(iψγrψ − φDrφ). This

term evaluates to a constant in the limit ε→ 0 and its variation δSsusy
bdy is subleading in ε compared to the

other boundary terms entering in our discussion, therefore we can neglect it.
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The solutions are then of the form ψ = a1r
j− 1

2Tqjm + a2r
−j− 3

2Sqjm. This can be worked

out from a small modification of the analysis in [1].15

We thus find that the supersymmetrization of the monopole singularity simplifies the

expressions, as one might have expected. To solve Gauss’s law, we must choose the boson

backgrounds
φjm = r−j−1Yqjm ,

φjm = rjY qjm ,
(4.7)

or permutations of φ and φ, with j ≥ |q|2 , and the fermion backgrounds

ψjm = rj−1/2Tqjm ,

ψjm = r−j−3/2Sqjm ,
(4.8)

or permutations of ψ and ψ, with j ≥ |q|2 + 1
2 . For j = | q2 | −

1
2 there is only the Sqjm mode

for ψ which is not paired with a Tqjm mode for ψ, therefore we do not allow this mode.

We are interested in monopole operators preserving supercharges Qα, so we must select

the bosonic and fermionic profiles solving the Q-BPS equations in the background of a BPS

monopole singularity (4.2). Let us look at the scalar field. The BPS equations are

0 = δεψ = εF ,

0 = δεψ = iγµεDµφ+ iεσφ .
(4.9)

The first equation imposes F = 0 at the origin.16 To evaluate the right-hand-side of the

second equation we need the explicit form of the monopole scalar harmonics Yqjm, given

in [24]. With x := cos θ, we have17

Yqjm(x, ϕ) = Cjme
i(m+ q

2
)ϕ(1− x)

q
4

+m
2 (1 + x)−

q
4

+m
2 ∂j+mx [(1− x)−

q
2

+j(1 + x)
q
2

+j ] , (4.10)

with Cjm real constants. We take the gamma matrices to be γ1 = τ3, γ2 = τ1, γ3 = τ2,

with τ i the standard Pauli matrices, and we look for solutions preserving the supercharge

Q2 generated by ε =
(

0
1

)
. We find the two BPS equations

(a) 0 = ∂rφ+
(1− x)(1 + x)

rx
∂xφ+

q

2rx
φ ,

(b) 0 = ∂rφ−
x

r
∂xφ−

i

r(1− x)(1 + x)

(
∂ϕφ+ i

q

2
(1− x)φ

)
.

(4.11)

We now evaluate these BPS equations on the (j,m)-component of the φ profile, φjm =

rjY qjm. We find

(a) 0 = Y qjm(j −m) + Y qj,m+1
Cqjm
Cqj,m+1

x−1(1− x)
1
2 (1 + x)

1
2 eiϕ ,

(b) 0 = Y qjm(j −m)− Y qj,m+1
Cqjm
Cqj,m+1

x(1− x)−
1
2 (1 + x)−

1
2 eiϕ .

(4.12)

15Mapping these solutions to the theory on R×S2, we reproduce the spectrum of fermion mode energies

of N = 2 SQED computed in [2].
16We must only require that the BPS equations hold as we approach the origin.
17Yjm are not functions but sections of the gauge line bundle on S2. This is the value on a patch covering

one hemisphere of S2: the patch where A = 1
2
(1− cos θ)dϕ. On the other patch the value is multiplied by

e−iqϕ.
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These equations are solved for m = j, in which case Y qj,m+1 = 0. We conclude that the

profile with m = j preserves the supercharge Q2. The other values m 6= j do not solve the

BPS equation for Q2.

Alternatively we may look for solutions preserving the supercharge Q1 generated with

ε =
(

1
0

)
. The analysis goes along the same lines and we find that among the profiles

φjm = rjY qjm, only the choice m = −j solves the BPS equations for Q1. There is no

background φjm preserving both Qα supercharges.

Let us turn to fermion field. The BPS equations are

0 = δεφ = εψ ,

0 = δεF = ε(iγµDµψ − iψσ) .
(4.13)

The equations on the second line are solved for all ψ profiles since they are the equations

of motion for ψ and the profiles are defined as solutions to the equations of motion. The

equation on the first line is very simple. It admits solutions for some ε only if the two

components in ψ are proportional. The background ψjm in (4.8) is explicitly

ψjm ∝ Tqjm(n̂) =


√

j+m
2j Yq,j− 1

2
,m− 1

2
(n̂)√

j−m
2j Yq,j− 1

2
,m+ 1

2
(n̂)

 . (4.14)

We observe that the two components of ψjm are independent except when one is vanishing.

This happens for m = j, when the lower component vanishes, and for m = −j when the

upper component vanishes. Explicity the profiles ψjj preserve Q2 and the profiles ψj,−j
preserve Q1. Here again there is no solution preserving both Qα supercharges.

If we had chosen the diverging backgrounds r−j−
3
2Sqjm for ψ (instead of the converging

rj−
1
2Tqjm), we would have found no solution to the BPS equation. Similarly if we had

exchanged the roles of φjm and φjm in (4.7) we would have found no Q-BPS solutions.

Finally we should ask whether the dressing factors preserve supersymmetries or not.

The dressing operator is a product of terms e−iλjm and eiλ̂jm which arise as the coefficients

of the modes φjm and ψjm respectively. The supercharges act on e−iλjm and eiλ̂jm as they

act on the modes φjm and ψjm. Since δεφ = 0 and δεψ = εF = 0 (at the origin), the

dressing factors are Qα-invariant for both α = 1, 2.

From the BPS computations above one can also conclude that the profiles φjj and ψjj

(and thus the modes e−iλjj and eiλ̂jj ) are not Q2-exact, and that similarly the profiles φj,−j

and ψj,−j (and the modes e−iλj,−j and eiλ̂j,−j ) are not Q1-exact.

We conclude that the matter profiles can preserve at most one supercharge and, in

order to do so, one should allow only for boson and fermion fields with m = j, or only

those with m = −j. For instance the profiles preserving Q2 are

Q2-BPS profiles : φ =
∑
j≥ |q|

2

eiλjj

rj+1

√
njj

2j + 1
Yqjj + sub ,

φ =
∑
j≥ |q|

2

e−iλjjrj
√

njj
2j + 1

Y qjj + sub ,

– 16 –



J
H
E
P
0
3
(
2
0
1
9
)
0
7
4

ψ =
∑

j≥ |q|
2

+ 1
2

êiλjjrj−
1
2

√
n̂jj(j + 1

2)

βj
Tqjj + sub ,

ψ =
∑

j≥ |q|
2

+ 1
2

i
e−iλ̂jj

rj+
3
2

√
n̂jj(j + 1

2)

βj
Sqjj + sub . (4.15)

The integers njj ∈ Z and n̂jj ∈ {0, 1} satisfy Gauss’s law∑
j≥ |q|

2

njj −
∑

j≥ |q|
2

+ 1
2

n̂jj = k′(−)q , (4.16)

with

k′(u) = k − 1

2
− sgn(q)

u

2
, u ∈ {−1, 1} . (4.17)

k′u is the “infrared” Chern-Simons level. The shift of the bare Chern-Simons level k arises

from the regularization of the fermion determinants. For a fermion of mass m, the IR level

is k− 1
2 + sgn(m)1

2 , as discussed in section 3. Here the role of the mass m is played by the

background −σ = −u q
2r , and sgn(σ) = sgn(q)u.

Notice that the (mod 2) integers n̂jj are weighted with a minus sign in Gauss’s law.

This is because we imposed a diverging profile for ψ (instead of ψ) and thus we are dressing

with modes of ψ instead of ψ. Gauss’s law imposes that the gauge charge of the dressing

compensates for the gauge charge of the bare monopole, and the modes of ψ have opposite

gauge charge compared to the modes of ψ.

The dressing factor is ∏
j≥ |q|

2

e−injjλjj
∏

j≥ |q|
2

+ 1
2

ein̂jj λ̂jj . (4.18)

This describes the insertion of supersymmetric monopole operators Mqnn̂, which are Q2-

BPS operators. The same construction with the selection of the m = −j modes, leads to

the definition of Q1-BPS operators.

In this calculation we have chosen u = −1 for the supersymmetric monopole singu-

larity (4.2) and found BPS monopoles preserving one Q supercharge. We can also pick

the other choice u = 1, in which case the BPS monopole singularity (4.2) preserves the

two supercharges Qα. The appropriate bosonic and fermionic backgrounds in that case are

obtained by exchanging the roles of φ and φ in (4.7), and of ψ and ψ in (4.8), namely the

diverging backgrounds are those of φ and ψ. From the BPS equations we find that allow-

ing only the modes with m = j defines monopole operators preserving Q1, while allowing

the modes m = −j defines monopole operators preserving Q2. Gauss’s law imposes the

constraint on the bosonic numbers nj,±j and fermionic numbers n̂j,±j ,

−
∑
j≥ |q|

2

nj,±j +
∑

j≥ |q|
2

+ 1
2

n̂j,±j = k′(+)q , (4.19)

where the ± sign is + for monopoles preserving Q1 and − for those preserving Q2.
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BPS monop. behavior at r = 0 BPS modes Gauss’s law

?F = dσ

(u = −1)
φ, ψ div.; φ, ψ → 0

Q1 : m = −j
Q2 : m = j

∑
j njm − n̂jm = k′(−)q

?F = −dσ

(u = 1)
φ, ψ → 0; φ, ψ div.

Q1 : m = j

Q2 : m = −j
∑

j njm − n̂jm = −k′(+)q

Table 1. Main features of BPS monopoles. Each monopole preserves a single supercharge.

These features are qualitatively summarized in table 1.

Notice that the supersymmetric monopoles of the Chern-Simons theory always pre-

serve a single supercharge and are therefore 1
4 -BPS local operators. This is different from

supersymmetric monopoles of Yang-Mills theories (with zero infrared Chern-Simons term)

which preserve two supercharges and are half-BPS chiral operators.

4.1 Quantum numbers and superconformal multiplets

Having understood which monopole operators are BPS, we would like to describe their

quantum numbers and to explain to which short superconformal multiplet they belong, in

the SCFT that is believed to exist in the infrared limit.

We focus on the “bosonic “ monopoles Mqn, defined with the u = −1 BPS monopole

background and a dressing by bosonic modes (i.e. modes of φ) only, with occupation num-

bers n = (njm). The fermion modes are all set to zero for these monopoles, n̂ = 0. These

monopoles exist only for k′(−)q > 0, since Gauss’s law is in this case
∑

j,m njm = k′(−)q.

We will use here k′ := k′(−) and assume k′ > 0 and q > 0 for simplicity. Generically the

monopolesMqn do not preserve any supersymmetry, but some of them preserve Q1 or Q2.

A simple class of monopoles preserving Q2 has njj = k′q for a chosen j, and njm = 0

for all other j,m pairs. Their counterpart monopoles preserving Q1 have nj,−j = k′q and

njm = 0 for all other j,m pairs.

They both belong to the same irreducible spin representation [j⊗k
′q]′sym of SU(2), where

[. . .]′sym denotes the symmetric traceless product of the representations. This is simply

the spin k′qj representation. Let us denote J = k′qj and V
(j)
qm , with |m| ≤ J , the

monopoles in this representation. The Q2 invariant monopole is V
(j)
qJ and the Q1 invariant

monopole is V
(j)
q,−J . The other monopoles V

(j)
qm are built out of the monopoles Mqn with

nj :=
∑

m njm = k′q and nj′ = 0 for j′ 6= j.

The dimension of the monopoles V
(j)
qm can be computed using the BPS properties of

the BPS operators. It is a sum of two contributions

∆(V (j)
qm ) = ∆bare + ∆dressing . (4.20)

The contribution from the dressing factor is the sum of the dimension of each indi-

vidual factor e−iλjm . This is easily extracted from the definition of the (j,m) mode:

φ ∼ e−iλjmrjY qjm. In an N = 2 SCFT, the dimension of the anti-chiral field φ is re-

lated to its R-charge18 −r: ∆(φ) = −R(φ) = r. It follows that the dimension of the

18Hopefully there will be no confusion between the R-charge r and the radial coordinate r. Both notations

are fairly standard.
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dressing mode is

∆(e−iλjm) = j + r . (4.21)

The dressing has k′q modes of λjm, leading to

∆dressing = k′q
(
j + r

)
= J + k′qr . (4.22)

The contribution ∆bare from the bare anti-chiral monopole is also related to its R-charge

by the BPS condition and can be computed as a sum of zero point energy of all oscillators

in the theory on the cylinder [2]. It is given by [36, 37]

∆bare =
1− r

2
q , (4.23)

and the total dimension is

∆(Vqm) = J +

(
k′ − 1

2

)
qr +

q

2
. (4.24)

Similarly the U(1) R-charge of the BPS monopoles are computed as the sum of the

R-charge of the bare monopole Rbare = −1−r
2 q and the R-charge of the dressing Rdressing =

k′qR(φ) = −kqr,

R(V (j)
qm ) = −

(
k′ − 1

2

)
qr − q

2
. (4.25)

The exact values of the R-charge and dimension of such BPS operators at the infrared fixed

point depend on the U(1) R-charge at this fixed point. This may not coincide with the UV

R-charge, but rather is a combination of U(1)R,UV with the U(1) global symmetries of the

IR fixed point. The parameter r refers to the charge of φ under this infrared R-symmetry.

This can be determined by extremizing the S3 partition function of the N = 2 theory

under consideration [38].

We recover that the BPS monopoles obey the BPS condition ∆ = J3 − R for V
(j)
q,J

and ∆ = −J3 − R for V
(j)
q,−J . This follows from the fact that the bare monopole and the

dressing factors all obey the corresponding BPS condition. Another way to find the BPS

monopoles is to consider only those dressed with modes φjm, ψjm (or φjm, ψjm) which obey

such BPS conditions.

The fact that these monopoles obey the BPS condition means that they define non-

trivial elements of the Q1 or Q2 cohomologies and therefore contribute to the superconfor-

mal index defined with Q1 or with Q2.

The monopoles V
(j)
qm are only the simplest BPS monopoles. These considerations ap-

ply in general to the BPS monopoles dressed with both bosonic and fermionic modes, as

described in the previous subsection. We leave as a exercise to work out the quantum

numbers in this general case.

Superconformal multiplet. In the infrared SCFT the Qα-BPS monopoles belong to

short superconformal mulitplets called A1 in the classification of [26] (or χS in [39]). These

are the only short superconformal multiplets in 3d N = 2 SCFTs which accommodate

for non-zero spin. They are 1
4 BPS operators in the sense that they are non-trivial in Q1
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cohomology or in Q2 cohomology, but not in both. Moreover they are not the bottom

component of the A1 multiplet, but rather descendants. Indeed the bottom component C

in this multiplet satisfies ∆ = J − R + 1, where J is the SU(2) spin and R is the U(1) R-

charge. In components we can write it Cα1···α2j , for the operator with spin j. It satisfies the

shortening condition QβC
β
α1···α2j−1 = 0.19 The descendants Dα1,··· ,α2j+1 = Q(α1

Cα2···α2j+1)

obeys ∆ = J − R. The BPS monopoles are identified with the components D11···1 and

D22···2, which are non-trivial in Q2 and Q1 cohomology respectively. They are the only

operators in the full multiplet contributing to the superconformal index defined with Q2

or with Q1 (see [39] for details).

There is a mirror discussion for Qα-BPS monopoles defined with u = +1 backgrounds

and φ, ψ dressing modes.

Note in particular that this is different from supersymmetric monopoles in Maxwell

(or Yang-Mills) theory without Chern-Simons term, which are not dressed with charged

matter field. There, the monopoles are chiral ( 1
2 -BPS) operators with no spin. They are

the bottom components of B1 (or B1) superconformal multiplets [26] and are non-trivial

in both Qα (or both Qα) cohomologies.

4.2 Superconformal index

We can compare our findings with the superconformal index of the theory [40], which

counts BPS operators in the theory. For a given choice of supercharge Q one can define

an index as a trace over the Hilbert space H of the theory on the cylinder R× S2, refined

with fugacities associated to generators that commute with {Q,Q†}. For 3d N = 2 theories

there are two indices [39], that can be defined with the choices Q = Q1 or Q = Q2 (choosing

Qα supercharges yield the same indices). To adapt to common conventions, we consider

the index selecting states which obey H−J3−R = 0. This is achieved by choosing Q = Q1,

I = TrH(−1)F e−β{Q1,Q
†
1}xH+J3wQm , (4.26)

with H the energy generator, J3 the Cartan generator of the Spin(3) = SU(2) rotations

on S2, F the fermion number, and Qm the generator of the topological symmetry, which

counts the magnetic flux on S2. There is no other global symmetry in our SQED theory

with a single chiral multiplet, because the flavor symmetry is gauged in this model. Only

states satisfying with {Q1, Q
†
1} := H − J3 − R = 0 contribute to this index, so that it is

independent of β.

Under the state-operator correspondence, the index I counts BPS operators of the

theory on R3 which are non-trivial elements of the Q1 cohomology. They satisfy ∆ = J3+R,

where the dilatation operator ∆ is identified with the Hamitonian H of the cylinder theory.

The superconformal index can be computed elegantly by supersymmetric localization

as the partition function of the theory on S1 × S2 with periodic boundary conditions for

the fermions around S1 and some background deformations accounting for the parameters

19If j = 0, C is rather the bottom component of an A2 multiplet with shortening condition QαQ
α
C = 0.
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x,w [36, 41]. For the SQED theory with a single chiral multiplet it takes the form

I =
∑
q∈Z

(−1)k
′
+qwq

∮
dz

2πiz
zk
′
+q x(1−r) |q|

2

∏
n≥0

1− z−1x|q|+2−r+2n

1− zx|q|+r+2n
, (4.27)

where k′+ = k − 1
2 − sgn(q)1

2 is the infrared effective Chern-Simons level.

This is a sum over magnetic sectors weighted with wq. The variable z is to be inter-

preted as a U(1) gauge symmetry fugacity. We recognize the contribution zk
′
+qx(1−r) |q|

2

as the factors of the bare BPS monopole, which has gauge charge G = k′+q, dimension

∆ = 1−r
2 |q| and angular momentum J3 = 0. The factor (1 − zx|q|+r+2n)−1 matches

the contribution of the BPS modes φjj , with j = |q|
2 + n. Indeed these modes obey

∆ + J3 = 2j + r = |q| + r + 2n, and have gauge charge G = 1. Similarly the fac-

tor (1 − z−1x|q|+2−r+2n) matches the contribution of the fermionic BPS mode ψjj , with

j = |q|
2 + 1

2 +n, which have ∆+J3 = 2j+1−r = |q|+2−r+2n and gauge charge G = −1.

In the sector of magnetic charge q, the index receives contribution from gauge invariant

BPS monopoles, which are associated with the terms of order z−1 in the Laurent expansion

in powers of z of the integrand. It is not hard to see that this reproduces the constraint

from Gauss’s law k′+q =
∑

j≥ |q|
2

njj −
∑

j≥ |q|
2

+ 1
2

n̂jj , where njj ∈ Z≥0 counts the dressing

by bosonic modes φjj and n̂jj ∈ {0, 1} counts the dressing by fermionic modes ψjj .

We conclude that the BPS monopoles that we have described cover all the BPS local

operators appearing in the superconformal index.20,21

4.3 Extensions and ABJM monopoles

It is straightforward to extend the discussion to SQED theories with any number Nf

of chiral multiplets, with various gauge charges. The construction of monopoles can a

priori be extended to non-abelian theories without conceptual novelty, however the match

with the superconformal index is less trivial in this case, as there can be cancelations

between the contributions of different monopoles. As observed in [42], in non-abelian

N = 2 Chern-Simons theories there are monopoles dressed with gaugino modes which

contribute oppositely to the index as the same monopoles without the gaugino dressing.

More precisely, monopoles can recombine into long multiplets, which do not contribute to

the index. Indeed the A1 (or A1) superconformal multiplets to which the BPS monopoles

belong are short multiplets at threshold, but are not isolated, in the language of [26], and

two A1 multiplets with appropriate quantum numbers can recombine.

Finally we would like make a comment on BPS monopoles in quiver Chern-Simons

theories such as the ABJM theory [43]. In the ABJM theory the gauge group is U(N)k ×
U(N)−k, with the subscript indicating the Chern-Simons levels in each node, and the

matter fields are four bifundamental chiral multiplets: A1, A2 in the representation (N,N)

20In the sector of zero magnetic charge q = 0, the index simply counts the chiral operators which are

gauge invariant polynomials of φjj ∼ ∂jφ and ψjj ∼ ∂jψ (meaning the component with J3 = j).
21In principle we expect other BPS monopoles whose contribution to the index cancel. These would

be constructed with gaugino dressings and derivatives of the bare BPS monopole operator (whose precise

meaning needs to be defined). It would be interesting to clarify this point in a future work.
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and B1, B2 in the representation (N,N). The theory has N = 6 supersymmetry but we

can regard it as an N = 2 theory. Let us think about the abelian theory, with gauge

group U(1)k ×U(1)−k for simplicity. A bare monopole vq1,q2 has gauge charge (kq1,−kq2)

under U(1)k × U(1)−k. To built a gauge invariant operator one must dress the monopole

with matter modes. Because matter fields are in (anti)bifundamental representations, this

can be done only for bare monopoles of the form vq,q. In that case a bifundamental field

sees an effectively vanishing magnetic charge,22 it is not charged under the U(1) ⊂ U(N)2

that has the monopole singularity. Therefore the monopole singularity is dressed with

standard insertions ∂jAα(x), ∂jBα(x). One finds half-BPS (chiral) monopole operators

V +
α1···αkq = vq,qBα1 · · ·Bαkq for kq > 0, and V −α1···αkq = vq,qAα1 · · ·Aα|kq| for kq < 0, with

zero spin. This was described in [44].

We find that, despite having Chern-Simons terms, the monopoles in ABJM theory are

half-BPS chiral operators. In particular they have no spin. This phenomenon carries on to

other quiver Chern-Simons theories of a similar nature and in particular in Chern-Simons

theories with extended N ≥ 3 supersymmetry, as studied in [45]. In these theories the

Chern-Simons levels and matter content are constrained in such a way as to allow for such

half-BPS monopoles [46, 47] (in addition to 1
4 -BPS monopoles).

A Supersymmetry transformations

In this appendix we review the 3d N = 2 supersymmetry transformations. We extract

them from the S3 supersymmetry tranformations of [48] by taking the flat space limit. For

the abelian vector multiplet we have

δAµ = − i
2

(εγµλ− λγµε)

δσ =
1

2
(ελ− λε)

δλ =
i

2
εµνργµεFνρ −Dε+ iγµε∂µσ

δλ =
i

2
εµνργµεFνρ +Dε− iγµε∂µσ

δD = − i
2
εγµ∇µλ+

i

2
εγµ∇µλ

(A.1)

and for the (anti)chiral multiplet we have

δφ = εψ

δψ = iγµεDµφ+ iεσφ+ εF

δF = ε(iγµDµψ − iσψ − iλφ)

δφ = εψ

δψ = iγµεDµφ+ iεφσ + εF

δF = ε(iγµDµψ − iψσ + iφλ) .

(A.2)

22In general a field with charges (1,−1) under U(1)2 in the background of a (q1, q2) monopole couples

only to a U(1) monopole of magnetic charge q1 − q2.
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