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ABSTRACT

Most networks tend to show complex and multiple relationships between entities. Networks are
usually modeled by graphs or hypergraphs; nonetheless a given entity can occur many times in a
relationship: this brings the need to deal with multisets instead of sets or simple edges. Diffusion
processes are useful to highlight interesting parts of a network: they usually start with a stroke at
one vertex and diffuse throughout the network to reach a uniform distribution. Several iterations of
the process are required prior to reaching a stable solution. We propose an alternative solution to
highlighting the main components of a network using a diffusion process based on exchanges: it is
an iterative two-phase step exchange process. This process allows to evaluate the importance not
only of the vertices but also of the regrouping level. To model the diffusion process, we extend the
concept of hypergraphs that are families of sets to families of multisets, that we call hb-graphs.

Keywords exchange - diffusion - multiset - hyperbag-graph - information retrieval - ranking

This article is an extended version of [1] (pre-printed in arXiv:1809.00190v1): the text of the extended version is
in blue, the text in black is the one of [1]. All the figures except Figure 2 have been either modified or added in this
extended version to take into account the new developments. The contributions of this extended version are: the proofs
of conservation and convergence of the extracted sequences of the diffusion process, as well as the illustration of the
speed of convergence and comparison to classical and modified random walks; the algorithms of the exchange-based
diffusion and the modified random walk; the application to a use case based on Arxiv publications.

1 Introduction

Many relationships are more than pairwise relations: entities are often grouped into sets, corresponding to n-adic
relationships. Each of these sets can be viewed as a collaboration between entities. Hypergraphs naturally represent
n-adic relations. It has been shown that facets of an information space can be modeled by hypergraphs [2]: each
facet corresponds to a type of metadata. The different facets are then linked by reference data attached to hyperedges
within that facet. The step forward is to highlight important information contained in those facets. This is commonly
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achieved in hypergraphs using random walks [3, 4]. Reference [4] shows that the weighting of vertices at the level of
the hyperedges in a hypergraph provides better information retrieval. These two approaches - [3, 4] - mainly focus on
vertices; but as hyperedges are linked to references that can be used as pivots in between the different facets [5, 2],
it is also interesting to highlight important hyperedges. For instance, in a document database, different metadata
can be used to label authors, author keywords, processed keywords, categories, added tags: the pivots between the
different facets of this information space correspond to the documents themselves. In the specific case of tags, it can
be important to have weights attached to them if the users are able to attach tags to documents.

Hyperedge-based weighting of vertices is easier to achieve through multisets: multisets store information on multi-
plicity of elements. We use multisets family over a set of vertices, called hyper-bag-graph - hb-graph for short - as an
extension of hypergraphs. Hb-graph multisets play the role of the hyperedges in hypergraph: they are called hb-edges.

We want to address the following research questions: “Can we find a network model and a diffusion process that not
only rank vertices but also rank hb-edges in hb-graphs?”’. We develop an iterative exchange approach in hb-graphs
with two-phase steps that allows to extract information not only at the vertex level but also at the hb-edge level.

We validate our approach by using randomly generated hb-graphs. The hb-graph visualisation highlights not only
vertices but also hb-edges using the exchange process. We show that the exchange-based diffusion process provides
proper coloring of vertices with high connectivity and highlights hb-edges with a normalisation approach - allowing
small hb-edges to have a chance to be highlighted. We apply this approach to process the metadata contained in the
results retrieved by querying Arxiv through its API in order to visualize the results: we will show how it can be used
to allow further query expansion.

This paper contributes to present an exchange-based diffusion process that enables not only the ranking of vertices but
also of hb-edges. It formalizes exchanges by using hb-graphs that can naturally cope with elements multiplicity. It
contributes also to a novel visualisation of this kind of network depicted in each facet of the information space.

In Section II, the mathematical background and the related work is given. The construction of the formalisation of
the exchange process is presented in Section IV. Results and evaluation are given in Section V and future work and
conclusion are addressed in Section VI.

2 Mathematical background and Related work

2.1 Hypergraphs

A hypergraph H = (V, E) over a finite set of vertices V = {v; ; va; ...; v, } is defined in [6] as a family of hyperedges
p

E = (ei,ea,...,e,) where each hyperedge is a non-empty subset of V' and such that e; = V. A hypergraph
i=1

1=

He = (V, E,w,) is said edge-weighted if there exists an application w, : E — R**.
In a weighted hypergraph the degree deg (v;) of a vertex v; is defined as:
di=degv)= 3 w.le;).
e;€Ew;€ej
The volume of S C V is defined as:

vol(S) = Z deg (v;) .

v; €S

The incident matrix of a hypergraph is the matrix H = [h;;]1<i<n of Myxp ({05 1}), where h;; =

1<j<p

1 if v; € €;
0 otherwise

Random walks are largely used to evaluate the importance of vertices in hypergraphs. In [3], a random walk on a
hypergraph is defined by choosing a hyperedge e; with a probability proportional to w, (e;); and within that hyperedge
a vertex is randomly chosen using a uniform law. The probability transition from a vertex v;, to a vertex v;, is:

P hio R
p(viwviz) = Zwe (ej) dll] X %7
j=1 11 J

where §; = deg(e;), 1 < j < pis the degree of a hyperedge defined in [3] as its cardinality. This random walk has
here 0; = deg (e;), 1 < j is the deg f a hyperedge defined in [3] as i dinality. Thi d Ik h

i

a stationary state which is shown to be m = (7ri)1 <icn With m; = v for 1 < ¢ < n [7]. This process differs from
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the one we propose: our diffusion process is done by successive steps from a random initial vertex on vertices and
hyperedges.

Reference [4] defines a random walk for weighted hypergraphs using weight functions both for hyperedges and ver-
tices: a vector of weights is built for each vertex making weights of vertices hyperedge-based; a random walk similar
to the one above is then built that takes into account the vertex weight. The evaluation is performed on a hypergraph
built from a public dataset of computer science conference proceedings; each document is seen as a hyperedge that
contains keywords; hyperedges are weighted by citation score and vertices of a hyperedge are weighted with a tf-idf
score. Reference [4] shows that a random walk on the (double-) weighted hypergraph enables vertex ranking with
higher precision than random walks using unweighted vertices. This process differs again from our proposal: our
process not only enables simultaneous alternative updates of vertices and hb-edges values but also provides hb-edge
ranking. We also introduce a new theoretical framework to perform our diffusion process.

Random walks relate to diffusion processes. Reference [8] uses random walks in hypergraph for image matching.
Reference [9] builds higher order random walks in hypergraph and constructs a generalised Laplacian attached to the
graphs generated from their random walks.

Hypergraphs fit to model multi-adicity in structures where the traditional pairwise relationship of graphs is insufficient:
they are used in many areas such as social networks in particular in collaboration networks - [10, 11] -, co-author
networks - [12], [13] -, chemical reactions - [14] - , genome - [15] -, VLSI design - [16] - and other applications.
Hypergraphs are also used in information retrieval for different purposes such as query formulation in text retrieval
[17], in music recommandation [18].... Several applications of hypergraphs exist based on the diffusion process firstly
developped by [3]. [19] uses [3] for 3D-object retrieval and recognition by building multiple hypergraphs of objects
based on their 2D-views that are analysed using the same approach. In [20], multiple hypergraphs are constructed
to characterize the complex relations between landmark images and are gathered into a multimodal hypergraph that
allows the integration of heterogeneous sources providing content-based visual landmark searches. Hypergraphs are
also used in multi-feature indexing to help image retrieval [21]. For each image, a hyperedge gathers the first n most
similar images based on different features. Hyperedges are weighted by average similarity. A spectral clustering
algorithm is then applied to divide the dataset into k sub-hypergraphs. A random walk on these sub-hypergraphs
allows to retrieve significant images: they are used to build a new inverted index, useful to query images. In [22], a
joint-hypergraph learning is achieved for image retrieval, combining efficiently a semantic hypergraph based on image
tags with a visual hypergraph based on image features.

2.2 Multisets
Multisets - also known as bags or msets - have a long use in many domains. But before developping their use in
different domains, we firstly give main definitions on multisets mainly based on [23].

A multiset is a pair A,,, = (A, m) where A is a set of distinct objects and m is an application from A to W C R

or N. A is called the universe of the multiset A,,, m is called the multiplicity function of the multiset A,,,. A}, =

{z € A:m(zx) # 0} is called the support of A,,. The elements of the support of an mset are called its generators.
A multiset where W C N is called a natural multiset.

The m-cardinality of A,,, written #,, A,, is defined as:

HmAm = Z m(x).

z€A

Several notations of msets exist. Among the common notations mentioned in [24], we note in this article a mset A,,
of universe A = {z; : i € [n]} by:

Ay ={z]" i € [n]}
where m; = m (x;).

If A,, is a natural multiset, another notation of A,,, similar to an unordered list is:

LlyeeesTlyeeeyLpyee.y,Ln
N—_—— N—_——

m1 times m,, times

Considering A = §,,, , and B = Q,,,,, two msets on the same universe {2, we define the empty mset, written (), the set
of empty support on the universe 2. A is said to be included in B - written A C B -if forallz € : m4(z) < mg(x).
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In this case, A is called a submset of 5. The power multiset of A, written ﬁ(A), is the multiset of all submsets of A.
Different operations can be defined on multisets of same universe as union, intersection, sum, complementation and
difference: for details one can refer to [23].

Multisets, under the appellation bag, appear in different domains such as text modeling, image description and audio
[25]. In text representation, bag of words have been first introduced in [26]: bags are lists of words with repetitions, i.e.
multisets of words on a universe. Many applications occur with different approaches. Bags of words have been used
for instance in fraud detection [27]. More recently bag of words have been used successfully for translation by neural
nets as a target for the translation as a sentence can be translated in many different ways [28]. In [29], multi-modal
bag of words have been used for cross domains sentiment analysis.

Bags of visual words is the transcription to image of textual bags of words; in bags of visual words, a visual vocabulary
based on image features is built that allows the description of images as bags of these features. Since their introduction
in [30], many applications have been realized: in visual categorization [31], in image classification and filtering [32],
in image annotation [33], in action recognition [34], in land-use scene classification [35], in identifying mild traumatic
brain injuries [36] and in word image retrieval [37].

Bags of concepts are an extension of bags of words to successive concepts in a text [38]. A recent extension of these
concepts is given in [39] where bag of graphs are introduced to encode in graphs the local structure of a digital object:
bags of graphs are declined into bags of singleton graphs and bags of visual graphs. Using the hb-graphs as we propose
in this article will allow to extend this approach, by taking advantage of multi-adicity and also of the multiplicity of
vertices specific to each hb-edge.

2.3 Hb-graphs

Hb-graphs are introduced in [24]. A hb-graph is a family of multisets with the same universe V' and with support a
subset of V. The msets are called the hb-edges and the elements of V' the vertices. We consider for the remainder of
the article a hb-graph H = (V, E), with V = {v1, ..., v, } and E = {eq, ..., e, } the family of its hb-edges.

Each hb-edge e; € E has V as universe and a multiplicity function associated to it: me, : V — W where W C R™.
For a general hb-graph, each hb-edge has to be seen as a weighted system of vertices, where the weights of each vertex
are hb-edge dependent.

A hb-graph where the multiplicity range of each hb-edge is a subset of N is called a natural hb-graph. A hypergraph
is a natural hb-graph where the hb-edges have multiplicity one for every vertex of their support.

The order of a hb-graph # - written O (H) - is:
O(H)= Z max (me, (v;)) .

e; €l
v, eV

In a natural hb-graph, the order corresponds to the number of copies needed to generate the copy hypergraph of the
hb-graph.

The m-size of a hb-graph # - written s, (H) - is:

S (H) = 373 e, ().

e;€EE v; Ee;
In a natural hb-graph the m-size corresponds to the sum of the m-cardinalities of the hb-edges of the hb-graph.

The support hypergraph of a hb-graph H = (V, E) is the hypergraph whose vertices are the ones of the hb-graph
and whose hyperedges are the support of the hb-edges in a one-to-one way. We write it X = (V, E), where E =
{e*:e€ E}.

The hb-star of a vertex v € V is the multiset - written H (v) and abusively writing e;, 1 < ¢ < p for designating the
elements of the universe of H(v) corresponding to the hb-edges of H of same name - defined as:

mej (vl)

H(vi):{ej :Vlgjgp:ejEE/\mEe;‘}.

The m-degree of a vertex v; € V of a hb-graph # - written deg,,, (v;) = d,, (v;) - is defined as:

deg,, (vi) = #mH (vi).
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Four sentences:
e P1: "The sun is in the sky and the sun is yellow."
e P2: "The sea is blue and the sky is also blue."
sun e P3: "Navy blue and sky blue are blue colour names."
o P4: "Picasso had a blue period where his paintings were in blue shade."

P1
——@ yellow PL[ P2 [ P3| P4
/ sun 2 0 0 0
sky ® colour sky L T
yellow 1 0 0 0
P3 sea 0 1 0 0
P2m W@ name blue 0] 1 312
\ / \ colour 0 0 1 0
bluc™® ® Picasso @ navy navy 0101140
name 0 0 1 0
. painting | 0 0 0 1
sea @ ® period Picasso | 0 0 0 1
/ period | 0 | 0 | 0 | 1
® shade shade 0 0 0 1

/P4

painting @

Figure 1: An example of hb-graphs: four sentences and their associated bag of words with removed stop words and
the incidence matrix of the hb-graph.

‘We have:
Z deg,, (v;) = sm (H) .

v; eV

The degree of a vertex v € V of a hb-graph H - written deg (v) = d(v) - corresponds to the degree of this vertex in
the support hypergraph H.

The matrix H = [m; (v;)]1<i<n 18 called the incident matrix of the hb-graph 7.

NYASY
A weighted hb-graph H,, = (V, E, w,) is a hb-graph H{ = (V, E') where the hb-edges are weighted by w, : E —
R**. An unweighted hb-graph is then a weighted hb-graph with w, (e;) = 1 forall e; € E.

A strict m-path vpe;v;...e5v, in a hb-graph from a vertex u to a vertex w is a vertex / hb-edge alternation with hb-
edges e to e, and vertices vy to vs such that vy = u, vs = w, u € e;j and w € eg and that forall 1 <7 < s — 1,
V; € €;MNeip.

A strict m-path vge1v1...e5v5 in a hb-graph corresponds to a unique path in the hb-graph support hypergraph called
the support path. In this article we abusively call it a path of the hb-graph. The length of a path corresponds to the
number of hb-edges it is going through.

Representations of hb-graphs can be achieved either by using sub-mset representations or by using edge represen-
tations. In the edge representation, an extra-node is added per hb-edge and the thickness of the link between the
extra-node of a hb-edge and the vertices in the support of the hb-edge is made proportional to the multiplicity of
vertices. Except in Figure 1 where we use this representation, in this article we use a simplified representation cor-
responding to the extra-vertex representation of the support hypergraph of the hb-graph: an extra-vertex is added for
each hb-edge and the links with the vertices in the support of the hb-edges are all represented with the same thickness.
More details on these representations can be found in [24].

We give in Figure 1 an example of the representation of a hb-graph of keywords extracted from sentences in which
stop words have been removed. The number of occurences of the words differs from one sentence to an other: it is
given as a multiplicity that is specific to the corresponding hb-edge representing the sentence. The universe of the
hb-graph is the set of words where the stop words has been removed.

3 Exchange-based diffusion in hb-graphs

Diffusion processes lead to homogenising information over a structure; an initial stroke is done on a vertex that
propagates over the network structure. This propagation is often modeled by a random walk on the network. Random
walks in hypergraphs rank vertices by the number of times they are reached and this ranking is related to the structure
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- v; at v; reaches
vertices ay (v;) w v;) ey (v3)
hb-edges e; reaches darr (v | )

€141 (e5)
\
‘ ‘ —
t t+ % t+1

Figure 2: Diffusion by exchange: principle

of the network itself. Several random walks with random choices of the starting vertex are needed to achieve ranking
by averaging. Moreover to avoid loops, teleportation of vertices is needed.

We consider a weighted hb-graph H = (V, E, w,) with |V| = n and |E| = p; we write H the incident matrix of the
hb-graph.

At time t we set a distribution of values over the vertex set:

) V>R
Qe - v =y (V)

and a distribution of values over the hb-edge set:
. - EFE—-R
e eale)
We write Py, = (cu (vi));<;<,, the row state vector of the vertices at time ¢ and Pr; = (€ (€5)), ¢ ;<,, the row state
vector of the hb-edges.

The initialisation is done such that > «g(v;) = 1 and the information value is concentrated uniformly on the
v, €V
vertices at the beginning of the diffusion process and, hence, each hb-edge has a zero value associated to it. Writing

1
Olref = m, we set forall v; € V' @ ag (v;) = auer and for all e; € F, € (e;) = 0.

We consider an iterative process with two-phase steps. At every time step, the first phase starts at time ¢ and ends at

1
t+ 5 followed by the second phase between time t + 3 and ¢ + 1. This iterative process is illustrated in Figure 2 that

1
conserves the overall value held by the vertices and the hb-edges, meaning that we have at any ¢ € {2k ke N}:

Z oy (v;) + Z € (ej) =1L

v; eV EjEE

1
During the first phase between time ¢ and ¢ + 3 each vertex v; of the hb-graph shares the value «; (v;) it holds at
time ¢ with the hb-edges it is connected to.
In an unweighted hb-graph, the fraction of oy (v;) given by v; of m-degree d,, = deg,, (v;) to each hb-edge is
m; (vi)

deg,,, (vi) o
degree of hb-edges that contains v; in their support.

, which corresponds to the ratio of multiplicity of the vertex v; due to the hb-edge e; over the total m-

In a weighted hb-graph, each hb-edge has a weight w, (e;). The value cy (v;) of a vertex v; has to be shared by taking
not only the multiplicity of the vertices in the hb-edge but also the weight w, (e;) of a hb-edge e; into account.

The weights of the hb-edges are stored in a column vector

T
wg = (W, (ej))lgjgp :

We also consider the weight diagonal matrix

Wy = diag ((we (ej))1<j<p> :
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We introduce the weighted m-degree matrix:

D, v = diag <(dwv”i)1<i<n) = diag (Hwg) .

where d., ., is called the weighted m-degree of the vertex v;. It is:
dwﬂ)i = degw,m (vl) = Z my (vl) We (ej) .

1<s<p

The contribution to the value €, 1 (e;) attached to hb-edge e; of weight w, (e;) from vertex v; is:

m; (v;) we (€5
ey (e v = T lC) ()

It corresponds to the ratio of weighted multiplicity of the vertex v; in e; over the total weighted m-degree of the
hb-edges where v; is in the support.

We remark that if v; ¢ €} d¢,; 1 (e; | vi) = 0.

And the value €, 1 (e;) is calculated by summing over the vertex set:
n
€+l (ej) = Z5€t+% (ej | vi).
i=1

Hence, we obtain:
PE7t+% = PV,tD;}VHWE (1)

The value given to the hb-edges is subtracted to the value of the corresponding vertex, hence for all 1 < ¢ < n:

P
oy (vr) = o (03) = ) Fe g (e | v)
j=1

1
Claim 1 (No information on vertices at ¢ + 5). It holds:

Vi€ [n]:oyys (v) =0.

Proof. Foralli € [n] :
P

Qpyl (vi) = o (vi) — Z‘SEH% (ej | vs)

Py

<

= oy (v;) — Z WQIS (v;)

P
m; (vi) we (€5)
=1

= (v;) — ay (v;) !

dw,'ui

O

1
Claim 2 (Conservation of the information of the hb-graph at ¢ 4 5). It holds:

Z Q1 (vi)—i-ZeH% (e) = 1.

v; €V ecE



3 EXCHANGE-BASED DIFFUSION IN HB-GRAPHS 8

Proof. We have:

Z Qppl (vi) + Z €+l (e) = Z €etd (¢5)

v; €V ecE Paveys
n
= D dery(ejlu)
e; €l i=1
-y (), o)
N 7
e;€E i=1 duw,v,;

" E:Efnj(vﬂfﬂe(ﬁﬁ
=D o (v) - oo

= Z ay (v;)

=1

]
O

1
During the second phase that starts at time ¢ + > the hb-edges share their values across the vertices they hold

taking into account the multiplicity of the vertices in the hb-edge. Every value is modulated by the weight w, (e;) of
the hb-edge ¢; it comes from.

The contribution to a1 (v;) given by a hb-edge e; is propotional to €, +1 in a factor corresponding to the ratio of the
multiplicity m; (v;) of the vertex v; to the hb-edge m-cardinality:

m; (v;
5QH4(Ui|%)::§i£§2Q+%(@)'
m*j

The value a1 (v;) is then obtained by summing on all values associated to the hb-edges that are incident to v;:

p
Qp (0) =) barrr (vi | ¢) -
i=1

Writing D = diag (#me;), <j<p the diagonal matrix of size p x p, it comes:

PE,t—f—%DElHT =Py 2

The values given to the vertices are subtracted to the value associated to the corresponding hb-edge. Hence, for all
I<jsp

crp1(ej) = eppr () = Y baugs (vi | ¢j)
i=1
Claim 3 (The hb-edges have no value at ¢t + 1). It holds:

et+1 (€5) = 0.
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Proof. Foralli € [p] :

n

=1
— m; (v;)
= €4l (61)_2 #J eZ €1 (€5)
i=1 m=y
n
Z:lmj (v3)
=€yl (¢5) 1_1_# o
mb€j

=0.
O
O
Claim 4 (Conservation of the information of the hb-graph at ¢t + 1). It holds:
Do (i) + Y eale) =1
v €V e;eE
Proof.
Z a1 (vi) + Z €1 (e) = Z agy1 (vs)
v; eV ecE v, EV
P
= Z Z&ltﬂ (vi | €5)
v; eV j=1
p
m; (v;)
SIS
v eV j=1 T
> m;(v;)
- Zewl (€5) ey
= Hme;
p
= Z €t+3 (€5)
Jj=1
=1.
]
O
Regrouping (1) and (2):
Pyiy1 = PyyD\ HWgD ' H'. 3)

It is valuable to keep a trace of the intermediate state Pp ;. 1= Py.D, 1V HW as it records the importance of the
hb-edges.

Writing T' = D;}VHWEDngT, it follows from 3:
Py = Py, T. 4)
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Claim 5 (Stochastic transition matrix). 7' is a square row stochastic matrix of dimension n.

Proof. Let consider: A = (a;;)1<i<n = D;lvHWE € M, pand B = (bjr)1<j<
1<5<p ' 1<k

A and B are nonnegative rectangular matrices. Moreover:

_my (vi) we (ej)

ajj = a and it holds:
P
P Z mj (vi) we (ej)
iy — = 1.
j:1 dw,vi
m; (vg) .
b, = ———~ and it holds:
T Hm(eg)

We have: Py 441 = Py+AB where:

p
AB = E aijbjk
Jj=1 1<ign
1<k<n
It yields:
n p n
§ § aijbjk: § Qi b]k
k=1 j=1 =1 k=1
p
= E a‘ij

Hence AB is a nonnegative square matrix with its row sums all equal to 1: it is a row stochastic matrix.

O

Claim 6 (Properties of T). Supposing that the hb-graph is connected, the exchange-based diffusion matrix T' is aperi-
odic and irreducible.

Proof. This stochastic matrix is aperiodic, due to the fact that any vertex of the hb-graph retrieves a part of the value
it has given to the hb-edge, hence ¢;; > O forall 1 <7 < n.

Moreover as the hb-graph is connected, the matrix is irreducible as all state can be joined from any state.

O
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Claim 7. The sequence (Py )
my such that:

ey With Py = (ar (vi)), <<, in a connected hb-graph converges to the state vector
dw,vi

Yy = ™y
D .,
k=1

1<i<n

Proof. We designate by 7 an eigenvector of 1" associated to the eigenvalue 1. We have 77" = 7.
Let consider u = (dy ;)

We have

1<i<n

n P
(ul), = Ay v, Z Cik
i=1 j=1

- ~my (i) we (e5)  my (vr)

) X
i—1 d’u),m #m (6.7)

NS s (o) a0, (o) x T (08
_ZZ J(Z) e(J)X#nL(ej)

=1 H#m (67)
P
= Zwe (e;) my; (vk)
j=1
= dw,vk U

Hence, u is a nonnegative eigenvector of 1" associated to the eigenvalue 1.

When we iterate over 7" which is a stochastic matrix aperiodic and irreducible for a connected hb-graph we are then
ensured to converge to a stationary state which is the probability vector associated to the eigenvalue 1. It is unique and

n
is equal to cvu such that Y auy, = 1.

k=1
1

We have o = ———— and hence the result.

>

k=1

O
Claim 8. The sequence (PE t+l) , with P 1 = (et_,_; (ej)> in a connected hb-graph converges to the
T2 ) ten e 2 1<5<p

we (€5) X #m (€))
Zn: duw vy
k=1

state vector g such that:

Proof. As PE,t-s—% = PV’tD;}VHWE and that tiigloo Py, = my, the sequence (PE’H_%)teN converges towards a

state vector g such that: 7 = 7y D, 1VH Wg.
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These two claims show that this exchange-based process ranks vertices by their weighted m-degree and of hb-edges

by their weighted m-cardinality.

We have gathered the two-phase steps of the exchange-based diffusion process in Algorithm 1. The time complexity
of this algorithm is O (T'(dyn + ryp)) where dyy = max (d;) is the maximal degree of vertices in the hb-graph and
Vi€

Ty = max ‘e;’ is the maximal cardinality of the support of a hb-graph. Usually, dy; and r3, are small compared to n
e; e

and p. Algorithm 1 can be refined to determine automatically the number of iterations needed by fixing an accepted
error to ensure convergence on the values of the vertices and storing the previous state.

4 Results and evaluation

This section firstly adresses the validation of the approach taken on random hb-graphs. Secondly, this approach is
applied to help in the processing of the results of Arxiv querying.
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Algorithm 1 Exchange-based diffusion

Given:
Ahb-graph H = (V, E,w,) with |V| =nand |E| =p
Number of iterations: T

Initialisation: L
Forallv; € V :a := —

n
Foralle; € E:¢;:=0

DiffuseFromVerticesToHbEdges():
For j :=1to p:
€ =0
For v; € e;?:
m; (vi) we (¢)
dw,m, (UL) ’
DiffuseFromHbEdgesToVertices():
Fori:=1ton:
a; =0
For e; such that v; € €%

€ 1= €5 +

: <
)

o = o+

Main():
Calculate for all i : dy, ,,, (v;) and for all j : #,e;
Fort=1toT:
DiffuseFrom VerticesToHbEdges()
DiffuseFromHbEdgesTo Vertices()

4.1 Validation on random hb-graphs

This diffusion by exchange process has been validated on two experiments: the first experiment generates a random
hb-graph to validate our approach and the second compares the results to a classical random walk on the hb-graph.

We built a random unweighted hb-graph generator. The generator makes it possible to construct a hb-graph with
inter-connected sub-hb-graphs; those sub-hb-graphs can be potentially disconnected leading to multiple connected
components. We restricted ourselves in the experiments to connected hb-graphs. A single connected component is
built by choosing the number of intermediate vertices that link the different sub-hb-graphs together. As it is show
in Figure 3, we generate Ny, vertices. We start by building each sub-hb-graph, called group, individually and then
interconnect them. Let k be the number of groups. A first set V|, of interconnected vertices is built by choosing Vg
vertices out of the Np.x. The remaining Np,x — Ng vertices are then separated into k& subsets (Vj)1 <<kt In each of
these k groups V; we generate two subsets of vertices: a first set V;; of IV;; vertices and a second set V; 5 of Nj o
vertices with N; 1 < N;2, 1 < j < k. The number of hb-edges to be built is adjustable: their number is shared
between the different groups. The m-cardinality #,, (¢) of a hb-edge is chosen randomly below a maximum tunable
threshold. The V ;-vertices are considered as important vertices and must be present in a certain number of hb-edges
per group; the number of important vertices in a hb-edge is randomly fixed below a maximum number. The completion
of the hb-edge is done by choosing vertices randomly in the V; o set. The random choice made into these two groups
is tuned to follow a power law distribution. It implies that some vertices occur more often than others. Interconnection
between the £ components is achieved by choosing vertices in V{ and inserting them randomly into the hb-edges built.

We apply the exchange-based diffusion process on these generated hb-graphs: after a few iterations, we visualize the
hb-graphs to observe the evolution of the vertex values using a gradient coloring scale. We also take advantage of the
first half-step to highlight hb-edges in the background and show hb-edge importance using an other gradient coloring
scale.

To get proper evaluation and show that vertices with the highest a-values correspond to the important vertices of the
network - in the sense of being central for the connectivity - we compute the eccentricity of vertices from a subset S
of the vertex set V' to the remaining V'\\S of the vertices. The eccentricity of a vertex in a graph is the length of a



4.1 Validation on random hb-graphs 14

Nmax vertices are generated

Ny interconnected vertices Nmax —_No vertices in k groups
Vo W V; Vi
Nji < Njo
Nja Nj2
important vertices remaining vertices

Figure 3: Random hb-graph generation principle

Figure 4: Relative excentricity: finding the length of a maximal shortest path in the hb-graph starting from a given
vertex vo of S and finishing with any vertex in V\ .S

maximal shortest path between this vertex and the other vertices of this graph: extending this definition to hb-graphs
is straightforward. If the graph is disconnected then each vertex has infinite eccentricity.

For the purpose of evaluation, in this article, we define a relative eccentricity as the length of a maximal shortest
path starting from a given vertex in S and ending with any vertices of V'\'S; the relative eccentricity is calculated for
each vertex of S provided that it is connected to vertices of V'\'S; otherwise it is set to —co. The concept of relative
excentricity is illustrated in Figure 4.

For the vertex set V, the subset used for relative eccentricity is built by using a threshold value sy : vertices with o
value above this threshold are gathered into a subset Ay (sy) of V. We consider By (sy) = V\Ay (sv), the set of
vertices with « values below this threshold. We evaluate the relative eccentricity of each vertex of Ay (sy ) to vertices
of By (sy) in the support hypergraph of the corresponding hb-graph.

Assuming that we stop iterating at time 7', we let sy vary from 0 to the value ap max = max (ar (v)) - obtained by
IS

iterating the algorithm on the hb-graph - in incremental steps and while the eccentricity is kept above 0. In order to
have a ratio we calculate:

Sy
ry =
Qref
where o is the reference normalised value used for the initialisation of the « value of the vertices of the hb-graph H.
. . . . QT max
This ratio has values increasing by steps from 0 to ——.
Qref

We show the results obtained in Figure 5 on two plots. The first plot corresponds to the maximal length of the path

between vertices of Ay (sy) and vertices of By (sy ) that are connected according to the ratio ry = V.. this path
Qtref

length corresponds to half of the length of the path observed in the extra-vertex graph representation of the hb-graph

support hypergraph as in between two vertices of V' there is an extra-vertex that represents the hb-edge (or the support
hyperedge). The second curve plots the percentage of vertices of V' that are in Ay (sy) in function of ry. When ry
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Figure 5: Maximum path length and percentage of vertices in Ay (s) over vertices in V' vs ratio 7y .
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Figure 6: Alpha value of vertices at step 200 and degree of vertices.

increases the number of elements in Ay (sy ) naturally decreases while they get closer to the elements of By (sy),
marking the fact that they are central.

Figure 6 and Figure 7 show that high values of a7 (v) correspond to vertices that are highly connected either by
degree or by m-degree. Hence vertices in Figure 8 that are on the positive side of the scale color correspond to highly
connected vertices: the closer to red on the right scale they are, the higher the value of o (v) is.

A similar approach is taken for the hb-edges: assuming that the diffusion process stops at time 7', we use the ep_ 1

function to partition the set of hb-edges into two subsets for a given threshold sg: Ag (sg) of the hb-edges that have
e values above the threshold and B, (sg) the one gathering hb-edges that have e values below sg.

sp varies from 0 to ep_ Lmax = INAX (ET— 1 (e)) by incremental steps while keeping the eccentricity above 0, first
’ ee

of the two conditions achieved. In the hb-graph representation, each hb-edge corresponds to an extra-vertex. Each
time we evaluate the length of the maximal shortest path linking one vertex of Ag (sg) to one vertex of Bg (sg)
for connected vertices in the hb-graph support hypergraph extra-vertex graph representation: the length of the path

16

14
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104 o
s L
T 8
8 CJ
§ o0°
6 Cd
44 -

correlation: 1.0
0 10 20 30 40 50
degm(v)

Figure 7: Alpha value of vertices at step 200 and m-degree of vertices.
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hb-ed
edges

16

vertices

Figure 8: Exchange-based diffusion in hb-graphs after 200 iterations of Algorithm 1: highlighting important hb-edges.
Simulation with 807 vertices (chosen randomly out of 10 000) gathered in 5 groups of vertices (with 6, 5, 7, 3 and
5 important vertices and 2 important vertices per hb-edge), 220 hb-edges (with cardinality of support less or equal to
25), 20 vertices in between the 5 groups. Extra-vertices are colored in green and have square shape.
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Figure 10: Epsilon value of hb-edge at stage 199+% and cardinality of hb-edge.
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Figure 11: Epsilon value of hb-edge at stage 199+% and (m-)cardinality of hb-edge.

corresponds to half of the one obtained from the graph for the same reason than before. We define the ratio

SE
T =
" 6ref
1
where B = — that corresponds to the normalised value that would be used in the dual hb-graph to initialise the

|E|
diffusion process. In Figure 9, we observe for the hb-edges the same trend than the one observed for vertices: the
length of the maximal path between two hb-edges decreases as the ratio rg increases while the percentage of vertices
in Ag (sg) over V decreases.

Figure 10 shows the high correlation between the value of ¢(e) and the cardinality of e; Figure 11 shows that the
correlation between value of €(e) and the m-cardinality of e is even stronger.

The number of iterations needed to have a significant convergence depends on the initial conditions; we tried different
initialisations, either uniform, or applying some strokes on a different number of nodes. We observed that the more
uniform the information on the network is, the less number of iterations for convergence is needed. No matter the
configuration, the most important vertices in term of connectivity are always the most highlighted. Figure 12 and in
Figure 13 depict the convergence observed on a uniform initial distribution as it is described in the former section.
In Figure 12, we can see how the a-values as we observed in Figure 6 reflect the m-degree of the vertex they are
associated to: 200 iterations is far enough to rank the vertices by m-degree. In Figure 13 we can observe an analoguous
phenomena with the e-value associated to hb-edges that reflect the m-cardinality of the hb-edges. Again 200 iterations
are sufficient to converge in studied cases.

The iterations needed to converge depends on the structure of the network. In the transitory phase, the vertices need to
exchange with the hb-edges; the process requires some iterations before converging and its behaviour depends on the
node connectivity and the hb-edge composition. It is an open question to investigate on this transitory phase to have
more indications on the way the ¢ and the a-values vary.

As we already mentioned the results on hb-edges show that the values obtained are highly correlated to the m-
cardinality of the hyperedges. To color the hb-edges as it is done in Figure 8, we calculate the ratio rp_ 1 (e) =
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Evolution of vertex alpha values during the diffusion process: 200 iterations
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Figure 12: Alpha value convergence of the vertices vs number of iterations. The plots are m-degree-based gradiently
colored.
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Figure 13: Epsilon value convergence of hb-edges vs number of iterations. The plots are m-cardinality-based gradi-
ently colored.
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Diffusion vs modified random walk by number of vertex visits
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Figure 14: Comparison of the rank obtained by a thousand modified random walks after total discovery of the vertices
in the hb-graph and rank obtained with 200 iterations of the exchange-based diffusion process.

€r—1 (e)

, where €yom (6) = > Mvref corresponds to the value obtained from the vertices of the hb-edge

€norm (€) veer deg,, (v)
support by giving to each of them the reference value. Hb-edges are colored using Tro1 (e), the higher the value, the

closer to red the color of the left gradient color bar is.

To compare our exchange-based diffusion process to a baseline we considered a classical random walk. In this classical
random walk, the walker who is on a vertex v chooses randomly a hb-edge that is incident with a uniform probability
law and when the walker is on a hb-edge e he chooses a vertex inside the hb-edge randomly with a uniform probability
law. We let the possibility of teleportation to an other vertex from a vertex with a tunable value : 1 — y represents the
probability to be teleported. We choose v = 0.85. We count the number of passages of the walker through each vertex
and each hb-edge. We stop the random walk when the hb-graph is fully explored. We iterate N times the random
walk, N varying.

To improve the results of the classical random walk we propose a modified random walk - described in Algorithm 2 -
on the hb-graphs with random choice of hb-edges when the walker is on a vertex v with a distribution of probability

(we(el)ml(v)> and a random choice of the vertex when the walker is on a hb-edge e with a distribution
degw,m (U) 1<i<p

Me (V)
#m (€)
Similarly to the classical random walk, we count the number of passages of the walker through each vertex and each
hb-edge. We also stop the random walk when the hb-graph is fully explored. We iterate NV times the random walk with
various values of N. Assigning a multiplicity of 1 to every vertex and a weight of 1 for every hb-edge - with the vertex
degree and the hb-edge cardinality instead of the multiplicity - retrieves the classical random walk from the modified
random walk.

of probability < > . We let the possibility of teleportation as it is done in the classical random walk.
1<i<n

Figure 14 shows that there is a good correlation between the rank obtained by a thousand modified random walks and
after two hundreds iterations of our diffusion process, especially for the first hundred vertices of the network, which is
generally the ones that are targetted. The lack of correlation between the rank obtained by the random walk with the
degree of the vertices and the m-degree of vertices as shown respectively in Figure 15 and Figure 16 is mainly due to
the vertices with low m-degrees / degrees.

We can remark in Figure 17 that the correlation is a bit lower with a thousand classical random walks due to the fact
that there are more vertices that are seen as differently ranked in between the two approaches. In Figure 18, we can
see that the ranks in the classical random walk relies more on the degree than on the m-degree as shown in Figure 19,
especially for vertices with small (m-)degrees; but there is still a misclassification for lower (m-)degree vertices.

We have compared the three methods from a computational time perspective; the results are shown in Table 1. The
diffusion process is clearly faster; the modified random walk, essentially due to the overhead due to the large number of
divisions, requires longer than the classical random walk. A lot of optimisation can be foreseen to make this modified
random walk running faster. The random walks can be easily parallelised; it is also the case for the diffusion process.
The number of iterations in the diffusion process can also be optimised. These issues will be addressed in future work.
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Algorithm 2 Modified random walk in hb-graphs

Given:
A hb-graph H = (V, E, w.) with |[V| =nand |E| =p
Number of Random walks: Trw
A teleportation threshold: ~y,

Initialisation:
VoeViny (v)=0
Vee€ Empg(e) =0
Q :=deep copy (V)
vg :=random (v € Q)
ny (’Uo) =1

Q= Q\{vo}

OneRW():
While Q # 0:

Yrand = random ([0; 1], weight = uniform)

if Yrand < Yin:
# Visit of incident edges

We (€5) Me, (v
e.:=random | e € F : v, € e*, weight = ((J)](O)>
degwcﬂn (/UO) e.€E

ny (e) :==ny (e.) +1
# Choice of the next vertex

vp := random (v €V :ve€el,weight = (me° (v) ) )
veV

#m (ec)
If vy € Q:
Q= Q\ {’Uo}
ny (vo) :=ny (vo) +1
else:

# Case of teleportation
vg = random <v €V :veel, weight = <m6° ) ) )
veV

#m (ec)
Q== Q\{vo}

ny (vo) :==ny (vo) + 1

Main():
For 1:=0 to Trw :
OneRW()
Yo e Viny (v) = ny (v)
Trw
Ve € E: g (e) = ni (€)

Trw

Modified random walk by number of vertex visits: m-degree

rank of v

0d 00090000 © o0 0o correftion: 0083
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degm(v)

Figure 15: Comparison of the rank obtained by a thousand modified random walks after total discovery of the vertices
in the hb-graph and m-degree of vertices
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Modified random walk by number of vertex visits: degree
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Figure 16: Comparison of the rank obtained by a thousand modified random walks after total discovery of the vertices
in the hb-graph and degree of vertices
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Figure 17: Comparison of the rank obtained by a thousand classical random walks after total discovery of the vertices
in the hb-graph and rank obtained with 200 iterations of the exchange-based diffusion process.
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Figure 18: Comparison of the rank obtained by a thousand classical random walks after total discovery of the vertices
in the hb-graph and m-degree of vertices
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Figure 19: Comparison of the rank obtained by a thousand classical random walks after total discovery of the vertices
in the hb-graph and degree of vertices
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[Ef TV k] N | No Type of algorithm 100 200 500 1000

55 | 106 | 1 5 5 classical random walk | 0.40 £0.05 | 0.78 £0.07 1.92+0.10 3.82+0.14
55 1106 [ 1] 5 5 diffusion 0.05+0.02 | 0.08+0.02 | 0.20+0.04 | 0.39 +0.06
55 106 | 1] 5 5 | modified random walk | 0.71 £0.06 | 1.43+0.09 | 3.56+0.17 | 7.12+0.23

55 | 132 13| 5 5 classical random walk | 0.49 £0.05 | 0.96 £ 0.06 2.36 +£0.08 4.71+0.12
55 1132 3] 5 5 diffusion 0.05+£0.02 | 0.09+0.02 | 0.21+£0.04 | 0.42+0.05

55 [ 1323 ] 5 5 | modified random walk | 0.89 £0.06 | 1.77+0.09 | 4.43+0.13 8.85+0.19

55 91 | 5 5 5 classical random walk | 0.30 £0.04 | 0.59 £0.05 1.44 +£0.06 2.85+0.07

55 91 [ 5] 5 5 diffusion 0.04+0.02 | 0.07+0.02 | 0.16+0.03 | 0.31+0.04
55 91 [ 5] 5 5 | modified random walk | 0.55+0.05 | 1.09+0.06 | 2.71+0.09 | 542+0.14
305 | 534 | 1 5 5 classical random walk | 4.05+0.16 | 8.07+£0.26 | 20.10£0.45 | 40.17 £ 0.85
305534 1] 5 5 diffusion 0.29+0.06 | 0.57+0.08 1.35+0.09 | 2.64+0.10
305 (534 | 1] 5 5 | modified random walk | 6.86 £0.28 | 13.71 +0.41 | 34.16 £0.75 | 68.28 + 1.21
305|491 | 3] 5 5 classical random walk | 3.51 £0.13 | 6.98+£0.21 | 17.39+£0.38 | 34.77+£0.70
305491 [ 3] 5 5 diffusion 0.27+0.05 | 0.53+0.09 1.25+0.11 243 +0.11

305491 | 3] 5 5 | modified random walk | 6.02+0.22 | 12.03+0.41 | 30.10+0.73 | 60.23 + 1.34
305 | 499 | 5 5 5 classical random walk | 3.31 £0.15 | 6.58+£0.20 | 16.38£0.34 | 32.72+0.51
30549 [ 5] 5 5 diffusion 0.24+£0.04 | 0.47+0.06 1.12+£0.06 | 2.18 £0.08

30549 | 5] 5 5 | modified random walk | 5.86 £0.26 | 11.70 +£0.37 | 29.26 £ 0.58 | 58.51 £0.89

Table 1: Time taken for doing 100, 200, 500 and 1000 iterations of the diffusion algorithm and 100, 200, 500 and 1000
classical and modified random walks on different hb-graphs

4.2 Application to Arxiv querying

We used the standard Arxiv API! to perform searches on Arxiv database. When performing a search, the query is
transformed into a vector of words which is the basis for the retrieval of documents. The most relevant documents
are retrieved based on a similarity measure between the query vector and the word vectors associated to individual
documents. Arxiv relies on Lucene’s built-in Vector Space Model of information retrieval and the boolean model?.
The Arxiv API returns the metadata associated to the document with highest scores for the query performed.

This metadata, filled by the authors during their submission of a preprint, contains different information such as
authors, Arxiv categories and abstract.

We process these abstracts using TextBlob, a natural language processing Python library® and extract the nouns using
the tagged text.

Nouns in the abstract of each document are scored with TF-IDF, the Term Frequency - Invert Document Frequency,
defined as:

TF-IDF (2, d) = TF(z, d) X IDF(z, d)

with TF(z, d) the relative frequency of « in d and IDF (z, d) the invert document frequency.
Writing ng the total number of terms in document d and n, the number of occurences of x:
Tiy

TF(x,d) = —
na

and writing N the total number of documents and n,<4 the number of documents having an occurence of x, we have

N
IDF (z,d) = log;, <nd>
rE

Scoring each noun in each abstract of the retrieved documents generates a hb-graphs H ¢ of universe the nouns con-
tained in the abstracts. Each hb-edge contains a set of nouns extracted from a given abstract with a multiplicity function
that represents the TF-IDF score of each noun.

The exchange-based diffusion process is applied to the hb-graph Hg. We show two typical examples on the same
query the first 50 results in Figure 20 and the first 100 results in Figure 21. The number of iterations needed to have

Uhttps://arxiv.org/help/api/index
*https://lucene.apache.org/core/2_9_4/scoring html
*https://textblob.readthedocs.io/en/dev/
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Figure 20: Querying Arxiv. The search performed is “content-based multimedia indexing” for which 50 most relevant
articles have been retrieved with 50 iterations.

convergence is less than 10 in these two cases; with 500 results, around 10 iterations are needed for all hb-edges but
one where 30 iterations are needed.

As the hb-edges correspond to documents in Arxiv database we compared the central documents obtained in the
results of the queries: we observe that the ranking obtained based on the €4 +1 differs significantly from the ranking

by pertinence given by Arxiv APL In the exchange-based diffusion, the ranking sorts documents depending on their
word weights and their centrality as we have seen in the experimental part on random hb-graphs.

Moreover, we have observed that when the number of results retrieved increases the top 5, top 10 documents sometimes
change drastically depending on the retrieval of new documents that are more central in the words they contain. If
the gap seems not big with a few documents retrieved, this gaps increase as the number of documents increases.
The increasing number of results reveal the full theorical hb-graph obtained from the whole dataset performing the
querying, and hence, reveals central subjects in this dataset. Hence the diffusion process can allow to highlight
importance of documents by considering central subjects in the processing of the results of the query.

5 Future work and Conclusion

The results obtained by using hb-graph highlight the possibility of using hb-edges for analyzing networks; they confirm
that vertices are highlighted due to their connectivity. The highlighting of the hb-edges has been achieved by using the
intermediate step of our diffusion process. Different applications can be thought in particular in the search of tagged
multimedia documents for refining the results and scoring of documents retrieved. Using tagged documents ranking
by this means could help in creating summary for visualisation. Our approach is seen as a strong basis to refine the
approach of [21]. This approach can also be viewed as a mean to make query expansion and disambiguation by using
additional high scored words in the network and a way of making some recommendation based on the scoring of a
document based on its main words.
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