

ttH measurements at LHC

Rohin T Narayan on behalf of the ATLAS and CMS collaborations

Oct-25-2018, LCWS Arlington

Motivation

- Fermion masses are generated through Yukawa interaction
- Heaviest SM particle (top) expected to have largest Yukawa coupling (y_t) to the Higgs field.

- Indirect constraints on top Yukawa coupling possible through Higgs production through ggH and H->γγ decay processes.
- ATLAS+CMS Run-1 combination of ratio of measured coupling to SM expectation (κ_t)
 - Assuming no new particles in the loop

$$\kappa_t \equiv \frac{y_t}{y_t(SM)} = 0.87 \pm 0.15$$

JHEP08(2016)045

- Direct measurement of top-Yukawa coupling needed to disentangle any new physics effects.
- ttH/tH production cross-section measurement is the only direct way to measure y_t
 - tH cross-section too low

Experimental challenges

- Standard Model production cross section: ~507 fb: About 1% of total Higgs cross-section.
 - Many final states
 - Tiny signal and large backgrounds

Experimental challenges

• Object identification and reconstruction among multiple proton collisions (pileup)

Excellent mitigation efforts

ttH(bb)

- Large $H \rightarrow b\bar{b}$ branching fraction.
- Challenges
 - Huge combinatorics in reconstructing $H \to b\bar{b}$ candidate
 - Large *tt* + *HF* background + theory uncertainties
- Channels
 - Leptonic (dileptonic and single leptonic)
 - Hadronic

ttH(bb): dileptonic

ATLAS

- Exactly two opposite sign leptons
- Regions constructed for 3 and ≥4 jets.
 - SR's constructed with high b-tag quality
 - Three SR's: purity ranging from 1.8% to 5.4%

	none	loose	medium	tight	very-tight
Efficiency	-	85%	77%	70%	60%
Discriminant value	1	2	3	4	5

b-tag working points

- Highest signal purity in region with 3 very tight and 1 tight b-tag
- CR's for tt+b, tt+c and tt+light to constrain uncertainties, backgrounds,

Similar region splitting in single lepton category as well (backup)

ttH(bb) multivariate analysis

- In signal regions, MVA techniques are used to further separate signal and background
 - Reconstruction BDT: Attempts to reconstruct top quarks and H(bb)
 - Likelihood discriminant (LHD): ttH signal vs tt+b background.
 - Matrix Element discriminant (MEM): ttH and tt+b PDF estimation using Matrix Element Method
- Final discriminant: Classification BDT
 - Reconstruction BDT, LHD, MEM, kinematic variables

ttH(bb): Dilepton

Events categorized based on number of jets and b-tagged jets:

- ≥ 4j, 3b: A BDT separating signal and tt+jets background
- ≥ 4j, ≥ 4b: Two categories based on BDT; Matrix Element Method (MEM) separating signal from tt+HF background

ttH(bb): SingleLepton

CMS

Events categorized as number of jets and b-tagged jets

- Multi-classification Deep Neural Network per jet category:
 - 6 categories: 1 signal and 5 tt+HF categories
- Final discriminant is the DNN output

ttH(bb) Leptonic: Results

$$\mu = 0.84^{+0.64}_{-0.61}$$

significance: 1.4σ (expected 1.6σ)

$$\mu = 0.72^{+0.45}_{-0.45}$$

significance: 1.6σ (expected 2.2σ)

- Systematics:
 - Largest impact from tt+bb generator modeling
 - b-tagging
 - ATLAS considers additional tt+HF systematics (backup)

ttH(bb) hadronic

- Events categorized as number of jets and btagged jets
 - ≥ 7 jets, ≥ 3 b-tagged jets, HT > 500 GeV, no leptons
- Dominant background is QCD-multijet
 - Modeling
 - Shape from low b-tag multiplicity control region in data
 - Normalization from final fit to data

JHEP 06 (2018) 101

35.9 fb⁻¹ (13 TeV)

ttH Multileptons

- Targets $H \to ZZ^*, H \to WW^*, H \to \tau^+\tau^-$
- Events categorized based on number of light leptons and hadronic taus

- Main backgrounds
 - Fake leptons (heavy flavor, conversions)
 - Irreducible background from ttV
- High lepton multiplicity reduces backgrounds

ttHML: CMS strategy

- Event categorization based on number of light leptons and hadronic taus.
- Final fit variables
 - MEM against ttZ (2 I same-sign + 1 τ_n)
 - Yields in 4-leptons
 - BDTs against tt+jets (1I+2 τ_n) and tt + jets, tt+ V (2 I same-sign, 3 I)

	2ℓSS	3ℓ	4ℓ	1ℓ + $2\tau_{\rm had}$	2ℓ SS+ $1\tau_{had}$	2ℓ OS+ $1\tau_{had}$	3ℓ + $1\tau_{\rm had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t}, t\bar{t}W, t\bar{t}Z, VV$	$tar{t}Z$ / -	$tar{t}$	all	$t\bar{t}$	-
Discriminant	2×1D BDT	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1/1	2	2	10	1
Control regions	-	4	-	-	=	=	-

- Simultaneous fit in 12 regions (CR+SR)
 - Multiclass BDT in 3l
- Single bin used in 3l CR's as well as low stat SR's
 - 3l+1τ
 - 4l (z-enriched,zdepeleted)
- BDT shape information used in 5 SR's

ttHML: Results

- Measured $\mu = 1.6^{+0.5}_{-0.4}$ with a significance with respect to background only hypothesis **4.1** σ (expct. 2.8 σ)
- Measured $\mu=1.23^{+0.45}_{-0.43}$ with a significance with respect to background only hypothesis 3.2 σ (expct. 2.8 σ)
- Limited by fake lepton estimation, tau identification JES, ttH and ttV process modeling.
- Several channels are limited by statistics.

ttH(ZZ*)

- Candidate event selection:
 - At least two opposite sign same flavor light lepton
- Extremely low rate (about 0.6 event expected with the statistics available); but clean final state with high S/B
- JHEP 03 (2018) 095

PAS-HIG-18-001

Dedicated ttH channel, part of the global H(ZZ*) analysis

• No candidates in a window 115 < m_{4l} < 130

ttH(γγ)

- Clear signature from the photons
- Higgs boson can be reconstructed from the two isolated photons.
- Dedicated ttH channel part of the H(γγ) analysis.

ttH(γγ) ATLAS strategy

- Events classified into hadronic and leptonic channels based on decay topology of tt-bar system.
- BDT's used in hadronic and leptonic channels.
 - Separating ttH from main background ttγγ and γγ background processes.

- Based on the BDT output 4 hadronic and 3 leptonic categories are defined for the fit.
 - S+B fit in each category between 105 < $m_{\gamma\gamma}$ < 160 GeV

ttH(γγ) Results

Phys. Lett. B 784 (2018) 173

arXiv:1804.02716

• Signal extracted from a fit to $m_{\gamma\gamma}$

ATLAS: $\mu = 1.39^{+0.48}_{-0.42}$

observed (expected) significance: 4.1σ (3.7 σ)

CMS: $\mu = 2.2^{+0.9}_{-0.8}$

ttH Combination

• Combine different decay modes assuming SM for the decay BR

Combine also with run 1 data (lower sensitivity, 20 (5) fb⁻¹ @ 8(7) TeV)

	Run1+Run2	Run2
ATLAS	6.3σ observed (5.1σ expected)	5.8σ observed (4.9 σ expected)
CMS	5.2σ observed(4.2σ expected)	

ATLAS uses 2017 data as well for ttH(γγ), ttH(ZZ*) analysis

карра	ATLAS	CMS	
Kt	$1.09^{+0.15}_{-0.14}$	$0.98^{+0.14}_{-0.14}$	

<u>ATLAS-CONF-2018-031</u> <u>CMS-HIG-17-031</u>

Conclusion and Outlook

- Both CMS and ATLAS has observed ttH process at the LHC
- Leading measurement uncertainties
 - Process modeling: tt+HF and ttV
 - Light lepton fake estimates, jet systematics
- New data (about 140 fb⁻¹ collected)
 - Statistically limited channels will gain sensitivity
 - Impacts statistically limited systematics: eg. fake estimates
 - Differential measurements
 - Simultaneous measurements, ratios
- HL-LHC
 - Rare decay channels become accessible eg: ttH(μμ), ttH(Zγ)

Backup

ttH(bb): Single lepton

ATLAS

Sub channels

- Exactly 1 lepton.
- Boosted Category:
 - Presence of two R=1.0 reclustered jets (for Higgs and top candidate)
 - Remove jets which have pT < 50GeV and pT>1500 GeV
- Resolved Category: Failing boosted selection
 - Require ≥5 jets and ≥2 very-tight or ≥3 medium b-tagged jets

- SR's defined for 5 and ≥6 jets
- Boosted channel is not categorized further.
- Highest purity in 4 very tight b-tag bins (≥6 jets)
- CR's for tt+ ≥1b, tt+ ≥1c and tt + light

discriminant

CMS ttH(bb)Leptonic

Uncertainties

Uncertainty source	$\pm \Delta \mu$ (observed)	$\pm \Delta \mu$ (expected)
Total experimental	+0.15/-0.16	+0.19/-0.17
b tagging	+0.11/-0.14	+0.12/-0.11
jet energy scale and resolution	+0.06/-0.07	+0.13/-0.11
Total theory	+0.28/-0.29	+0.32/-0.29
tī+hf cross section and parton shower	+0.24/-0.28	+0.28/-0.28
Size of the simulated samples	+0.14/-0.15	+0.16/-0.16
Total systematic	+0.38/-0.38	+0.45/-0.42
Statistical	+0.24/-0.24	+0.27/-0.27
Total	+0.45/-0.45	+0.53/-0.49

CMS Combinations

	Uncertainty							
Parameter	Best fit	Stat	Expt	Thbgd	Thsig			
WW*	$1.97^{+0.71}_{-0.64}$	$^{+0.42}_{-0.41}$	$^{+0.46}_{-0.42}$	$^{+0.21}_{-0.21}$	+0.25			
$\mu_{t\bar{t}H}^{WW^*}$	(+0.57)	(+0.39)	(+0.36)	(+0.17)	$\begin{pmatrix} -0.12 \\ +0.12 \end{pmatrix}$			
	(-0.54) $0.00^{+1.30}_{-0.00}$	$\begin{pmatrix} -0.38 \\ +1.28 \end{pmatrix}$	(-0.34) +0.20	$\begin{pmatrix} -0.17 \\ +0.04 \end{pmatrix}$	(-0.03)			
$\mu_{ m tar{t}H}^{ m ZZ^*}$, 0.00	-0.00	-0.00	-0.00	-0.00			
	$\begin{pmatrix} +2.89 \\ -0.99 \end{pmatrix}$	$\begin{pmatrix} +2.82 \\ -0.99 \end{pmatrix}$	$\begin{pmatrix} +0.51 \\ -0.00 \end{pmatrix}$	$\begin{pmatrix} +0.15 \\ -0.00 \end{pmatrix}$	$\begin{pmatrix} +0.27 \\ -0.00 \end{pmatrix}$			
$\gamma\gamma$	$2.27^{+0.86}_{-0.74}$	$^{+0.80}_{-0.72}$	+0.15 -0.09	+0.02 -0.01	$^{+0.29}_{-0.13}$			
$\mu_{t\bar{t}H}^{\gamma\gamma}$	(+0.73)	$\begin{pmatrix} +0.71 \\ -0.64 \end{pmatrix}$	$\begin{pmatrix} +0.09 \\ -0.04 \end{pmatrix}$	$\begin{pmatrix} +0.01 \\ -0.00 \end{pmatrix}$	(+0.13)			
	(-0.64) $0.28^{+1.09}_{-0.96}$	+0.86	$+0.64^{'}$	+0.10	$\begin{pmatrix} -0.05 \\ +0.20 \end{pmatrix}$			
$\mu_{t\bar{t}H}^{ au^+ au^-}$	(+1.00)	$\begin{pmatrix} -0.77 \\ +0.83 \end{pmatrix}$	$\begin{pmatrix} -0.53 \\ +0.54 \end{pmatrix}$	(+0.09)	-0.19			
	(-0.89)	(-0.76)	(-0.47)	(-0.08)	(-0.01)			
$\mu_{ m tar tH}^{ m bar b}$	$0.82^{+0.44}_{-0.42}$	$^{+0.23}_{-0.23}$	$^{+0.24}_{-0.23}$	$^{+0.27}_{-0.27}$	$^{+0.11}_{-0.03}$			
r'ttH	$\begin{pmatrix} +0.44 \\ -0.42 \end{pmatrix}$	$\begin{pmatrix} +0.23 \\ -0.22 \end{pmatrix}$	$\begin{pmatrix} +0.24 \\ -0.23 \end{pmatrix}$	$\begin{pmatrix} +0.26 \\ -0.27 \end{pmatrix}$	$\begin{pmatrix} +0.11 \\ -0.04 \end{pmatrix}$			
	o+1.01	+0.54	+0.53	+0.55	+0.37			
$\mu_{ m tar{t}H}^{7+8{ m TeV}}$	$2.59^{+1.01}_{-0.88}$	-0.53	-0.49	-0.49	-0.13			
	$\begin{pmatrix} +0.87 \\ -0.79 \end{pmatrix}$	$\begin{pmatrix} +0.51 \\ -0.49 \end{pmatrix}$	$\begin{pmatrix} +0.48 \\ -0.44 \end{pmatrix}$	$\begin{pmatrix} +0.50 \\ -0.44 \end{pmatrix}$	$\begin{pmatrix} +0.14 \\ -0.02 \end{pmatrix}$			
13 TeV	$1.14^{+0.31}_{-0.27}$	$^{+0.17}_{-0.16}$	$^{+0.17}_{-0.17}$	$^{+0.13}_{-0.12}$	$^{+0.14}_{-0.06}$			
$\mu_{ m tar tH}^{13 TeV}$	$\begin{pmatrix} +0.29 \\ -0.26 \end{pmatrix}$	$\begin{pmatrix} +0.16 \\ -0.16 \end{pmatrix}$	$\begin{pmatrix} +0.17 \\ -0.16 \end{pmatrix}$	$\begin{pmatrix} +0.13 \\ -0.12 \end{pmatrix}$	$\begin{pmatrix} +0.11 \\ -0.05 \end{pmatrix}$			
	(-0.26)	(-0.16)	(-0.16)	(-0.12)	(-0.05)			
	$1.26^{+0.31}_{-0.26}$	$^{+0.16}_{-0.16}$	$^{+0.17}_{-0.15}$	$^{+0.14}_{-0.13}$	$^{+0.15}_{-0.07}$			
$\mu_{ m tar t H}$	$\begin{pmatrix} +0.28 \\ -0.25 \end{pmatrix}$	$\begin{pmatrix} +0.15 \\ -0.15 \end{pmatrix}$	$\begin{pmatrix} +0.16 \\ -0.15 \end{pmatrix}$	$\begin{pmatrix} +0.13 \\ -0.12 \end{pmatrix}$	$\begin{pmatrix} +0.11 \\ -0.05 \end{pmatrix}$			

ATLAS + CMS ttH(bb) systematics

ATLAS tt+HF systematics

Systematic source	Description	$t\bar{t}$ categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t} + \geq 1c)$	Free-floating $t\bar{t} + \ge 1c$ normalization	$t\bar{t} + \geq 1c$
$k(t\bar{t} + \geq 1b)$	Free-floating $t\bar{t} + \ge 1b$ normalization	$t\bar{t} + \geq 1b$
Sherpa5F vs. nominal	Related to the choice of NLO event generator	All, uncorrelated
PS & hadronization	Powheg+Herwig 7 vs. Powheg+Pythia 8	All, uncorrelated
ISR / FSR	Variations of μ_R , μ_F , h_{damp} and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \ge 1c$ ME vs. inclusive	MG5_aMC@NLO+Herwig++: ME prediction (3F) vs. incl. (5F)	$t\bar{t} + \geq 1c$
$t\bar{t} + \ge 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. Powheg+Pythia 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ resumm. scale	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ global scales	Set μ_Q , μ_R , and μ_F to μ_{CMMPS}	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b \text{ PDF (MSTW)}$	MSTW vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b \text{ PDF (NNPDF)}$	NNPDF vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ UE}$	Alternative set of tuned parameters for the underlying event	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b \text{ MPI}$	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 3b$ normalization	Up or down by 50%	$t\bar{t} + \geq 1b$

ttHML: light lepton fakes

	2ℓSS	3ℓ	4ℓ	1ℓ + $2\tau_{\rm had}$	2ℓ SS+ $1\tau_{had}$	2ℓ OS+ $1\tau_{had}$	$3\ell+1\tau_{\text{had}}$
Non-prompt lepton strategy	DD	DD	semi-DD	MC	DD	MC	MC
	(MM)	(MM)	(SF)		(FF)		
Fake tau strategy	1-0	_	7	DD	semi-DD	DD	semi-DD
				(SS data)	(SF)	(FF)	(SF)

2ISS/3I 4I

ttHML: Uncertainties

Uncertainty Source	$\Delta \mu$		
$t\bar{t}H$ modeling (cross section)	+0.20	-0.09	
Jet energy scale and resolution	+0.18	-0.15	
Non-prompt light-lepton estimates	+0.15	-0.13	
Jet flavor tagging and τ_{had} identification	+0.11	-0.09	
$t\bar{t}W$ modeling	+0.10	-0.09	
$t\bar{t}Z$ modeling	+0.08	-0.07	
Other background modeling	+0.08	-0.07	
Luminosity	+0.08	-0.06	
$t\bar{t}H$ modeling (acceptance)	+0.08	-0.04	
Fake τ_{had} estimates	+0.07	-0.07	
Other experimental uncertainties	+0.05	-0.04	
Simulation sample size	+0.04	-0.04	
Charge misassignment	+0.01	-0.01	
Total systematic uncertainty	+0.39	-0.30	

ttH(bb): Matrix Element method

- Calculate the likelihood of each event to originate from ttH or tt + bb
- Used in most powerful signal region
 6j SR1

parton distribution function

accounts for production mechanism

transfer function

maps detector response to diagram

$$L_{i} = \sum_{\text{flavor}} \int \frac{\left| f_{1}\left(x_{1}, Q^{2}\right) f_{2}\left(x_{2}, Q^{2}\right)\right|}{\left| \vec{q}_{1} \right| \left| \vec{q}_{2} \right|} \frac{\left| \mathcal{M}_{i}\left(\mathbf{Y}\right)\right|^{2} T(\mathbf{X}; \mathbf{Y}) d\mathbf{\Phi}_{n} d\mathbf{Y}}{\mathsf{matrix element}}$$

describes signal or background process