TOP-ANTITOP CHARGE ASYMMETRY MEASUREMENTS IN THE LEPTON+JETS CHANNEL WITH THE ATLAS DETECTOR

Ш.

MATEJ MELO (COMENIUS UNIVERSITY IN BRATISLAVA), ON BEHALF OF THE ATLAS COLLABORATION

Top 2018, Bad Neunahr

Introduction

Definition of $t\bar{t}$ **charge asymmetry**

$$A_{\rm C}^{t\bar{t}} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)},$$

where $\Delta |y| = |y_t| - |y_{\bar{t}}|$ and $y_t (y_{\bar{t}})$ is the rapidity of the top (antitop) quark.

Unfolding

- Fully Bayesian Unfolding (FBU) [4] is used in both measurements to unfold the reconstructed distributions to the parton level
- In the case of the boosted topology, measurement is performed in a fiducial phase space ($m_{t\bar{t}} > 0.75$ TeV and $-2 < \Delta |y| < 2$) due to small sensitivity outside this region
- For all systematic uncertainties corresponding nuisance parameters are assigned. FBU enables to marginalize systematic uncertainties and thus to reduce the total uncertainty
- In the resolved topology 0-b tag region is used for in-situ calibration of the W liets background:
- In the Standard Model (SM), non-zero asymmetry is predicted due to interference of higher order quark-antiquark annihilation diagrams (main contribution from Box-Born diagram interference)
- Many theories beyond the Standard Model (BSM) predict an enhancement of the asymmetry

• Two measurements were performed by the ATLAS experiment at $\sqrt{s} = 8$ TeV using 20.3 fb⁻¹ data in the lepton+jets channel: in the so-called resolved topology [1] and with highly boosted $t\bar{t}$ events [2]

Event Selection and Reconstruction

Both Lepton+Jets Topologies

• Single lepton trigger requirements, 1 good lepton with $p_{\rm T} > 25~{\rm GeV}$ • $E_{\rm T}^{\rm miss}$ requirements, $E_{\rm T}^{\rm miss} + m_{\rm T}^{\rm W} > 60~{\rm GeV}$

Resolved

- At least 4 jets with $p_{\rm T}$ > 25 GeV
- Events are separated into six signal regions based on the lepton charge (+1, -1) and *b*-tag multiplicity (70% eff. working point)
- Kinematic Likelihood Fitter [3] is used to reconstruct $t\bar{t}$ kinematics

Boosted

- At least one jet with $p_{\rm T}$ > 25 GeV, close to lepton (ΔR < 1.5)
- At least one top-tagged large jet (R = 1.0) with $p_T > 300$ GeV, well separated from the lepton ($\Delta \phi(\ell, \text{jet}_{R=1.0}) > 2.3$)
- Either the jet close to lepton or a jet matched to the large jet ($\Delta R < 1.5$) must be *b*-tagged (70% eff. working point)

Results

• Inclusive asymmetry is measured to be $A_{\rm C} = 0.009 \pm 0.005$ (stat.+syst.), compatible with the Standard Model prediction $A_{\rm C}^{\rm SM} = 0.0111 \pm 0.0004$ [5] • Fiducial asymmetry ($m_{t\bar{t}} > 0.75$ TeV and $-2 < \Delta |y| < 2$) is measured to be $A_{\rm C} = 0.042 \pm 0.032$, compatible with $A_{\rm C}^{\rm SM} = 0.0160 \pm 0.0004$ [6] • Three measurements as a function of mass, β_z and $p_{\rm T}$ of the $t\bar{t}$ system are shown for the resolved topology, mass dependency was estimated also in the boosted topology (right)

• Inclusive and differential measurements as a function of $t\bar{t}$ mass are mostly limited by stat. uncertainties; measurements as a function of $t\bar{t} \beta_z$ and p_T are mostly limited by modelling uncertainties • No significant deviations from the SM predictions are observed

e,µ

V.

Impact on BSM Scenarios

0.08

Lepton+jets $A_{\mathbf{C}}$ Measurement at 13 TeV VI.

• $A_{\rm C}$ measurement in the lepton+jets channel at 13 TeV is ongoing

• Measured $A_{\rm C}$ and $A_{\rm FB}$ (forward-backward asymmetry measured at Tevatron) values compared with the SM predictions, as well as various BSM predictions; inclusive (left) and for $m_{t\bar{t}} > 1.3$ TeV (right)

 ATLAS 8 TeV A_C measurements allow for exclusion of a large phase-space of the parameters describing various BSM models

- Challenging due to larger fraction of symmetric gluon fusion in $t\bar{t}$ production but allowing to study higher $t\bar{t}$ mass region with where a higher charge asymmetry is expected
- Resolved and boosted topologies are selected to be orthogonal and are combined at the level of FBU - combination helps to reduce the total uncertainties in all regions

References

[1] ATLAS Collaboration, Eur. Phys. J. C 76 (2016) 87
[2] ATLAS Collaboration, Phys. Lett. B 756 (2016) 52
[3] J. Erdmann et al., Nucl. Instrum. Meth. A 748 (2014) 18-25
[4] G. Choudalakis, (2012) arXiv:1201.4612
[5] W. Bernreuther and Z. G. Si, Phys. Rev. D 86 (2012) 034026
[6] J. H. Kuhn and G. Rodrigo, JHEP 1201 (2012) 063