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Abstract

For the development of charged particle detectors based on straw

tubes operating in vacuum, a special measurement technique is re-

quired for the evaluation of their mechanical properties. A summary

of the known equations that govern straw behavior under internal

pressure is provided, and a new experimental method of a strained

pressurized straw tube study is presented in this paper. The Pois-

son’s ratio of the straw wall, which defines the stability conditions of

a built-in tube, is measured for the NA62 spectrometer straw, and its

minimum pre-tension is estimated.

keywords: straw tracker, straw tube, vacuum, pressure
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1 Introduction

During the past few decades, a series of experiments in high-energy physics
have been designed to investigate very rare decay modes of kaon (see, for
example, [1, 2]). In particular, the purpose of NA62 experiment at CERN
SPS [1] is to measure K+ → π+νν̄ decay branching ratio of the order of
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10−10 with an uncertainty of 10%. It will be a test of the Standard Model
and a probe to possible new physics. This is a challenging task, requiring
an unprecedented precision of π+ momentum measurement in order to reject
the dominating background using the evaluation of event missing mass. This
require a precise measurement of the momentum and position of the charged
particle.

A minimal material budget requirement in such experiments stimulates
the development of gaseous particle detectors based on straw tubes contain-
ing gas under atmospheric pressure and operating in vacuum. These tubes
maintain an internal overpressure of 1 atm, but higher overpressure may be
desirable for a slower drift of electrons in the gas.

From the mechanics of a column, it is known that, if a compressive axial
load is applied to a clamped thin-walled tube without overpressure, the load
critical value Fcrit for buckling is [3, 4]

Fcrit = 4π2EJ/L2. (1)

where R is the straw radius, L is its length, and h is the thickness of the
tube wall. Further, E is the Young’s modulus and J =

∫ ∫

y2dxdy = πR3h
is a second moment of the cross-section of the tube wall . EJ is known as
the object flexural rigidity. For an NA62 straw tube Fcrit ≈ 0.5N , which is
a small value.

It should be considered that a large straw deviation may appear when
this limit is approached [4]. A shift of a few millimeters of the tube axis
with respect to the anode wire may cause an electric discharge and detector
malfunction. Only axial tension guarantees the buckling prevention for a
long straw tube, and it has been demonstrated earlier [4, 5] that an internal
overpressure changes this necessary minimum tension.

Moreover, pre-tension is required to maintain the curvature caused by
gravity to be small for a straw placed horizontally. For the given straw
geometry and overpressure, the only parameter for the curvature control is
the preliminary stretching force applied to the straw.

Therefore, estimation of the minimum pre-tension of the straw is neces-
sary for any design of a straw tracker operating in vacuum. However, the
calculations based on the published material properties of the straw wall are
not sufficiently precise, because these properties depend on the batch of ma-
terial. Therefore, an experimental procedure for the evaluation of material
properties of a straw under operating conditions may be very useful.
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The main purpose of this article is to present a new experimental method
to estimate the minimum preliminary stretching force required to prevent
the pressurized straw buckling and to limit its gravitational curvature.

2 Mechanics of a pressurized straw tube

The pressurized tube problem is not new in the industry, but it is not well-
known in high-energy physics instrumentation. Therefore, we provide a sum-
mary of the known equations driving the behavior of straw tubes under in-
ternal pressure.

Only two stress directions are essential for the problem of a strained straw
under internal pressure: the axial direction along the straw axis (‖) and the
circumferential direction (⊥) tangent to the cylindrical surface of the straw
in the plane normal to the axis. For a thin-walled tube (h ≪ R), it can be
demonstrated that straw circumferential (hoop) stress caused by the inner
overpressure P is always σ⊥ = PR

h
[6]. The axial stress σ‖ depends on the

conditions at the straw ends.

2.1 Pressurized tube with free closed ends

We will begin with the simple formulae derived in the isotropy approximation,
when the material properties do not depend on the considered direction. If
the internal pressure acts not only on the cylindrical shell of the tube but
also on the free ends closed by airtight end plugs, a simple relation can be
derived between the hoop stress σ⊥ and the free closed tube axial stress
σfree
‖ = PπR2

2πRh
= PR

2h
= σ⊥/2 (see [6] for cylindrical pressure vessel).

Hoop stress leads to the transverse strain of the material of the straw
wall defining the direct contribution to the relative radius increasing ǫd⊥ =
σ⊥/E = PR

Eh
. For the typical straw tube ǫd⊥ ≪ 1; thus, this value may be used

as a small parameter to determine the order of the considered contribution
to a strain. The direct contribution to the axial relative elongation ǫ‖ =

∆L
L

for the free closed tube has the same first order: ǫd‖ = σfree
‖ /E = PR

2Eh
.

The Poisson effect leads to the shortening of the straw wall in the direc-
tion perpendicular to the corresponding direct strain. The Poisson ratio µ
is defined as the ratio of the perpendicular relative shortening to the corre-
sponding direct relative elongation. Thus, we have the first approximation
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for a free closed tube.

∆L

L
= ǫ‖ = ǫd‖ − µǫd⊥ =

PR

2hE
(1− 2µ) (2)

∆R

R
= ǫ⊥ = ǫd⊥ − µǫd‖ =

PR

2hE
(2− µ). (3)

In the paper [7], the equation (2) has been observed to be sufficiently precise
to the best of our knowledge of the material properties. The hoop strain
formula (3) has been derived for the pressure vessel in [8].

In an experimental set-up employing straws in vacuum, straw ends are
usually built into the rigid frame (built-in tube) [1]. For this case, the for-
mulae (2, 3) in general are incorrect, since the pressure force applied to the
built-in end is balanced by the rigid frame rather than by the axial tension
of the wall.

However, there is a special case wherein a built-in tube and a free closed
tube are equivalent. Further, it can be used to obtain the simplest estimation
of the minimum preliminary tension required to prevent straw buckling in
vacuum [9]. If a free closed pressurized straw is glued into a rigid frame
that exactly fits the straw length enlarged by the overpressure (2), the frame
does not apply any axial load to the built-in straw. If the frame requires a
longer straw, an overall axial tension is applied to the straw ends ensuring
the stability of the tube against buckling. Furthermore, no change occurs in
the state of the straw wall if we connect the inner straw volume with the gas
supply mounted in the frame.

Therefore, in order to prevent buckling, we require a minimum straw
pre-tension ensuring the elongation (2) prior to the vacuum creation around
the tube. The stress caused by straw preliminary tension Tmin

0 should be at

least
Tmin
0

2πRh
= Eǫ‖ = PR

2h
(1 − 2µ), and the minimum pre-tension for buckling

prevention is
Tmin
0 = PπR2(1− 2µ). (4)

2.2 Pressurized tube with built-in ends

We will assume the different material properties in the axial and circumferen-
tial directions (orthotropic approximation), which is quite usual for a straw
wall material. For example, NA62 straws are made of HostaphanR© polyethy-
lene terephthalate (PET) film. The film manufacturer reports the different
values of transverse (transverse direction, TD) and longitudinal (machine
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direction, MD) Young’s moduli [10] (see Table 1). Therefore, the direct con-
tribution to the relative radius change of straw becomes ǫd⊥ = σ⊥/E⊥ =
PR/(E⊥h).

Owing to the Poisson effect, the hoop strain causes an axial strain of the
opposite sign, and thus, the straw becomes shorter if the ends are not built-in.
This imaginary relative change of the length is ǫµ‖ = −µ⊥ǫ

d
⊥, where µ⊥ is the

transverse (circumferential for the tube) Poisson’s ratio. However, the straw
ends are fixed, which indicates an appearance of the compensatory tension
force ∆T and the corresponding axial stress ∆T/(2πRh), which returns the
straw to its initial length:

∆T

2πRh
= −E‖ǫ

µ
‖ = µ⊥P

R

h

E‖

E⊥

. (5)

From Maxwell’s reciprocity theorem, the known relation µ‖ = µ⊥
E‖

E⊥
can

be derived, where µ‖ is the axial Poisson’s ratio [4]. Thus, the wall axial
tension is

T = T0 +∆T = T0 + 2µ‖PπR2. (6)

The total force applied by a gas-filled straw in vacuum on the detector
frame can be considered as an “effective tension” TP = T − PπR2, if the
effect of external atmospheric pressure applied to the frame is calculated by
ignoring all holes made for the gas supply into the straws. For this effective
tension, we obtain

TP = T0 − (1− 2µ‖)PπR2. (7)

Poisson’s ratio µ for plastics is usually less than 0.5. Thus, the vacuum
around a straw leading to its inner overpressure diminishes TP with respect
to the straw pre-tension T0 in spite of the increase in true straw tension T
(6).

2.3 Lateral effect of internal pressure

We will evaluate the summary force applied by internal pressure to the wall
of a curved tube. Ignoring the flexural rigidity, consider a short element of
a slightly curved tube (Figure 1), limited by its two cross-sections normal to
the curved axis. The absolute longitudinal tension force |TAB| = |TCD| = |T |
is a constant in this approximation, but the directions of TAB and TCD forces
are defined by different slopes at the element ends.
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Figure 1: Forces applied to the curved tube element without flexural rigidity
subject to internal pressure and axial tension

The area of the arched side of the wall (upper side in Figure 1) is larger
than the area of the concave part. Consequently, a non-zero summary pres-
sure force FW applied to the wall appears, which is directed toward the arched
side of the wall. Thus, the internal overpressure always attempts to increase
the existing curvature of the tube.

The evaluation of summary pressure effect has been performed earlier in
a few ways: an imaginary ideal piston at the boundary of the pressurized
tube segment [11], the consideration of the forces applied to separated fluid
contained within a tube element [12], and a direct integration of the pressure
forces [4].

However, we can directly evaluate the pressure effect FW without inte-
gration. For the given P , the summary force FW depends only on the shape
of the tube segment. Imagine an absolutely rigid shell consisting of a curved
tube wall with additional transverse plugs closing the cross sections AB and
CD tightly. A resultant force applied by inner overpressure to a closed rigid
shell is always zero. Therefore, the total pressure force applied to the curved
wall is equal, but with the opposite sign, to the vector sum of the pressure
forces PπR2 applied to the end plugs, which are perpendicular to the curved
axis of the tube at the ends (see Figure 1). One of these forces is directed
against TAB, and the other against TCD, which effectively diminishes the
straw tension by the pressure-related force PπR2.

Thus, the lateral dynamics of a curved tube element are defined by the
effective tension TP = T − PπR2 = T0 − (1− 2µ‖)PπR2, which replaces the
true tension T in all the formulae describing a straw bending [12, 4, 5].
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It is important to understand the physical difference between the effective
tension TP defining the straw bending phenomena and the tube wall tension
T in the tensile strength formulae. Straw wall stress is normally increased
owing to the internal overpressure, whereas the pressurized straw as an elastic
body is effectively relaxed under the same conditions, and this relaxation is
described by the pressure-dependent effective tension TP behavior.

For TP < 0, a summary transverse force pushes a curved straw element
toward its arched side, and without flexural rigidity, the curvature increases
until the tension (increased owing to the curved tube elongation) becomes
equal to the pressure force everywhere along the tube: T = PπR2.

From TP > 0 and (7), we obtain the minimum longitudinal straw pre-
tension T0 to prevent buckling [4]

Tmin
0 = (1− 2µ‖)PπR2. (8)

The same limit is defined by (4) derived in a different way.

2.4 Equilibrium of a horizontal straw

For a horizontally placed straw, we should ensure that the maximum vertical
deviation (sagitta Sag) caused by gravitation is small. Consider a horizontal
straw with built-in ends subject to vertically distributed gravitational load q
and an internal overpressure P . We choose the origin of the axial coordinate
x at the center of the straw. The axis of a straw lateral deviation y is directed
downwards, thus y(0) = Sag. The linear gravitational load is q = gρ, where
ρ is the linear density of the straw and g is the gravitational acceleration.

The straw equilibrium equation for this case was derived in [4, 5]:

dF

dx
= −EJ

d4y

dx4
+ TP

d2y

dx2
+ q = 0, (9)

where dF
dx

is a resulting force per unit of length, which is zero for the case of
static equilibrium.

Straw ends in the NA62 spectrometer are glued into the frame (clamped).
Therefore, the boundary conditions are dy

dx
(±L

2
) = 0 and y(±L

2
) = 0. The

symmetric solution (y(x) = y(−x)) for this static case is

ys(x) =
q

2TP

(
L2

4
− x2 +

L

k
·
cosh(kx)− cosh(kL/2)

sinh(kL/2)
), (10)

where k =
√

TP

EJ
(see [5]). Sagitta ys(0) is increased by the internal overpres-

sure owing to the decrease in TP (7).
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2.5 Low-frequency oscillations

The interesting consequence of the pressure lateral effect is a straw vibration
pressure dependence caused by the behavior of TP used instead of string
tension for straw transverse dynamics. For the case of oscillations, we should
set dF

dx
= ρd2y

dt2
instead of zero in (9). We will determine the solution in

the form of y(x, t) = ys(x) + yf(x, t), where ys(x) is a solution of the static
equation (9). It leads to the wave equation

ρ
d2yf
dt2

= −EJ
d4yf
dx4

+ TP

d2yf
dx2

(11)

set up by Lord Rayleigh [13].
We will determine the symmetric solution with fixed ends (yf(±

L
2
) = 0)

and with “pinned” boundary conditions (
d2yf
dx2 (±

L
2
) = 0). Such a simple

solution is sufficient for the qualitative understanding of straw oscillations.
These boundary conditions are satisfied for yf(x, t) = cos((1+2n)πx/L)ei2πft

with any integer n. For n = 0, the equation (11) results in (2πf)2ρ =
(π/L)2(EJ(π/L)2+TP ), and thus the lowest frequency of the straw vibration
is [14]

f =
1

2L

√

EJ(π/L)2 + TP

ρ
. (12)

Notably, the flexural rigidity of the straw results in an addition of EJ(π/L)2

to the effective tension in (12). The frequency is decreased by the overpres-
sure owing to the behavior of TP (7).

2.6 Radius correction

TP depends on the straw radius R considered so far as a constant value.
However, R depends on P , whereas the radius of the built-in end plug remains
unchanged. It leads to the formation of a radius transition zone on the tube
wall near the straw end. However, the axial component of the pressure force
applied to the transition zone is subtracted from the axial wall tension applied
to the end plug. Therefore, for TP calculation, we can consider the radius of
the end plug to be equal to the pressure-dependent straw radius R.

The direct contribution of overpressure to the relative change of radius is
σ⊥

E⊥
= PR

E⊥h
, but if we consider the additional tension applied to the built-in

ends, this term becomes (1 − µ‖µ⊥)
PR
E⊥h

. Moreover, the applied pre-tension
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T0 diminishes the straw radius owing to the Poisson’s effect. Therefore, we
have

R = R0(1 + (1− µ‖µ⊥)
PR0

E⊥h
−

µ‖T0

E‖2πR0h
), (13)

where R0 is the initial radius of the straw. For TP calculations, if T0 ≈ 1 kgf,
the radius change (13) leads to the next-order correction in terms of the small
parameter PR

Eh
.

3 Poisson’s ratio measurement

It can be observed from (8) that the straw buckling limit for a given overpres-
sure is defined by the tube radius R and the Poisson’s ratio µ‖. The Poisson’s
ratio is typically not provided in the PET film specifications. The published
independent measurements of µ are not related to the specific batch of mate-
rial used in the straw tubes production for the given detector. Moreover, the
straw production process may change some foil properties. Therefore, the µ‖

measurement procedure applicable to a welded straw is required in order to
evaluate the minimum straw pre-tension for the specific detector design.

3.1 Straw specimens

Two straw specimens have been tested (see Table 1). The tubes are made
of PET HostaphanR© foils using longitudinal welding [1]. The parameters of
the foils can be found in the manufacturer specifications [10].

Table 1: Properties of the tested straws

Property 9.8-mm straw 18-mm straw
Diameter, mm 9.8(1) 18.0(1)
Length, m 2.10(1) 1.90(1)
Material density, g/cm3 1.4(1) 1.4(1)
Wall thickness, µm 36(1) 54.4(8)
Tube linear density, g/m 1.55(12) 4.31(6)
E‖, N/mm2 4500(500) 4000(500)
E⊥, N/mm2 5000(500) 5500(500)
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The first specimen (9.8-mm straw) is obtained from a party of approx-
imately 7000 straws produced at the Joint Institute for Nuclear Research
(Dubna) for NA62 spectrometer [1]. This 9.8-mm straw is coated inside the
tube with two thin metal layers (0.05µm of Cu and 0.02µm of Au) in order
to provide electrical conductivity on the cathode and to improve the imper-
meability of the straw tube. The wall material volume density [10] is used to
estimate the linear density of the 9.8-mm straw. The contributions of metal
layers and the air mass inside the tube to linear density are negligible.

The second specimen (18-mm straw) is made of a thicker HostaphanR©

film. In this case, the linear density of the tube has been measured by
weighing, since the wall thickness is not strictly defined in the manufacturer
specifications.

3.2 Test bench for studies of a strained straw under

pressure

A special test bench (see Figure 2) has been manufactured in order to study
the properties of a built-in straw with an initial pre-tension and an inner
overpressure applied subsequently. The longitudinal force applied to the
straw end TP = T − PπR2 is measured using a tensometer Tm based on a
single-point aluminum load cell (Tedea-Huntleigh, model 1022) [15].

Figure 2: The test bench scheme: B – rigid basement; Tm – tensometer; e1
– closed end plug; e2 – end plug with a gas supply channel; C – end cap with
a seal; P – pressure supply; S – straw; O – optical coupler; A - amplifier.

A straw specimen is closed on the tensometer side by the end plug e1 with
the end cap C using glue for rigid sealing. The end cap C is connected to
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the tensometer Tm using two flexible joints and a rigid rod. The other straw
end contains a plug e2 with a gas supply channel. This straw end is glued
into the solid support, which may be moved along the rigid basement B and
fixed at a specific place in order to create a preliminary straw tension prior
to the test. Subsequently, the pressure supply is opened, and the changing
pressure values P are recorded together with the corresponding results of the
tensometer measurement TP (see points in Figure 3 and Figure 4A).

Straw oscillations are studied using the optical coupler O [1], which emits
constant intensity infrared radiation and registers the radiation reflected from
the straw wall. When the straw oscillations are mechanically excited, the
registered radiation intensity is modulated by the changing distance to the
straw wall. The obtained signal is amplified and sent to the oscilloscope
with a fast Fourier transform function. The lowest frequency peak position
is registered as the lowest frequency of the straw (points in Figure 4B).

The end cap C is slightly shifted down owing to its weight of 10− 20 gf.
However, for the horizontal force TP > 300 gf (assuming the cap weight of
25 gf), the vertical shift of the cup is less than 4 mm. It leads to the relative
elongation of 2-m straw ≈ 10−4, which is much less than the minimum straw
elongation caused by the tested preliminary tension (10−3). Thus, the straw
ends may be considered to be fixed during the test.

3.3 Effective tension and Poisson’s ratio measurement

It is known that any material becomes nonlinear for a large stress, whereas
the linear properties of the material are defined for zero-stress limit. However,
on the built test bench, precision measurement becomes problematic for a low
effective tension TP . Therefore, we must consider the possible nonlinearity
in such a way that the resulting µ‖ could be easily extracted for T → 0.

Accordingly, we postulate a weak linear dependence of Poisson’s ratio as
a function of axial stress. For the fits of our experimental results, we use the
tension-dependent value

ν = µ‖ −
kT

2πRh
(14)

instead of only µ‖. Apart from the material nonlinearity, the coefficient k also
absorbs the effect of the set-up deformation under tension and the next-order
effects ignored in the formulae. Expression (14) provides a physically moti-
vated interpolation and extrapolation of the measurement results, whereas in
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order to compare the resulting Poisson’s ratio with the other measurements,
we can consider the measured µ‖ and ignore the stress-dependent term.

T and R variables in (14) depend on the Poisson’s ratio value. Therefore,
we implement an iterative procedure starting with a tension T = T0, nominal
straw radius R = R0, and the starting Poisson’s ratio value of ν = µ‖. In
each iteration, new T, ν, R values were calculated, and three iterations were
sufficient for the precise calculation.

Two free parameters (µ‖ and k) describe the measured tensions and pres-
sures satisfactorily. Figure 3 and Figure 4A show the measured effective
tensions for the NA62 straw along with the result of their fit with the for-
mula

TP = T0 − (1− 2ν)PπR2. (15)

The MINUIT [16] package and ROOT [17] interface were used to obtain the
resulting parameter values and their fit errors.

Table 2: Poisson’s ratio measurement results

9.8 mm straw 18 mm straw

k, µm2

gf
µ‖ µ⊥ k, µm2

gf
µ‖ µ⊥

Central value 3.98 0.3055 0.3394 -2.89 0.2960 0.4070
Radius correction 0.43 0.0005 0.0006 0.92 0.0005 0.0007
Radius value 0.14 0.0083 0.0092 0.59 0.0039 0.0054
TP scale 0.06 0.0099 0.0110 1.24 0.0088 0.0121
P scale 0.27 0.0094 0.0104 1.03 0.0084 0.0116
δE⊥

E‖
0 0 0.0306 0 0 0.0296

Systematic error 0.53 0.0160 0.0353 1.95 0.0128 0.0344
Statistical error 0.18 0.0005 0.0006 14.35 0.0150 0.0206
Total error 0.56 0.0160 0.0353 14.48 0.0197 0.0401

The fit to all the measured TP values for the given straw is performed
with a common set of free parameters and the same assumed measurement
error. The error (±3.6 gf for the 9.8-mm straw and ±20.47 gf for the 18-mm
straw) is defined in such a way that the resulting χ2/ndf = 1, in order to
estimate the parameter statistical uncertainties.

The fit results and systematic uncertainty contributions are shown in
Table 2. The coefficients of correlation between µ‖ and k are 0.991 for the
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Figure 3: 9.8-mm straw effective tension TP versus the overpressure P for
different initial tensions TP (0). Circles – measurements; solid lines – fit by
the formula (15).

9.8-mm straw and 1.000 for the 18-mm straw. Thus, for the second specimen,
the presence of the non-zero term k is not confirmed.

The radius correction effect is considered, but it is also completely in-
cluded in the systematic errors as a “Radius correction” contribution. The
Gaussian width of the NA62 straw diameter distribution is approximately
0.03 mm, and the systematic shift of its central value from the nominal num-
ber has the same size [1]. Thus, considering a conservative value of the pos-
sible diameter systematic uncertainty of 0.1 mm for the tested specimens,
we have obtained the “Radius value” contribution to the systematic error
shown in Table 2. Moreover, the effects of a systematic scale shift of 5% on
both the measured effective tension and measured pressure are considered
as independent contributions (“TP scale” and “P scale”) to the systematic
errors.
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Considering the manufacturers information about Young’s moduli (see
Table 1), the µ⊥ central values shown in Table 2 have been extracted as
µ⊥ = µ‖

E⊥

E‖
. Their uncertainties depend on the error of the modules ratio,

which may be approximately estimated from the significant digits of the
provided values as δE⊥

E‖
≈ 0.1.

Typically, the reported Poisson’s ratio values for the oriented PET films
are 0.37-0.44 [18], and thus, the obtained µ⊥ values are consistent with them.
However, the resulting µ‖ is approximately 0.3, which may be a specific
property of HostaphanR© foil or the consequence of the production of straw
tube using longitudinal welding [1].

4 Oscillation frequency measurements

The oscillation frequency measurement was the last test of the straw tensions
performed on the assembled NA62 spectrometer modules [1]. The same test
has been repeated on the present test bench for a qualitative verification of
the pressure effect.

The length of the tube on the test bench is defined by the position of the
movable support and the end cup C position. Unfortunately, when a straw
tension is applied to the end cup fixed on the short rod with flexible joints, an
effective oscillator is formed with a frequency close to the measured frequency
of straw. Therefore, using this test bench, only a qualitative understanding
of straw oscillations can be obtained using the simple frequency formula (12).

The results of the lowest frequency measurements are shown in Figure
4B along with the corresponding calculation results based on (12). The error
bars show the frequency uncertainty of 1 Hz defined by the width of the
observed spectrum peaks.

The prediction (12) for the 9.8-mm straw satisfactorily describes the mea-
surement results in the vicinity of NA62 design parameters (T0 = 1500 gf,
P = 1 at). However, the overall discrepancy reaches 2 Hz, which is more
than the measurement precision. Nevertheless, the obtained qualitative de-
scription of the straw vibration confirms that the lowest frequency of the
straw is significantly diminished by the internal overpressure in spite of the
increase in straw wall stress according to (6).
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5 Minimum straw pre-tension evaluation

We can use the obtained Poisson’s ratio to evaluate the minimum straw pre-
tension T0 in the straw-based NA62 spectrometer operating in vacuum [1].

There are two requirements for T0. The buckling limit TP > 0 (where
TP is calculated from (15) for P = 1 at) is defined by the Poisson’s ratio
and the straw radius. The flexural rigidity contribution (1) to the buckling
prevention is small for the long NA62 straw and may be included into the
safety margin. Moreover, the experimental design requirements define the
gravitational deviation (sagitta) limit for a horizontal straw. Sagitta Sag =
ys(0) calculated from (10) depends on the effective tension, flexural rigidity,
and straw length.

The sagitta requirement Sag < 100 µm of NA62 [1] cannot be satis-
fied using a reasonable pre-tension for the complete 2.1-m straw. Hence,
special supporting spacers dividing each straw into three equal parts are im-
plemented in the NA62 spectrometer [1]. These spacers fix a straw only in
one of the lateral directions, and thus, they do not change the small buckling
critical load value (1) ignored in this study.

Straw symmetry near each spacer ensures that the boundary conditions
of (10) are satisfied. Hence, we use this solution with L = 0.7 m in order to
calculate the sagitta.

The results of the sagitta calculation and buckling limit estimations are
shown in Figure 5A for the 9.8-mm straw in the NA62 spectrometer. The
corresponding results for the 18-mm straw, assuming the same straw length
of 70 cm, are shown in Figure 5B for comparison.

Apart from the most probable sagitta values and buckling limits, the
worst cases are also shown in Figure 5. The worst case for each straw cor-
responds to ν (14) central value diminished by the tripled total uncertainty
evaluated for each T0 from the measured µ‖ and k considering their correla-
tion. All other parameters for this worst-case scenario are considered at their
uncertainty limits leading to the largest sagitta and the easiest buckling.

It can be observed from Figure 5 that, for the NA62 spectrometer, a
straw pre-tension value above 900 gf guarantees Sag < 100 µm (NA62 re-
quirement), whereas the worst case of the buckling limit is below 400 gf.
Thus, both the NA62 nominal straw pre-tension of 1.5 kgf and the factual
minimum pre-tension (≈ 1.2 kgf) [1] have a good safety margin.

However, if the 18-mm straw is used in the same detector design, the
minimum T0 would be defined by the increased buckling limit above 1.15 kgf
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with a small safety margin, whereas the gravitational sagitta will be always
below 100 µm for the pre-tension above the buckling limit.

Conclusions

A new technique for the study of mechanical properties of straw tubes sub-
jected to inner pressure and longitudinal tension has been tested using a
specially built test bench. It includes the measurement of Poisson’s ratio of
a straw wall, which defines the buckling limit of a straw with a given radius
under a definite inner overpressure.

The axial Poisson’s ratio µ‖ for Hostaphan
R© foil is measured for two spec-

imens under the conditions close to those of a detector operating in vacuum.
The lateral Poisson’s ratio µ⊥ is evaluated using the elasticity moduli in two
directions provided by the foil producer. The spectra measurements of straw
oscillations qualitatively confirm the effective tension predictions based on
the measured µ‖.

The minimum pre-tension requirement for the NA62 spectrometer is re-
evaluated based on the measurement results. The obtained limit confirms
the detector design pre-tension with a safety margin of approximately 600
gf. The tested technique can be used for the development of future straw
trackers.
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Figure 4: A: effective tensions TP versus P for different initial tensions TP (0).
B: lowest frequency for the corresponding P and TP . Filled circles – 9.8-mm
straw, open circles – 18-mm straw. Curves: formula (15) for the plot A and
(12) for B; solid lines – 9.8-mm straw, dashed lines – 18-mm straw.
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Figure 5: Sagitta in vacuum Sag versus pre-tension T0 of 70-cm-long straw
segment for 9.8-mm straw (A) and 18-mm straw (B). Vertical lines mark the
buckling limit TP = 0. Solid line is calculated for the central values for all
the parameters. Dashed lines show the worst case (see text).
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