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Abstract

Entropy arises in strong interactions by a dynamical separation of “par-

tons” from unobservable “environment” modes due to confinement. For

interacting scalar fields we calculate the statistical entropy of the ob-

servable subsystem. Diagonalizing its density matrix yields field pointer

states and their probabilities in terms of Wightman functions. It also

indicates how to calculate a finite geometric entropy proportional to a

surface area.

PACS numbers: 03.65.Bz, 05.40.+j, 11.10.-z, 12.38.-t, 97.60Lf

Submitted to Physical Review Letters

CERN-TH.7297/94

June 1994

1 Work supported by the Heisenberg Programme (Deutsche Forschungsgemeinschaft).

2ELZE@CERNVM.CERN.CH

http://arxiv.org/abs/hep-th/9406085v1
http://arxiv.org/abs/hep-th/9406085


The long-standing “entropy puzzle” of high-multiplicity events in strong interac-

tions at high energy has been analysed from a new point of view [1]. The problem

dates back to Fermi and Landau and is related to understanding the rapid thermal-

ization of high energy density (≫ 1 GeV/fm3) matter [2]. Why do thermal models

work so well? Why do they work at all?

Or, why does high-energy scattering of pure initial states lend itself to a statis-

tical description characterized by large apparent entropy from a mixed-state density

matrix describing intermediate stages in a space-time picture of parton evolution?

Effectively, unitary time evolution of the observable part of the system breaks down

in the transition from a quantum mechanically pure initial state to a highly impure

(more or less thermal) high-multiplicity final state. In Ref. [1] this was discussed

in detail. Based on analogies with studies of the quantum measurement process

(“collapse of the wave function”) [3] and motivated by related problems in quantum

cosmology and by non-unitary non-equilibrium evolution resulting in string theory [4],

we argued that environment-induced quantum decoherence solves the entropy puzzle

of strong interactions.

A complex pure-state quantum system can show quasi-classical behaviour, i.e. an

impure density (sub)matrix together with decoherence of associated pointer states

in the observable subsystem [1]. In particular, there is a Momentum Space Mode

Separation due to confinement, which is defined in the frame of initial conditions

for the time evolution and for the physical (gauge) field degrees of freedom. Thus,

almost constant QCD field configurations form an unobservable environment, since

they neither hadronize nor initiate hard scattering among themselves. It interacts

with the observable subsystem composed of partons [5].

The induced quantum decoherence and entropy production were studied in a

non-relativistic single-particle model resembling an electron coupled to the quantized

electromagnetic field, however, with an enhanced oscillator spectral density in the

infrared. The Feynman-Vernon influence functional technique for quantum Brownian

motion [6] provided the remarkable result that in the short-time strong-coupling limit

the model parton behaves like a classical particle [1]: Gaussian parton wave packets
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experience friction and localization, i.e. no quantum mechanical spreading, and their

coherent superpositions decohere.

Summarizing, partons feel an unobservable (gluonic) environment, which man-

ifests its strong non-perturbative interactions on a short time scale (≪ 1 fm/c)

through decoherence of partonic pointer states, their quasi-classical behaviour, and

entropy production. If confirmed in QCD, this will have important consequences for

parton-model applications to complex hadronic or nuclear reactions [7]. The emer-

gence of structure functions from initial-state wave functions will be further studied

in our approach.

We defined a model of two coupled scalar fields representing partons and their non-

perturbative environment. In the functional Schrödinger picture employing Dirac’s

time-dependent variational principle we derived its Cornwall-Jackiw-Tomboulis (CJT)

effective action and the equations of motion for renormalizable interactions [1, 8].

Thus, analysis of the entropy puzzle in strong interactions leads to study an observ-

able field (open subsystem) interacting with a dynamically hidden one (unobservable

environment), i.e. quantum field Brownian motion.

In the following we derive the entropy in any system of two interacting real scalar

fields. Their most general normalized Gaussian wave functional in the Schrödinger

picture can be written as

Ψ12[φ1, φ2; t] ≡ N12(t) ΨG1
[φ1; t] ΨG2

[φ2; t]

· exp
{

−1
2
[φ1 − φ̄1(t)] [G12(t) − iΣ12(t)] [φ2 − φ̄2(t)]

}

, (1)

with (j = 1, 2)

ΨGj
[φj ; t] ≡ (2)

Nj(t) exp
{

−[φj − φ̄j(t)]
[

1
4
G−1

j (t) − iΣj(t)
]

[φj − φ̄j(t)] + iπ̄j(t)[φj − φ̄j(t)]
}

.

We suppress all spatial integrations. The normalization factors are

Nj(t) = det{2Gj(t)}
−1/4 , N12(t) = det{1 − G1(t)G12(t)G2(t)G12(t)}

1/4 , (3)
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discarding an irrelevant constant factor in Nj . Thus, the time-dependent Hartree-Fock

approximation (TDHF) for the quantum field Schrödinger equation [1, 8] is embodied

in the variational parameter one-point functions φ̄j(x, t), π̄j(x, t) (mean fields) and

symmetric two-point functions Gj(x, y, t), Σj(x, y, t), G12(x, y, t), Σ12(x, y, t) (related

to Wightman functions). Their meaning was discussed in [1].

All physical quantities of the complex system can be calculated with Ψ12, express-

ing inner products by functional integrals. The functional density submatrix ρ̂P for

the observable “parton” subsystem (φ1) is obtained by tracing over the unobservable

degrees of freedom (φ2),

ρ̂P(t) ≡ Tr2 |Ψ12(t)〉〈Ψ12(t)| , (4)

as calculated explicitly in [1] (we henceforth omit P). The matrix elements of ρ̂

contain all the information about the subsystem. Our aim is to obtain the von

Neumann or statistical entropy, S ≡ −Tr1 ρ̂ ln ρ̂. Before, we calculated the simpler

linear entropy directly, which provides a lower bound for the statistical entropy [1],

S(t) ≥ −
1

2
Tr ln

(

1 − G1(t)G12(t)G2(t)G12(t)

1 + G1(t)Σ12(t)G2(t)Σ12(t)

)

, (5)

tracing over coordinates. Equation (5) is also valid for non-translation invariant

systems, which is relevant for calculating the geometric entropy related to spatial

boundaries separating observable and unobservable subsystems.

Geometric entropy is intimately connected to black-hole entropy [9]. Here, one

identifies φ1 as the part of a scalar field φ with support outside a given spatial region

and φ2 ≡ φ − φ1, which has its support inside the complement. Our results (5) and

(17) below indicate that geometric entropy comes out finite, once a renormalization

of the equations for the two-point functions, G’s and Σ’s in (5), is performed or a UV

regularization introduced to provide sufficient integrability constraints.

We proceed by diagonalizing ρ̂. Determining its eigenstates and eigenvalues is

equivalent to constructing field pointer states [1, 3] within TDHF and their probabil-

ities. The eigenvalue problem ρ̂|ρ〉 = ρ|ρ〉 to be solved is of the form

ρ F [φ] exp{−φαφ + βφ} = (6)
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N2 exp{−φaφ + bφ}
∫

Dφ′ F [φ′] exp{−φ′[a∗ + α]φ′ + [b∗ + β + φc∗]φ′} ,

using the ansatz 〈(φ + φ̄1)|ρ〉 ≡ F [φ] exp{−φαφ + βφ} with unknown one- and two-

point functions β and α and a non-exponential functional F . According to results for

ρ̂P from [1], we define N ≡ N1N12, b ≡ iπ̄1 (φ̄1 does not appear in (6)),

a ≡ 1
4
G−1

1 A − i[Σ1 −
1
8
(G12G2Σ12 + Σ12G2G12)] = at ,

c ≡ 1
2
G−1

1 B − i
4
[G12G2Σ12 − Σ12G2G12] = c† ,

and combinations of two-point functions

A ≡ 1 − 1
2
G1G12G2G12 + 1

2
G1Σ12G2Σ12 ,

B ≡ 1
2
G1G12G2G12 + 1

2
G1Σ12G2Σ12 .

Choosing β ≡ b in (6), completing the square, shifting φ′, and requiring resulting

Gaussians in φ to cancel yields the eigenvalue problem:

ρ F [φ] = N2
∫

Dφ′ F [φ′ + Y φ] exp{−φ′Xφ′} , (7)

with X ≡ a∗ +α = X t, Y ≡ 1
2
X−1c, and where α = αt, by (6), is determined to solve

the equation a − α = 1
4
c∗[a∗ + α]−1c. Note the similarity to the finite-dimensional

oscillator problem of Srednicki [9].

Equivalently, replacing F [φ′] → F [δ/δ(φc∗)+δ/δ(cφ)] and φc∗φ′ → 1
2
[φc∗φ′+φ′cφ]

in (6), we obtain by integration

ρ F [φ] = N2 det{X}−1/2 exp{−1
4
φc∗X−1cφ} F [ δ

δ(φc∗)
+ δ

δ(cφ)
] exp{+1

4
φc∗X−1cφ} ,

(8)

which is more convenient than (7). Looking for polynomial functional solutions of

(8), we find first of all a constant,

F0[φ] ≡ 1 ⇒ ρ0 = N2 det{X}−1/2 . (9)

Secondly, instead of a general linear functional, the Fourier transform is sufficient,

Fk[φ] ≡
∫

ddx e−ikxφ(x) ≡ φk , (10)
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since the problem is linear in F . Then, from (8) − (10),

ρ1φk = 1
4
ρ0[X

−1cφ + φc∗X−1]k = ρ0Ykk′φ−k′ , (11)

summing over indices occurring twice. For a translation-invariant system, (11) could

immediately be solved. Generally, however, denoting eigenvalues and eigenvectors

of (Ykk′) by ξk and φ̃k, one obtains a set of linear eigenvalues ρk = ρ0ξk. Due to

the Gaussian structure in (8), the higher-order eigenfunctionals can be built up as

linear combinations of products of φ̃k’s and lower-order ones. For example, Fkk′[φ] ≡

φ̃kφ̃k′ +Ckk′, which yields a set of quadratic eigenvalues ρkk′ = ρ0ξkξk′Θ(k′ − k). Note

the constraint k′ ≥ k; interchange of k and k′ does not lead to a new eigenfunctional

due to the scalar (bosonic) character of the fields. The constant Ckk′ follows with the

help of the matrix diagonalizing (Ykk′). We do not construct explicitly the higher-

order eigenfunctionals. However, the n-th order set of eigenvalues,

ρk1...kn
= ρ0ξk1

n
∏

i=2

ξki
Θ(ki − ki−1) , (12)

is easily found, similarly to ρkk′ above. To check the result (12), we calculate

Tr ρ̂(t) =
∑

eigenvalues = ρ0 +
∞
∑

n=1

∑

k1...kn

ρk1...kn

= ρ0[1 +
∑

k1

ξk1
+

∑

k1≤k2

ξk1
ξk2

+
∑

k1≤k2≤k3

ξk1
ξk2

ξk3
+ . . . ]

= ρ0

∏

k

∞
∑

nk=0

ξ nk

k = ρ0

∏

k

[1 − ξk]
−1 = ρ0 det{1 − Y }−1 = 1 , (13)

which resembles the evaluation of a bosonic partition function. In the last step we

used ρ0 = det{X−1Re[2a − c]}1/2 = det{[1 − 1
2
X−1c∗][1 − 1

2
X−1c]}1/2, which follows

from the equation determining α or X.

Similarly, we obtain the linear entropy,

Slin ≡ Tr1

{

ρ̂ − ρ̂ 2
}

= 1 − Tr1 ρ̂ 2 = 1 − det
{

1 − Y

1 + Y

}

. (14)

In order to express Y in terms of A and B, we observe that in a direct calculation [1]

of Tr1ρ̂
2 (and in the n-fold functional integral for Tr1ρ̂

n) imaginary parts of a and c

cancel. Therefore, we replace a and c by their real parts, a = 1
4
G−1

1 A and c = 1
2
G−1

1 B,
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simplifying the equation for α, X, or Y , a − α = 1
4
c[a + α]−1c. The solution (for

integrable eigenfunctionals) is

Y = (c/2)−1/2
[

ã + (ã2 − 1)1/2
]−1

(c/2)1/2 , (15)

with ã ≡ (c/2)−1/2a(c/2)−1/2. Finally, inserting (15) into (14),

Slin(t) = 1 − det

{

A(t) − B(t)

A(t) + B(t)

}1/2

, (16)

which confirms our earlier result, employed in (5) [1]. Next, we calculate the statistical

entropy using the “replica trick”:

S(t) ≡ − Tr1 ρ̂(t) ln ρ̂(t) = −
d

dn
Tr1 ρ̂ n |n=1 = −

d

dn
det

{

(1 − Y )n

1 − Y n

}

|n=1

= − Tr
{

ln(1 − Y ) +
Y

1 − Y
ln Y

}

. (17)

Together with (15), eq. (17) presents our main result. It generalizes eq. (6) of

Srednicki [9]. Basically, the TDHF approximation for interacting quantum fields

preserves a Gaussian structure of the wave functionals, see (1) − (3), which is exact in

the non-interacting case and can be reduced to a coupled harmonic oscillator problem.

To evaluate the entropy (17) is still a formidable task for any realistic situation.

Before trying, it seems worth while to draw some general conclusions:

I. Neither mean fields φ̄1,2, nor their conjugate momenta π̄1,2, nor imaginary parts

Σ1,2 of the “parton” and environment two-point functions contribute to S.

II. Vanishing correlations between “partons” and environment, i.e. G12 = Σ12 = 0

(independent subsystems), imply A = 1, B = 0, i.e. Y = 0, and S = 0.

III. Vanishing widths of “parton” or environment wave functionals, i.e. G1,2 → 0

(one or the other subsystem classical/reversible [1]), imply Y = 0 and S = 0.

This presumably holds for any field theory of “partons” coupled to environment modes

independently of the interactions in TDHF approximation. The time-evolution, how-

ever, follows specific equations of motion for the one- and two-point functions [1].

Our considerations confirm that quantum decoherence and entropy production in

a subsystem is induced by an active environment [1, 3, 4, 6]. The above diagonaliza-

tion of the “parton” density functional yields time-dependent field pointer states, the
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simplest one of largest probability ρ0 being

Ψ0[φ; t] = exp{−[φ − φ̄1(t)]α(t)[φ − φ̄1(t)] + iπ̄1(t)[φ − φ̄1(t)]} , (18)

cf. (6) − (9), with α = [(c/2)(ã2 − 1)(c/2)]1/2. Higher-order eigenfunctionals are less

probable, see (12), and have higher kinetic energy, since their wave functionals have

additional nodes, e.g. (10), analogous to excited oscillator states.

As a first application of (17) we consider the large-entropy limit, i.e. Y ≈ 1 or

A ≈ B. Then, using (14) and (16), we find:

S(t) ≈ − Tr ln(1 − Y )/(1 + Y ) = −1
2

Tr ln(A − B)/(A + B)

= 1
2

∑∞
n=1

1
n

Tr {[G1G12G2G12]
n − [−G1Σ12G2Σ12]

n} , (19)

i.e. (5). If we assume a spatial surface of area A dividing the system into two,

which is flat on the scale of the short-ranged correlations in (19), then Tr[. . .]n can be

interpreted as a sum of closed loops of strings of G’s or Σ’s intersecting the surface 2n

times: once for each factor G12 or Σ12 correlating in- and outside fields. The dominant

contribution to the trace comes from small loops (let Σ 2
12 ≪ G 2

12). Regularizing their

contribution by a short-distance cut-off L, their size transverse to the surface will be

O(L2) for d = 3. Transverse to the surface the system is locally translation-invariant.

Therefore, the geometric entropy is approximately

S(t) ∝ −
A

L2
TrL ln

(

1 − G1G12G2G12

1 + G1Σ12G2Σ12

)

, (20)

where TrL is evaluated locally on the scale of L. A dimensional analysis led Srednicki

to propose S ∝ A before [9]. Equation (20) can be applied to the moving mirror

model; following Kabat et al. [9], it approximates the thermal entropy outside a black

hole of radius much larger than L.

Secondly, coming back to partons interacting with their (gluonic) environment,

the rate of entropy production, which follows from (17), is most interesting. We define

a dynamical decoherence time τ ,

τ−1(t) ≡
d

dt
ln S(t) ≈

Tr Ẏ ln Y

Tr Y ln Y
=

∫

d̃k Ẏk ln Yk
∫

d̃k Yk ln Yk

, (21)
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with d̃k ≡ ddk/(2π)d. For simplicity we assumed small Y or S and a translation-

invariant system; the Fourier transform is Yk = Bk[Ak + (A 2
k −B 2

k )1/2]−1, since A, B

are convolutions of two-point functions now. Generally, two limits are particularly

important: τ(t → 0) gives the time scale for the decay of a Gaussian partonic field

state, cf. (1) − (3), into an incoherent superposition of pointer states, e.g. (18), with

impure density matrix and non-zero entropy; τ(t ≫ 0) reflects the approach to a

stationary state (thermalization), if it exists. Using the equations of motion from [1],

the decoherence time will be calculated for phenomenologically interesting situations

elsewhere.

I thank N. E. Mavromatos, L. Pesce, and J. Rafelski for stimulating discussions.
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