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Abstract

For a successful experiment, it is of utmost importance to provide a consistent detector
description. This is also the main motivation behind DD4hep, which addresses detector de-
scription in a broad sense including the geometry and the materials used in the device, and
additional parameters describing, e.g., the detection techniques, constants required for align-
ment and calibration, description of the readout structures and conditions data. An integral
part of DD4hep is DDG4 which is a powerful tool that converts arbitrary DD4hep detector
geometries to Geant4 and gives also access to all Geant4 action stages. It is equipped with
a comprehensive plugins suite that includes handling of different IO formats; Monte Carlo
truth linking and a large set of segmentation and sensitive detector classes, allowing the sim-
ulation of a wide variety of detector technologies. In the following, we will showcase recent
developments in DD4hep/DDG4 like the addition of a ROOT based persistency mechanism
for the detector description and the development of framework support for DDG4. Through
this mechanism an experiment’s data processing framework can exhibit its essential tools to
all DDG4 actions. This allows for the easy integration of DD4hep in existing experiment
frameworks.
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Abstract. For a successful experiment, it is of utmost importance to provide
a consistent detector description. This is also the main motivation behind
DD4hep, which addresses detector description in a broad sense including the
geometry and the materials used in the device, and additional parameters de-
scribing, e.g., the detection techniques, constants required for alignment and
calibration, description of the readout structures and conditions data. An inte-
gral part of DD4hep is DDG4 which is a powerful tool that converts arbitrary
DD4hep detector geometries to Geant4 and gives also access to all Geant4 ac-
tion stages. It is equipped with a comprehensive plugins suite that includes han-
dling of di↵erent IO formats; Monte Carlo truth linking and a large set of seg-
mentation and sensitive detector classes, allowing the simulation of a wide vari-
ety of detector technologies. In the following, we will showcase recent develop-
ments in DD4hep/DDG4 like the addition of a ROOT based persistency mecha-
nism for the detector description and the development of framework support for
DDG4. Through this mechanism an experiment’s data processing framework
can exhibit its essential tools to all DDG4 actions. This allows for the easy
integration of DD4hep in existing experiment frameworks.

1 Introduction

The DD4hep package [1] is a software toolkit whose aim is to unify aspects of detector
description at di↵erent stages of an experiment and increases the e�ciency and the ease
of use. The goal is to provide a consistent description from a single source in simulation,
reconstruction and analysis phases. The advantages of such a consistent, comprehensive
description are clearly established from experience in high energy physics experiments.

The DD4hep toolkit was developed based on experiences from the LHCb experiment [2]
and the e↵orts of the Linear Collider Community [3]. The aim is to cover on the one side
the geometrical and material properties, and on the other side also providing parameters such
as alignment constants and calibration, description of the readout structures and conditions,
and those directly associated with detection techniques. The main idea behind DD4hep is
to build on widely used pre-existing software to achieve a comprehensive generic detector
description. The construction and visualization of geometry are implemented through the
ROOT geometry package [4], while the detector simulation is performed via an interface
with the Geant4 simulation toolkit [5].
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2 Main target objectives

The requirements which DD4hep aims to satisfy are:

• Complete detector description: is a full geometry description including all structures
and the corresponding materials, the attributes necessary for visualization, the parameters
needed for alignment, calibration, and environment description, as well as detector readout
information.

• Coverage of the full life cycle of the experiment: o↵ering usage for all stages in the
life-cycle of the experiment, from concept development, through construction to operation.
Enabling a smooth and easy transition between the various stages.

• Single source of information: is containg all the necessary information for interpretation
of data in all stages, from simulation to reconstruction and analysis.

• Ease of use: Provides the final user with a simple and intuitive interface, which demands
minimal external dependencies.

3 The DD4hep toolkit

DD4hep is built around a core based on the ROOT TGeo package, named Generic Detector
Description Model (GDDM) . It is an in-memory model, that consists of a set of objects con-
taining geometry and auxiliary information about the detector. Figure 1 shows a schematic
depiction of the various DD4hep components, the interactions between them and the end-user
applications, such as alignment, visualization, reconstruction etc.

�
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Figure 1. The components of the DD4hep detector geometry toolkit (light gray components represent
planned future developments).

The working principles of DD4hep [6] and details about simulation [7] have been sum-
marized at previous conferences. The aim of these proceedings is to summarize the most
relevant changes that occurred since release DD4hep v00-17 (now at v01-09). Developments
related to conditions and alignment are discussed separately in the same proceedings [8].

3.1 Namespace reorganization

To facilitate the ease of use and to streamline future developments, the DD4hep namespaces
have been reorganized to be all lower case and shortened:
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namespace DD4hep -> dd4hep;
namespace DD4hep::DDRec -> dd4hep::rec;
namespace DD4hep::Simulation -> dd4hep::sim;
namespace XML -> xml;
namespace JSON -> json;

All other not explicitly stated namespaces have also been renamed according to the follow-
ing pattern: the namespace DD4hep::Geometry:: was incorporated into dd4hep::. All
utilities are moved to dd4hep::detail. LCDD (name deriving from Linear Collider Detec-
tor Description) was renamed to Detector to more clearly denote the generic nature of the
object.

3.2 Changes to the VolumeManager interface

Due to the ambiguous meaning of the function used to lookup a placement from the volume
manager, discrepancies of how clients use this function have been observed: it may be con-
sidered as the placement of the closest detector element – a functionality used by various tests
– or to be the placement of the sensitive volume itself. Since there can be sensitive volumes
which are directly connected to more than one DetElement structure, this function was split
to resolve this ambiguity. Since each sensitive volume in the DD4hep tests is represented by
a DetElement structure, so far both approaches referenced the same placed volume.

/// Lookup a physical (placed) volume identified by its 64 bit hit ID

PlacedVolume lookupVolumePlacement(VolumeID volume_id) const;
/// Lookup a physical (placed) volume of the detector element

/// containing a volume identified by its 64 bit hit ID

PlacedVolume lookupDetElementPlacement(VolumeID volume_id) const;

3.3 The ROOT persistency mechanism

A new functionality of saving and restoring the full detector description from ROOT files has
been added. Also object extensions can be stored. This however requires a dictionary for the
extension itself and a dictionary for the class holding the extension. These are:

// for DetElement extensions.

dd4hep::DetElement::DetElementExtension<IFACE,CONCRETE>
// for simple extension managed by the user framework (user calls explicitly

destructor).,!

dd4hep::SimpleExtension<IFACE,CONCRETE>
// for simple extension managed by dd4hep (dd4hep calls automatically

destructor on hosting object destruction).,!

dd4hep::DeleteExtension<IFACE,CONCRETE>
// As above, but these extensions support calling the copy constructor of

the embedded object and hence allow to copy also the hosting objects.,!

dd4hep::CopyDeleteExtension<IFACE,CONCRETE>

The functionality has some limitations, concerning the usage of void pointers and the im-
possibility to save callback objects, which store in-memory pointers to member functions.
These depend on the loading of libraries at run-time and hence may di↵er from execution
to execution. To persistify these objects it is necessary to no longer use the type-info of the
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objects as an identifier, but rather a 64-bit-hash of the raw type-info-name. This relies on the
name being identical across platforms. This typically is true for linux, but not enforced by
any standard.

3.4 Cell ID encoding

Information about the location of a sensitive cell that was hit in the simulation is stored in
DD4hep via help of the BitField64 class, which is not thread safe. A new thread-safe class
BitFieldCoder was introduced as a replacement for BitField64, while BitField64 was
reimplemented using BitFieldCoder and exhibits thread safety if used locally. It can be
instantiated from const BitFieldCoder*. Heap allocation of BitFieldElements was
removed and move constructors for an e�cient filling of vectors were added.

3.5 Support for export and import of GDML data

DD4hep now supports the export and import of partial geometry trees with GDML.
This however requires ROOT version 6.12, since some changes were necessary
in the ROOT GDML handlers. The plugin implementation can be reviewed in
DDCore/src/gdml/GdmlPlugin.cpp.

3.6 External framework support in DDG4

The integration of DDG4 into event processing frameworks was simplified. The
Geant4Context is the main thread specific accessor to DDG4 and the user framework. The
access to the DD4hep objects is via the Geant4Context::detectorDescription() call,
the access to DDG4 as a whole is supported via Geant4Context::kernel() and the access
to the user framework using a specialized implementation of template <typename T> T&
userFramework() const. User defined implementations must be specialized somewhere
in a compilation unit of the user framework, not in an header file. The framework object
could host e.g. references for histogramming, logging, data access. In this way any experi-
ment related data processing framework can exhibit its essential tools as DDG4 actions. A
possible specialized implementation would look like the following:

struct Gaudi {
IMessageSvc* msg;
IHistogramSvc* histos;
// ....

};
template<> Gaudi& Geant4Context::userFramework<Gaudi>() const {
UserFramework& fw = m_kernel->userFramework();
if ( fw.first && &typeid(T) == fw.second ) return *(T*)fw.first;
throw std::runtime_error("No user specified framework context present!");
}

To access the user framework, after initialization the following call is then used:

Gaudi * fw = context->userFramework<Gaudi>();
GaudiKernel& kernel = // initialize kernel ;
kernel.setUserFramework(fw);
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The G4RunManager is now instantiated via a plugin. To allow for user defined run managers
in DDG4, the run manager is encapsulated in a Geant4Action. An example implementation
can be found DDG4/plugins/Geant4RunManagers.cpp. Currently there are two factories
implemented: G4RunManager is a factory that invokes the single threaded G4RunManager
and G4MTRunManager is a factory that invokes the multi threaded G4MTRunManager. The
factory names here are identical to the names of the native G4 classes.

3.7 String parsing

The Detector class was expanded to support parsing of XML from string. The existing view
dd4hep::DetectorLoad was enhanced to allow this functionality:

Detector detector = ....;
/// We parse the raw XML string

DetectorLoad loader(detector);
loader.processXMLString(buffer,0);

A detailed example can be reviewed under ClientTests/src/XML_InMemory.cpp.

3.8 Geometry building state

The Detector object has a new state function Detector::state() which returns three val-
ues:

/// The detector description states

enum State {
/// The detector description object is freshly created. No geometry

nothing.,!

NOT_READY = 1<<0,
/// The geometry is being created and loaded. (parsing ongoing)

LOADING = 1<<1,
/// The geometry is loaded.

READY = 1<<2
};

It starts with NOT_READY, moves to LOADING once the geometry is opened and goes to
READY once the geometry is closed. The initial object is invalid and gets created only once
the geometry is opened. As a corollary, the object may not be accessed before. Geometry
parsers must take this behavior into account.

3.9 SensitiveDetector types behaviour

The sensitive detector type defined in the detector constructors is no longer changed in-
transparently in the users’ background. This does not work with Geant4, where a map-
ping of these types must be applied to supported sensitive detectors. Now the mapping of
a SensitiveDetector type (e.g. "tracker") is strict in the python setup. The default fac-
tory to create any sensitive detector instance in Geant4 is a property of the Geant4Kernel
instance and defaults to:

declareProperty("DefaultSensitiveType", m_dfltSensitiveDetectorType =
"Geant4SensDet");,!

Since the actual behavior is defined in the sequencer instantiation this default should be suf-
ficient for most cases, otherwise the factory named Geant4SensDet may be overloaded.
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3.10 Parallel geometries

It is possible to define volumes in a parallel world, which might be used for tracking or for
distinguishing di↵erent behaviors in the association of Monte Carlo truth information or any
other means. In principle any volume hierarchy may be attached to the parallel world. None
of these volumes participate in the tracking as long as the “connected” attribute is set to false.
The hierarchy of parallel world volumes can be accessed from the main detector object using

dd4hep::Volume parallel = dd4hep::Description::parallelWorldVolume()

This parallel world volume is created when the geometry is opened together with the world
volume itself. If the name of the volume is “tracking_volume” within the compact notation it
is declared as the Detector’s trackingVolume entity and is accessible as well:

dd4hep::Volume trackers = dd4hep::Description::trackingVolume()

Although the concept is available in the DD4hep core, its configuration from XML is only
implemented for the compact notation. If the volume should be connected to the world one
has to set connected = true. This is useful for debugging because the volume can be visu-
alized; otherwise set connected = false to make the volume only part of the parallel-
world. The volume is always connected to the top level. The anchor detector element defines
the base transformation to place the volume within the (parallel) world.

<parallelworld_volume name="tracking_volume" anchor="/world" material="Air"
connected="true" vis="VisibleBlue">,!

<shape type="BooleanShape" operation="Subtraction">
<shape type="BooleanShape" operation="Subtraction">
<shape type="BooleanShape" operation="Subtraction" >

<shape type="Tube" rmin="0*cm" rmax="100*cm" dz="100*cm"/>
<shape type="Cone" rmin2="0*cm" rmax2="60*cm" rmin1="0*cm"

rmax1="30*cm" z="40*cm"/>,!

<position x="0*cm" y="0*cm" z="65*cm"/>
</shape>

<shape type="Cone" rmin1="0*cm" rmax1="60*cm" rmin2="0*cm"
rmax2="30*cm" z="40*cm"/>,!

<position x="0" y="0" z="-65*cm"/>
</shape>

<shape type="Cone" rmin2="0*cm" rmax2="55*cm" rmin1="0*cm" rmax1="55*cm"
z="30*cm"/>,!

<position x="0" y="0" z="0*cm"/>
</shape>

<position x="0*cm" y="50*cm" z="0*cm"/>
<rotation x="pi/2.0" y="0" z="0"/>

</parallelworld_volume>

The above example shows how the subtraction of shapes including translations can be defined
with the help of BooleanShape. With such an approach an arbitrary parallel world volume
can be created.

3.11 Enhancement of assemblies, regions and production cuts

Particle specific production cuts may now be specified in the compact notation. These produc-
tion cuts are specified as cut entities in the limitset. The hierarchy of cuts being applied
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is: if present particle specific production cuts for a region exist, they are applied – otherwise
the cut attribute of the compact region specification is used. If none of the above is specified,
the global Geant4 cut is automatically applied by Geant4.

<limits>

<limitset name="VXD_RegionLimitSet">
<!--

These are particle specific limits applied to the region

ending in Geant4 as a G4UserLimits instance

-->

<limit name="step_length_max" particles="*" value="5.0" unit="mm" />
<limit name="track_length_max" particles="*" value="5.0" unit="mm" />
<limit name="time_max" particles="*" value="5.0" unit="ns" />
<limit name="ekin_min" particles="*" value="0.01" unit="MeV" />
<limit name="range_min" particles="*" value="5.0" unit="mm" />
<!--

These are particle specific production cuts applied to the region

ending in Geant4 as a G4ProductionCuts instance

-->

<cut particles="e+" value="2.0" unit="mm" />
<cut particles="e-" value="2.0" unit="mm" />
<cut particles="gamma" value="5.0" unit="mm" />

</limitset>

</limits>

4 Conclusion

The DD4hep Detector Description Toolkit provides an extended toolset for detector descrip-
tion, simulation and reconstruction. The user community of DD4hep is growing as is the list
of features developed to help clients and users of the toolkit. The toolkit is under investigation
for future software implementation in the LHCb and CMS collaborations. These proceedings
mostly covered features developed for clients of the toolkit to make their adoption easier.
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