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NNNLO pressure of cold quark matter: leading logarithm
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At high baryon chemical potential µB , the equation of state of QCD allows a weak-coupling
expansion in the QCD coupling αs. The result is currently known up to and including the full
next-to-next-to-leading order (NNLO) α2

s. Starting at this order, the computations are complicated
by the modification of particle propagation in a dense medium, which necessitates non-perturbative

treatment of the scale α
1/2
s µB . In this work, we apply a Hard-Thermal-Loop scheme for capturing

the contributions of this scale to the weak-coupling expansion, and use it to determine the leading-
logarithm contribution to N3LO: α3

s ln
2 αs. This result is the first improvement to the equation

of state of massless cold quark matter in 40 years. The new term is negligibly small, and thus
significantly increases our confidence in the applicability of the weak-coupling expansion.

Introduction.—Quantum Chromodynamics (QCD) is
the accepted theory of the strong interaction, and de-
scribes a wide range of physical phenomena from the
masses and properties of hadrons to the observable char-
acteristics of neutron stars. In the limit of high den-
sity, the theory is, however, notoriously difficult to solve,
as lattice simulations are plagued by the infamous sign
problem (for some approaches to overcome it, see, e.g.,
refs. [1–7]). In the limit of very high densities, the asymp-
totic freedom of QCD [8] suggests that a weak-coupling
approach to the thermodynamics of the deconfined phase,
i.e., quark matter, might be feasible, but in practice the
application of perturbation theory is very challenging.
In fact, no new perturbative orders have been deter-
mined for the equation of state (EoS) since 1977, when
Freedman and McLerran derived the full next-to-next-to-
leading order (NNLO) result for the pressure as a func-
tion of quark chemical potentials in the limit of massless
quarks [9, 10]. Since then, this result has been general-
ized to the MS scheme [11], to include finite temperature
effects [12, 13], and to nonzero quark masses [14–16], but
no realistic attempts to reach N3LO have been made so
far.

In a strongly coupled medium at large baryonic den-
sity, interactions with the medium constituents lead to
the screening of color charges—a phenomenon that is a
nonabelian generalization of Debye screening. This gen-

erates a new in-medium mass scale m∞ ∼ α
1/2
s µB ≪ µB ,

a scale which we shall refer to as “soft”. Here αs is
the strong coupling constant and µB the baryon num-
ber chemical potential [17]. This new scale manifests as
infrared (IR) divergences in naive loop expansions, and
a proper handling of the soft sector to a given order in
αs requires a resummation of diagrams with an arbitrary
number of loops. In this sense, the soft scale requires
non-perturbative treatment. These non-perturbative ef-
fects predominantly arise through interactions of the soft

modes with the typical modes in the medium, which have
momenta proportional to µB , a scale which we shall refer
to as “hard”. Due to the small number of soft modes, the
interactions among the soft modes amount to a subdom-
inant perturbative correction. Diagrammatically, this is
reflected in the restricted set of topologies that require
special treatment, namely only soft gluonic propagators
and vertex functions need to be resummed.
While the naive loop expansion of the EoS leads to

a series of terms analytic in αs, this need not be the
case for the resummed soft sector: In particular, loop
integrals that are sensitive to both the hard and the soft
scales can also receive contributions from the semisoft
region between the two. This leads to logarithms of the

ratio of the scales
∫ µB

α
1/2
s µB

d4P/(P 2)2 ∼ ln(α
1/2
s µB/µB),

and gives rise to non-analytic terms in the weak coupling
series (here and in what follows, P denotes the magnitude
of a Euclidean four-vector). The first order at which these
non-analytic terms appear is NNLO, where they lead to a
term proportional to α2

s lnαs, derived in refs. [9, 10, 13].
As shall be made clear in this letter, the pressure p of

cold and dense three-color, three-flavor (Nc = Nf = 3)
QCD matter with massless quarks can be written in the
form (see, e.g., [13])

p ≃ 3(µB/3)
4

4π2

[
1− 0.636620αs − 0.303964α2

s ln αs

−
(
0.874355 + 0.911891 ln

Λ̄

µB/3

)
α2
s

]
(1)

+c3,2 α
3
s ln

2 αs + c3,1(Λ̄)α
3
s lnαs + c3,0(Λ̄)α

3
s +O(α4

s),

where Λ̄ is the renormalization scale, and where the c3,i
are the as-yet-uncalculated N3LO terms. In this work, we
apply the methodology of separating the soft contribu-
tions to the pressure presented in ref. [13], which allows
us to cleanly separate the logarithmic terms in the ex-
pansion. This methodology is used to determine the first

ar
X

iv
:1

80
7.

04
12

0v
3 

 [
he

p-
ph

] 
 1

9 
A

pr
 2

02
4



2

fundamentally new perturbative order in the EoS since
the Freedman–McLerran calculation: We shall calculate
the coefficient c3,2 in the equation above, which gives the
dominant N3LO contribution in the αs → 0 limit.
Besides a purely theoretical interest in the problem,

there is strong motivation stemming from a hope that
new perturbative orders will decrease the systematic un-
certainty in the EoS in a range of densities where it might
be relevant for the physics of neutron stars. Indeed, it
has recently been demonstrated that the EoS of neutron-
star matter can be significantly constrained by combining
first-principles information from both low and high den-
sities with astrophysical observations [18–21]. In light of
the present emergence of the discipline of gravitational
wave astronomy, there is a real prospect that an active
interplay between QCD calculations, numerical relativ-
ity, and observations will provide a way to deepen our
understanding of how nature works in a previously inac-
cessible domain [22].

Warm-up computation and setup.—Let us start by
briefly considering how the leading non-analytic term of
O(α2

s lnαs) enters the weak-coupling expansion of the
QCD pressure at T = 0. At leading order α0

s, the glu-
onic contribution to the pressure is given by the simple
vacuum diagram

= −dA
2

∫
d4P

(2π)4

[
(2 + 1) ln

(
P 2

) ]
, (2)

where the (2+1) corresponds to 2 transverse polariza-
tion modes and one longitudinal (eventually removed by
a ghost diagram, not shown). While this gluonic contri-
bution is divergent, it is clearly independent of µB and
in fact vanishes upon vacuum µB = 0 subtraction. (The
corresponding fermionic 1-loop diagram gives the Fermi–
Dirac pressure of free quarks.) Corrections at higher or-
ders in αs arise from decorating the above diagram with
an increasing number of propagators. If the momentum
flowing in all the lines is of order µB , this gives rise to
the naive loop expansion. However, when the integra-

tion momentum in eq. (2) becomes soft, P ∼ α
1/2
s µB ,

adding an arbitrary number of (one-loop) self-energy in-
sertions to the gluon line does not change the magnitude
of the diagram. Therefore the naive loop expansion gets

the answer wrong by an amount ∼
∫ α1/2

s µB

0
d4P ∼ α2

sµ
4
B ,

which can be corrected by removing the naive expression
in the relevant kinematic regime (i.e., by introducing a
counterterm) and by adding the resummed two-particle-
reducible (2PR) “ring diagrams” of refs. [9, 10, 23] to the
expression.

Unlike gluons, fermions are not sensitive to the soft
scale. Only excitations above the hard Fermi momen-
tum pF = µB/3 exist, as the softer fermions are Pauli
blocked. Therefore at T = 0 the fermionic 1-loop dia-
gram, and more generally fermionic lines, do not require
a similar treatment and instead give rise to a naive expan-
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FIG. 1. Graphical representation of eq. (3) after kinematic
simplifications are employed. See main text for explanation.

sion in powers of αs. In addition, ghosts do not require
resummations [24].
Consider now the resummed 1-loop ring sum depicted

on the first line of Fig. 1. Since only the modes much
softer than µB require resummation, we may split the
integral over the loop momentum P connecting the self-
energy insertions into two regions by introducing a cutoff

α
1/2
s µB ≪ Λ ≪ µB , and revert to a naive loop expansion

in the region P > Λ,

presIR,1 = presIR,1({0,Λ}) + ploopIR,1({Λ,∞}), (3)

where the notation {., .} indicates the momentum cutoffs
used. The momentum flowing in the self-energy inser-
tions of presIR,1 may either be soft or hard. If it is hard, then
kinematic approximations may be employed and the self-
energies can be expanded for small external momenta.
To the leading order in the external momenta this gives
rise to the well-known Hard Thermal Loop (HTL) power
counting [24], and allows for a convenient computation
of the resummed diagrams within the framework of the
HTL effective theory [25–29]. On the other hand, if the
momentum flowing in the self energy is soft, then this
line (if it is gluonic) also needs to be resummed. How-
ever, because of the small volume of phase space, this
contribution is subleading in αs. As we will see later, it
is exactly these latter terms that give rise to the contri-
butions we are after at N3LO.
The logarithmic contributions to the pressure

arise from scaleless integrals in the semisoft re-
gion P ∼ Λ between the soft and the hard scales,∫ µB

α1/2µB
d4P/P 4 ∼ lnα

1/2
s , and the coefficient of the

leading NNLO logarithm can be extracted equally from
the ultraviolet (UV) limit of presIR,1 or from the IR limit of

ploopIR,1. The semisoft contribution to the pressure is in fact
particularly simple, as the propagator can be treated as
if it were both soft and hard: Because P ≪ µB , instead
of all topologies only the restricted HTL set of diagrams

contribute, but because P ≫ α
1/2
s µB the diagram can

be expanded in the number of self-energy insertions.
To explicitly verify the above claims, we begin from the

UV-regulated LO HTL pressure with the bare counter
term (2) subtracted [26],

pHTL
IR,1 =

[
−

]
(4)
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= −dA
2

∫ Λ d4P

(2π)4

[
2 ln

(
1 +

ΠT

P 2

)
+ ln

(
1 +

ΠL

P 2

)]
,

where the double line corresponds to the HTL-resummed
propagator. Here, the longitudinal and transverse self
energies read, in d = 3 spatial dimensions,

ΠL (P ) = 2m2
∞

P 2

|p|2

[
1− iP 0

2 |p|
ln

iP 0 + |p|
iP 0 − |p|

]
, (5)

ΠT (P ) =m2
∞ − ΠL (P )

2
, (6)

where m2
∞ = αsµ

2
BNf/(9π) is the asymptotic HTL mass

[26]. Note that the breaking of Lorentz symmetry origi-
nates from the rest frame singled out by the presence of
the medium. Concentrating now on the semisoft region,
we expand the logarithms in eq. (4) in powers of the
self-energy. Introducing two semisoft momentum-space

cutoffs α
1/2
s µB ≪ Λ1 ≪ Λ2 ≪ µB , we are left with the

integral

psemisoft
IR,1 = −dA

∫ Λ2

Λ1

d4P

(2π)4

[
ΠT + ΠL

2

P 2
−

Π2
T +

Π2
L

2

2P 4
+ . . .

]

= − dA
(4π)2

[
m2

∞(Λ2
2 − Λ2

1)−m4
∞ ln

Λ2

Λ1
+O(α3

s)

]
. (7)

The terms with a power-like dependence on the cutoffs
Λ1 and Λ2 must cancel against corresponding terms in
presIR,1({0,Λ1}) and ploopIR,1({Λ2,∞}), respectively. Simi-
larly, in the full expression the cutoff dependence in the
logarithm is cancelled and Λ1 and Λ2 are replaced with

quantities of magnitudes O(α
1/2
s µB) and O(µB), as these

are the only scales appearing in the soft and hard calcu-
lations. This gives the logarithm of αs in the NNLO
result.

There are two things to note about the calculation pre-
sented above. First, while the logarithmic term could
be extracted from the semisoft region alone, obtaining
the constant under the logarithm requires a precise cal-
culation in both the hard and soft kinematic regions,
which is a considerably more challenging task. Second,
it turns out that the term non-analytic in αs is the same
as what one would obtain by setting the momentum
P on shell, with ΠT = ΠT (iP0 = |p|,p) = m2

∞ and
ΠL = ΠL(iP0 = |p|,p) = 0, that is, by considering two
massive transverse polarizations of gluons in the semisoft
region. This is natural because this is the particle content
of the HTL theory in its UV limit [30].

Applying the setup to α3
s ln

2 αs.—We have seen above
how the single lnαs term in the NNLO pressure arises
from a single semisoft integral. Similarly, if a diagram
has multiple semisoft integrals, it has the potential to
give rise to a higher power lnn αs. In particular, going to
N3LO we may allow two gluon lines in a given Feynman
diagram to be soft, which opens up the possibility of
obtaining a ln2 αs term.

At N3LO, there are three types of contributions to con-
sider: Higher-order interactions between hard modes and
other hard modes, higher-order interactions between soft
modes and hard modes, and the first interactions between
soft modes and other soft modes. Diagrammatically, the
first arise from unresummed 4-loop diagrams, the second
arise from single multi-loop 2PR self-energy insertions
into the resummed diagrams in Fig. 1, and the last cor-
respond to soft limits of resummed multi-loop vacuum
diagrams.
The determination of the full N3LO pressure is a

daunting task. However, a full accounting of the different
contributions listed above is not necessary in order to ex-
tract the leading-logarithm term at N3LO, for the follow-
ing reason. The insertion of a new soft loop to a soft line
contributes a factor αs

∫
d4P/P 2/m2

∞ = O(αs), where
the factor αs originates from the new vertex,

∫
d4P/P 2

from the loop integral and the inserted line, and 1/m2
∞

from splitting the original soft propagator into two. This
implies that the interactions of more than two soft mo-
menta go beyond N3LO. Therefore, the proper general-
ization of eq. (3) to the N3LO case will keep track of ex-
actly two (gluonic) momenta. Introducing two semisoft
scales α1/2µB ≪ Λi ≪ µB , with i = P,Q, we thus have

presIR, 2 = ploop,P; loop,Q
IR, 2 ({ΛP ,∞}, {ΛQ,∞})

+ pres,P; loop,Q
IR, 2 ({0,ΛP }, {ΛQ,∞})

+ ploop,P; res,Q
IR, 2 ({ΛP ,∞}, {0,ΛQ})

+ pres,P; res,Q
IR, 2 ({0,ΛP }, {0,ΛQ}). (8)

Again the logarithms may be extracted from the Λi de-
pendence of the individual terms. The last term corre-
sponds to a doubly-soft contribution, reproduced faith-
fully by the HTL resummation. In the second and third
terms, one of the loop momenta is hard, so that the kine-
matic HTL approximation is insufficient, and additional
diagrams that go beyond HTL must be considered. Fi-
nally, the first term corresponds to naive 4-loop (hard) di-
agrams, where no resummations are needed; these graphs
are tabulated in ref. [23].

As in the NNLO case, the leading logarithm may be
extracted from multiple places in the above expression.
We choose to extract the double logarithm from the last
term, as it corresponds to a previously-known two-loop
HTL computation. Specifically, eq. (34) of ref. [27] gives
the integral expression for the gauge-invariant sum of the
HTL-resummed diagrams

pHTL
IR,2 = + + . (9)

In analogy to the previous section, we may expand this
expression in the (now doubly-) semisoft limit to extract
the leading ln2 αs term: This amounts to an expansion
in powers of m2

∞ to isolate the m4
∞ term, as it contains
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dimensionless integrals that can yield the double loga-
rithm. [31]

Furthermore, to obtain the double logarithm, we need
the two integration momenta to be well separated to pro-
duce scale-free integrals. Since m4

∞ already has the cor-
rect mass dimension for the pressure, we may rewrite the
expanded HTL expression in the form

αsm
4
∞

∫
d4P

P 4

d4Q

Q4
f

(
P

Q
,Ωi

)
, (10)

where the function f is dimensionless, and inside the f
function P and Q represent the magnitudes of the Eu-
clidean four-momenta and Ωi represents the remaining
angles. We have chosen to make the dimensionful de-
nominator P 4Q4, since we wish to extract precisely the
integrals∫ ΛP

2

ΛP
1

∫ ΛQ
2

ΛQ
1

d4P

P 4

d4Q

Q4
∼ ln2 α1/2

s +O(lnαs, 1), (11)

where the new semisoft cutoffs ΛP
1,2,Λ

Q
1,2 inside the f

function are defined as before. Analogously to the NNLO
case, the double logarithm in the full expression arises
when the semisoft cutoffs become replaced by quantities

of O(α
1/2
s µB) and O(µB).

It is now clear that if we consider an expansion of f
about P/Q = 0

f

(
P

Q
,Ωi

)
= · · ·+ a−1(Ωi)

Q

P
+ a0(Ωi) + a1(Ωi)

P

Q
+ · · · ,

(12)
the only term that will give a double logarithm will be
the constant term a0. This corresponds precisely to
the P ≪ Q limit. Similarly, there is a contribution
from P ≫ Q, corresponding to an expansion of f about
Q/P = 0. Correctly accounting for the two integration
regions reveals that the full double logarithm comes from
the average of these contributions.

After extracting the average of the two series coeffi-
cients defined above, we are left with a double logarithm
multiplying a (convergent) dimensionless angular integral
given in eq. (3) of the supplementary material, which can
be computed analytically. The result is the coefficient
c3,2 of the α3

s ln
2 αs term in eq. (1)[32],

c3,2 α
3
s ln

2 αs = −11

48

NcdA
(2π)3

αsm
4
∞ ln2 αs

=
3(µB/3)

4

4π2

[
−0.266075α3

s ln
2 αs

]
,(13)

where the second equality holds for Nc = Nf = 3. We
have additionally verified that by repeating the calcula-
tion with ΠT = m2

∞ and ΠL = 0 from the outset, the
result for c3,2 remains unchanged, as was the case for the
α2
s lnαs term. Eq. (13) is our main result.
In order to elevate our result to the subleading-

logarithm order O(α3
s lnαs), more care must be taken.
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FIG. 2. The pressure of cold and dense massless QCD, nor-
malized to the free pressure, as a function of baryon chemical
potential for the renormalization scale choice Λ̄ = 2µB/3 and
ΛMS = 0.378 GeV.

Single logarithms may appear when only one of the loop
momenta is semisoft while the other one is either soft or
hard: If the other loop momentum is soft, a full HTL re-
summation of that line must be performed and the result
cannot be expanded in powers of ΠT/L as above. Mean-
while, if the other loop momentum is hard, no kinematic
simplifications can be performed and no restrictions on
topology and the number of fermion lines can be applied
in that part of the diagram. In addition, the expansion
of the soft one-loop diagram of eq. (3) to higher orders
in the soft loop momentum will lead to contributions of
O(α3

s lnαs) that go beyond the HTL effective theory.

Conclusions.—In the letter at hand, we have extracted
the leading N3LO correction to the pressure of cold quark
matter using an existing two-loop computation within
the Hard-Thermal-Loop effective theory. We note that
the HTL result was derived in the different context of
a hot quark-gluon plasma, but it is equally applica-
ble to cold quark matter, as the soft contributions to
the EoS are insensitive to the details of the physics at
the hard scale (T for a hot quark-gluon plasma and
µB for cold quark matter). The hard scale appears
in the calculation only through the asymptotic mass
m2

∞ ∼ αs

∫
d3pf(p)/|p|, where f is the relevant distri-

bution function.

We note that at higher orders, the semisoft contribu-
tions should continue to give rise to the leading loga-
rithms αn+1

s lnn αs. Quite strikingly, we find that the
leading-logarithm contributions at NNLO and N3LO are
described by a theory with only two transverse gluons
with a mass m∞. This leads us to conjecture that the
leading-logarithm terms even at higher orders can be
computed in this vastly simplified framework.

In Fig. 2, we display the pressure, evaluated with
Λ̄ = 2µB/3 and a two-loop running coupling, which in-
dicates that the partial N3LO term only constitutes a
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tiny correction to the existing NNLO result. One of-
ten estimates the error of a perturbative result such as
eq. (1) by studying its dependence on the renormalization
scale Λ̄. However, the variation of this scale is completely
insensitive to any as-yet-uncalculated soft physics: It is
only sensitive to some subset of higher-order UV-sensitive
terms in the weak-coupling series. As such, it is possi-
ble to grossly underestimate the systematic error by this
procedure, as is the case at high T , where the soft contri-
butions are even parametrically larger than the next hard
correction at any order (as they enter with odd powers

of α
1/2
s ). That the leading-logarithm soft contribution at

N3LO gives a negligible correction to the NNLO result
thus gives significant confidence in the error estimation
of the previous results, and by extension increases confi-
dence in using the perturbative result as ab-initio input
in calculations of the properties of neutron stars [15, 18–
21] as well as simulations of gravitational-wave signals
from neutron-star mergers.

By exploiting the same techniques that were outlined
in the present work, we are confident that a calculation
of the pressure to order O(α3

s lnαs) is feasible, and plan
to report the result of this calculation in the near future.

Acknowledgments.—TG, SS, and AV have been sup-
ported by the Academy of Finland grant no. 1303622,
as well as by the European Research Council, grant
no. 725369. PR is supported in part by the Department
of Energy, DOE award no. DE-SC0017905. We would
like to thank Ioan Ghisoiu for his collaboration in the
early stages of the project.

[1] G. Aarts, Proceedings, 30th International Symposium
on Lattice Field Theory (Lattice 2012), PoS LAT-
TICE2012, 017 (2012), arXiv:1302.3028 [hep-lat].

[2] Z. Fodor, S. D. Katz, D. Sexty, and C. Török, (2015),
arXiv:1508.05260 [hep-lat].

[3] M. Cristoforetti, F. Di Renzo, and L. Scorzato
(AuroraScience), Phys. Rev. D86, 074506 (2012),
arXiv:1205.3996 [hep-lat].

[4] H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu,
and T. Sano, JHEP 10, 147 (2013), arXiv:1309.4371 [hep-
lat].

[5] P. de Forcrand, J. Langelage, O. Philipsen, and
W. Unger, Phys. Rev. Lett. 113, 152002 (2014),
arXiv:1406.4397 [hep-lat].

[6] T. Ichihara, K. Morita, and A. Ohnishi, (2015),
arXiv:1507.04527 [hep-lat].

[7] A. Alexandru, G. Basar, P. F. Bedaque, G. W. Ridg-
way, and N. C. Warrington, JHEP 05, 053 (2016),
arXiv:1512.08764 [hep-lat].

[8] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343
(1973).

[9] B. A. Freedman and L. D. McLerran, Phys. Rev. D16,
1147 (1977).

[10] B. A. Freedman and L. D. McLerran, Phys. Rev. D16,
1169 (1977).

[11] A. Vuorinen, Phys. Rev. D68, 054017 (2003), arXiv:hep-
ph/0305183 [hep-ph].

[12] A. Ipp, K. Kajantie, A. Rebhan, and A. Vuorinen, Phys.
Rev. D74, 045016 (2006), arXiv:hep-ph/0604060 [hep-
ph].

[13] A. Kurkela and A. Vuorinen, Phys. Rev. Lett. 117,
042501 (2016), arXiv:1603.00750 [hep-ph].

[14] E. S. Fraga and P. Romatschke, Phys. Rev. D71, 105014
(2005), arXiv:hep-ph/0412298 [hep-ph].

[15] A. Kurkela, P. Romatschke, and A. Vuorinen, Phys. Rev.
D81, 105021 (2010), arXiv:0912.1856 [hep-ph].

[16] E. S. Fraga, A. Kurkela, and A. Vuorinen, Astrophys. J.
781, L25 (2014), arXiv:1311.5154 [nucl-th].

[17] Note that although the pressure is in principle a function
of several independent quark chemical potentials, in this
work we will consistently parameterize it in terms of the
single baryon chemical potential µB . The reason for this
stems from the fact that with three massless quarks, the
physically relevant limits of local charge neutrality and
β-equilibrium are satisfied when µu = µd = µs = µB/3.
Note, however, that it is trivial to generalize our result
to the case of unequal quark chemical potentials, as the
new term in the pressure only depends on them via the
m∞ parameter.

[18] A. Kurkela, E. S. Fraga, J. Schaffner-Bielich,
and A. Vuorinen, Astrophys. J. 789, 127 (2014),
arXiv:1402.6618 [astro-ph.HE].

[19] T. Gorda, Astrophys. J. 832, 28 (2016),
arXiv:1605.08067 [astro-ph.HE].

[20] E. Annala, T. Gorda, A. Kurkela, and A. Vuorinen,
Phys. Rev. Lett. 120, 172703 (2018), arXiv:1711.02644
[astro-ph.HE].

[21] E. R. Most, L. R. Weih, L. Rezzolla, and
J. Schaffner-Bielich, Phys. Rev. Lett. 120, 261103 (2018),
arXiv:1803.00549 [gr-qc].

[22] B. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev.
Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc].

[23] K. Kajantie, M. Laine, and Y. Schroder, Phys. Rev.
D65, 045008 (2002), arXiv:hep-ph/0109100 [hep-ph].

[24] E. Braaten and R. D. Pisarski, Nucl. Phys. B337, 569
(1990).

[25] J. O. Andersen, E. Braaten, and M. Strickland, Phys.
Rev. Lett. 83, 2139 (1999), arXiv:hep-ph/9902327 [hep-
ph].

[26] J. O. Andersen, E. Braaten, and M. Strickland, Phys.
Rev. D61, 014017 (2000), arXiv:hep-ph/9905337 [hep-
ph].

[27] J. O. Andersen, E. Braaten, E. Petitgirard, and
M. Strickland, Phys. Rev. D66, 085016 (2002),
arXiv:hep-ph/0205085 [hep-ph].

[28] J. O. Andersen, E. Petitgirard, and M. Strickland, Phys.
Rev. D70, 045001 (2004), arXiv:hep-ph/0302069 [hep-
ph].

[29] N. Haque, A. Bandyopadhyay, J. O. Andersen, M. G.
Mustafa, M. Strickland, and N. Su, JHEP 05, 027
(2014), arXiv:1402.6907 [hep-ph].

[30] H. A. Weldon, Phys. Rev. D26, 1394 (1982).
[31] Note that this amounts to one further term in the expan-

sion in m2
D than what was done in ref. [27].

[32] The sign of our result in this equation is incorrect; the
correct result is −1 times this expression. We thank Jean-
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SUPPLEMENTAL MATERIAL: DETAILS OF INTEGRATION

We present here some details of the calculation discussed in the main text. In particular, to carry out the four-
momentum integrations such as

∫
d4P , we find it very useful to change variables from (P 0, |p|) to (P,ΦP ), where

P is the magnitude of the Euclidean four-vector and ΦP is the four-dimensional polar angle, tanΦP = |p|/P 0. The
particular expression that we use in these coordinates is only valid for 0 ≤ ΦP ≤ π/2, but due to the symmetry of the
self energy under P 0 7→ −P 0, cf. eqs. (5) and (6) of the main text, one may use the measure

∫
R4

d4P 7→
∫ ∞

0

P 3 dP

∫ π/2

0

dΦP 2 sin2 ΦP

∫
S2

d2ΩP (14)

to restrict the integrations to this region.

As mentioned in the main text, the starting point in our N3LO computation is the two-loop HTL pressure as written
down in eq. (34) of ref. [27], where we convert the sum-integrals into ordinary 3+1 dimensional integrals because we
work at T = 0. The full expression is rather unwieldy when written in full, and is not reproduced here, but we
note that the simplifications outlined in the main text make extracting the double logarithm significantly easier. An
additional useful result is that, in the notation of ref. [27], the propagator ∆X = O(αs), which allows us to discard a
number of higher-order terms.

When performing the expansions in m2
∞, we label the momenta using linear changes of variables P 7→ −P −Q and

Q 7→ −P − Q when necessary, so that no factors of ΠT/L(P + Q) appear. By dimensional analysis, this is always
possible, as there are at most two propagators expanded beyond leading order that contribute to the m4

∞-term. This
choice of momenta simplifies future integrations, as with it one only needs to consider the two regions P ≫ Q and
Q ≫ P to obtain the double-logarithm coefficient. The full expression corresponding to eq. (10) in the main text,
that is, the two-loop HTL diagrams re-expanded to two self-energy insertions to obtain possible double-logarithm
corrections at N3LO, is

pHTL
IR,2 = −dANcαs

8π5

∫
P

∫
Q

∫ π/2

0

∫ π/2

0

∫ π

0

dP

P

dQ

Q
dΦPdΦQdθ

sin3 ΦP sin3 ΦQ sin θ

x2 [2x cos θ + cscΦP cscΦQ (x2 + 1) + 2x cotΦP cotΦQ]
×

×

{
4xm2

∞ΠL (ΦP ) csc
6 ΦP cscΦQ [x cscΦQ (1− 3ΦP cotΦP + 2ΦQ cotΦQ)− 2 cscΦP cos θ (ΦP cotΦP − 1)]

+ 4xm2
∞ΠT (ΦP ) cscΦQ cscΦP [2 cscΦP cos θ (ΦP cotΦP − 1) + x cscΦQ (3ΦP cotΦP − 2ΦQ cotΦQ − 1)]

+ x2ΠL (ΦP )ΠL (ΦQ) csc
3 ΦP csc2 ΦQ

[
− 4x csc2 ΦP cscΦQ cos θ + 2x cscΦQ cos θ + 3x2 cscΦP csc4 ΦQ

− csc3 ΦP csc2 ΦQ + 4x cotΦP csc2 ΦP cotΦQ cscΦQ + 2x cotΦP cotΦQ cscΦQ + 4 csc3 ΦP cot2 ΦQ

]
+ x2ΠT (ΦP )ΠT (ΦQ) cscΦQ cscΦP

[
− 4x csc2 ΦP (x− cotΦP cotΦQ) + 4 cos θx

(
3 csc2 ΦQ − 2

)
+ cscΦP csc3 ΦQ

(
−x2 cos (2ΦQ)− 5x2 cos (2ΦP ) + 3x2 + 6

)
+ 3x2 cot2 ΦP cscΦP cscΦQ

− 9 cot2 ΦQ cscΦP cscΦQ + 2x cotΦP csc3 ΦQ (cos (3ΦQ)− 7 cosΦQ)− 3 csc3 ΦP cscΦQ (2 cos (2ΦQ) + 2)
]

+ x2ΠL (ΦP )ΠT (ΦQ) csc
3 ΦP cscΦQ

[
x csc2 ΦP (4 cos θ + cotΦP cotΦQ cos (2ΦP )− 5 cotΦP cotΦQ)− 2x cos θ

+ x2 cscΦP cscΦQ

(
4− 3 cot2 ΦP − 3 csc2 ΦQ

)
+ 3x csc3 ΦP cscΦQ (cos (2ΦQ) + 2)

]
+ x2ΠT (ΦP )ΠL (ΦQ) csc

2 ΦQ

[
csc4 ΦP csc2 ΦQ − x cos θ cscΦP csc3 ΦQ (cos (2ΦQ) + 11)

+ 4x cos θ csc3 ΦP cscΦQ + x2 csc4 ΦQ

(
3 cot2 ΦP − 7

)
+ cot2 ΦQ

(
3 csc2 ΦP csc2 ΦQ − 4 csc4 ΦP

)
+ 2x cotΦP cscΦP cotΦQ cscΦQ

(
1− 2 csc2 ΦP + 6 csc2 ΦQ

) ]
− 1

2
Π2

L (ΦP ) csc
8 ΦP csc2 ΦQ

[
32x cos θ sinΦP sinΦQ + 28x cosΦP cosΦQ

− 5x2 sin2 ΦP + 5x2 cos2 ΦP + 8 sin2 ΦQ − 8 cos2 ΦQ + 13x2
]

+Π2
T (ΦP ) cscΦQ cscΦP

[
16x cos θ csc2 ΦP − 14x cos θ + 14x cotΦ3

P cotΦQ
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+ csc3 ΦP cscΦQ

(
x2 cos (2ΦP )− 4 cos (2ΦP )− 4 cos (2ΦQ) + 8x2 − 4

) ]}
, (15)

where x ≡ P/Q and θ is the angle between p and q. After expanding in the limits P ≫ Q, Q ≫ P and averaging, we
obtain the pure double-logarithm N3LO contribution in the following form:

psemisoft
IR,2 =

dANcαsm
4
∞

256π5

∫ ΛP
2

ΛP
1

∫ ΛQ
2

ΛQ
1

∫ π/2

0

∫ π/2

0

∫ π

0

dP

P

dQ

Q
dΦPdΦQdθ sin

2 ΦP sin2 ΦQ sin θ

{
1

16
csc8 ΦP cos (2ΦQ)×

×
[
2
((
−16Φ2

P + 677
)
cos2 θ − 2384Φ2

P − 615
)
+ 2 cos (2ΦP )

((
8Φ2

P − 991
)
cos2 θ − 3448Φ2

P − 555
)

+ 8 cos (4ΦP )
((
4Φ2

P + 89
)
cos2 θ − 268Φ2

P + 319
)
− cos (6ΦP )

((
16Φ2

P + 67
)
cos2 θ + 16Φ2

P + 171
)

− 6 cos (8ΦP )
(
3 cos2 θ + 7

)
+ cos (10ΦP )

(
cos2 θ + 1

)
+ 16ΦP sin (2ΦP )

(
403− 57 cos2 θ

)
+ 16ΦP sin (4ΦP )

(
47 cos2 θ + 261

)
+ 16ΦP sin (6ΦP )

(
13 cos2 θ + 21

)
+ 8ΦP sin (8ΦP )

(
cos2 θ + 1

) ]
+ 16

[
(4ΦP cotΦP − cos (2ΦP ) + 9) cos2 θ − 4ΦP cotΦP + cos (2ΦP )− 27

+ 2 csc2 ΦP

((
14ΦP cotΦP − Φ2

P − 15
)
cos2 θ − 23ΦP cotΦP +Φ2

P + 25
)

+ csc4 ΦP

(
2
(
12ΦP cotΦP + 7Φ2

P − 6
)
cos2 θ + 9ΦP cotΦP + 4Φ2

P − 3
)

+ 3 csc6 ΦP

(
18ΦP cotΦP +

(
7− 4 cos2 θ

)
Φ2

P − 9
)
− 27Φ2

P csc8 ΦP

]
+

1

2

[
− 1040Φ2

P − 1569 + 22 cos (2ΦP )
(
77− 48Φ2

P

)
− 16 cos (4ΦP )

(
Φ2

P + 6
)
− 30 cos (6ΦP ) + cos (8ΦP )

+ 8ΦP (329 sin (2ΦP )− 34 sin (4ΦP ) + sin (6ΦP ))
]
cos θ cotΦP csc6 ΦP sin (2ΦQ)

− csc4 ΦP cos (4ΦQ)
(
cos2 θ − cot2 ΦP

)
[cos (2ΦP )− 6ΦP cotΦP + 5] [cos (2ΦP ) + 2ΦP cotΦP − 3]

− 8 cos θ csc6 ΦP sin (4ΦQ) [4ΦP cosΦP − 7 sinΦP + sin (3ΦP )] [12ΦP cosΦP − 9 sinΦP − sin (3ΦP )]

+ 48 (ΦQ cotΦQ − 1) csc4 ΦQ [5 cos (2ΦP )− 10ΦP cotΦP + 11] + 80 csc2 ΦQ [cos (2ΦP )− 2ΦP cotΦP + 5]

+ 40ΦQ csc5 ΦP cotΦQ [12ΦP cosΦp − 9 sinΦP − sin (3ΦP )]− 224ΦQ cotΦQ csc2 ΦQ

}
. (16)

The integral over the three-dimensional angle θ can then be performed analytically, which yields a more manageable
expression,

psemisoft
IR,2 =

dANcαsm
4
∞

256π5

∫ ΛP
2

ΛP
1

∫ ΛQ
2

ΛQ
1

∫ π/2

0

∫ π/2

0

dP

P

dQ

Q
dΦPdΦQ sin2 ΦP sin2 ΦQ

{
1

6
csc8 ΦP cos (2ΦQ)×

×
[
− 16 cos (2ΦP )

(
323Φ2

P + 83
)
− 4 cos (4ΦP )

(
400Φ2

P − 523
)
− cos (6ΦP ) (2ΦP + 145)− 36 cos (8ΦP ) + cos (10ΦP )

+ 8 (576 sin (2ΦP ) + 415 sin (4ΦP )− 38 sin (6ΦP ) + 8 sin (8ΦP )) ΦP − 3584Φ2
P − 584

]
+

32

3

[
(−8ΦP cotΦP + 2 cos (2ΦP )− 72)− 2 csc2 ΦP

(
55ΦP cotΦP − 2Φ2

P − 60
)

+ csc4 ΦP

(
51ΦP cotΦP + 26Φ2

P − 21
)
+ 3 csc6 ΦP

(
54ΦP cotΦP + 17Φ2

P − 27
)
− 81 csc8 ΦPΦ

2
P

]
− 160 csc2 ΦQ [2ΦP cotΦP − cos (2ΦP )− 5]− 96 (ΦQ cotΦQ − 1) csc4 ΦQ [10ΦP cotΦP − 5 cos (2ΦP )− 11]

+
8

3
cos (4ΦQ) csc

8 ΦP [2 cos (2ΦP ) + 1] [4ΦP cosΦP − 7 sinΦP + sin (3ΦP )]

+ 80ΦQ cotΦQ csc5 ΦP [12ΦP cosΦP − 9 sinΦP − sin (3ΦP )]− 448ΦQ cotΦQ csc2 ΦQ

}
. (17)

The last two angular integrals are likewise easy to perform, and together with the log2 α
1/2
s from the radial integrals,

this yields precisely the promised coefficient of eq. (13).
For comparison, we may consider the simplification of setting ΠT = m2

∞, ΠL = 0. The integrals corresponding to
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eqs. (15)-(17) are then

p
m2

∞
IR,2 = −dANcαs

8π5

∫
P

∫
Q

∫ π/2

0

∫ π/2

0

∫ π

0

dP

P

dQ

Q
dΦPdΦQdθ

m4
∞ sin θ

x2 [2x cos θ sinΦP sinΦQ + 2x cosΦP cosΦQ + x2 + 1]
×

×

{
4x cos θ sinΦP sin3 ΦQ

[
x2 − 4

]
− x cos θ sin3 ΦP sinΦQ

[(
4x2 + 7

)
cos (2ΦQ) + 8x2 − 7

]
+

x cos θ sin3 ΦP sin3 ΦQ

2

[
4x cosΦP cosΦQ

(
2x2 + 7

)
+ 3x2

(
x2 + 1

)
(cos (2ΦP ) + 1)− 2

(
3x2 − 4

)
cos (2ΦQ)

]
+ 2x cosΦP cosΦQ sin2 ΦP

[
sin2 ΦQ

(
4x2 + 7

)
+ 6x2

]
+ sin2 ΦP cos (2ΦQ)

[
x4 + 5x2 − 4

]
− 2 sin2 ΦP

[
5x4 + x2 − 1

]
+ 2x4 sin4 ΦP + 3x4 sin2 (2ΦP )

}
, (18)

psemisoft
IR,2 =

dANcαsm
4
∞

32π5

∫ ΛP
2

ΛP
1

∫ ΛQ
2

ΛQ
1

∫ π/2

0

∫ π/2

0

∫ π

0

dP

P

dQ

Q
dΦPdΦQdθ sin

2 ΦP sin2 ΦQ sin θ

{
− 1

2
csc2 ΦP cos (2ΦQ)×

×
[
19 cos2 θ − 41− 4 cos (2ΦP )

(
5 cos2 θ + 11

)
+ cos (4ΦP )

(
cos2 θ + 1

)]
+ 26 cos2 θ − 62− 2 cos (2ΦP )

[
cos2 θ − 1

]
+ 8 cos (4ΦQ)

[
cot2 ΦP − cos2 θ

]
+ 16 sin (4ΦQ) cotΦP cos θ

− 4 sin (2ΦQ) cotΦP cos θ [cos (2ΦP )− 16] + 24 csc2 ΦP + 2 csc2 ΦQ [5 cos (2ΦP ) + 1]

}
(19)

and

psemisoft
IR,2 =

dANcαsm
4
∞

24π5

∫ ΛP
2

ΛP
1

∫ ΛQ
2

ΛQ
1

∫ π/2

0

∫ π/2

0

dP

P

dQ

Q
dΦPdΦQ sin2 ΦP sin2 ΦQ×

×

{
− 80 + cos (2ΦQ) csc

2 ΦP [38 cos (2ΦP )− 4 cos (4ΦP )] + 2 cos (2ΦP )

+ 4 cos (4ΦQ) csc
2 ΦP [2 cos (2ΦP ) + 1] + 3 csc2 ΦQ [5 cos (2ΦP ) + 1] + 36 csc2 ΦP

}
, (20)

which evidently represent a significant simplification in comparison with the full expressions, yet lead to the same
results.
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