
Available on CMS information server CMS CR -2018/218

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
24 September 2018 (v2, 08 October 2018)

Extending the remote control capabilities in the
CMS Detector Control System with Remote

Procedure Call Services

Raul Jimenez Estupinan for the CMS Collaboration

Abstract

The CMS Detector Control System (DCS) is implemented as a large distributed and redundant system,
with applications interacting and sharing data in multiple ways. The CMS XML-RPC is a software
toolkit implementing the standard Remote Procedure Call (RPC) protocol, using the Extensible Mark-
up Language (XML) and a custom lightweight variant using the JavaScript Object Notation (JSON)
to model, encode and expose resources through the Hypertext Transfer Protocol (HTTP). The CMS
XML-RPC toolkit complies with the standard specification of the XML-RPC protocol that allows
system developers to build collaborative software architectures with self-contained and reusable logic,
and with encapsulation of well-defined processes. The implementation of this protocol introduces not
only a powerful communication method to operate and exchange data with web-based applications,
but also a new programming paradigm to design service-oriented software architectures within the
CMS DCS domain. This paper presents details of the CMS XML-RPC implementation in WinCC
Open Architecture (OA) Control Language using an object-oriented approach.

Presented at PCaPAC2018 12th International Workshop on Emerging Technologies and Scientific Facilities
Controls

Extending the Remote Control Capabilities in the CMS Detector Control System

with Remote Procedure Call Services

R. Jiménez Estupiñán, ETH Zurich, Zurich, Switzerland

Attila Racz, Christian Deldicque, Christian Wernet, Christoph Schwick, Cristina Vazquez Velez,

Dainius Simelevicius 1, Diego Da Silva Gomes, Dinyar Rabady, Dominique Gigi, Emilio Meschi,

Frank Glege, Frans Meijers, Hannes Sakulin, Jeroen Hegeman, Jonathan Richard Fulcher, Luciano

Orsini, Maciej Gladki, Marc Dobson, Michael Lettrich, Philipp Brummer 1, Thomas Reis, CERN,

Geneva, Switzerland

Ulf Behrens, DESY, Hamburg, Germany

Audrius Mecionis 2, Jean-Marc Andre, Mantas Stankevicius 1, Nicolas Doualot, Petr Zejdl3, Re-

migius K. Mommsen, Srecko Morovic, Valdas Rapsevicius 1, Vivian O'Dell, FNAL, Chicago, Illi-

nois, USA

Christoph Paus, Georgiana-Lavinia Darlea, Guillelmo Gomez-Ceballos, Zeynep Demiragli, MIT,

Cambridge, Massachusetts, USA

Andrea Petrucci, Rice University, Houston, Texas, USA

Ioannis Papakrivopoulos, Technical University of Athens, Athens, Greece

Samim Erhan, UCLA, Los Angeles, California, USA

Andre Holzner, James Branson, Marco Pieri, Sergio Cittolin, UCSD, San Diego, California, USA
1also at Karlsruhe Institute of Technology, Karlsruhe, Germany, 2also at Vilnius University, Vil-

nius, Lithuania, 3also at CERN, Geneva, Switzerland

Abstract

The CMS Detector Control System (DCS) is imple-
mented as a large distributed and redundant system, with

applications interacting and sharing data in multiple ways.

The CMS XML-RPC is a software toolkit implementing

the standard Remote Procedure Call (RPC) protocol, using

the Extensible Mark-up Language (XML) and a custom

lightweight variant using the JavaScript Object Notation

(JSON) to model, encode and expose resources through the

Hypertext Transfer Protocol (HTTP). The CMS XML-

RPC toolkit complies with the standard specification of the

XML-RPC protocol that allows system developers to build

collaborative software architectures with self-contained

and reusable logic, and with encapsulation of well-defined
processes. The implementation of this protocol introduces

not only a powerful communication method to operate and

exchange data with web-based applications, but also a new

programming paradigm to design service-oriented soft-

ware architectures within the CMS DCS domain. This pa-

per presents details of the CMS XML-RPC implementation

in WinCC Open Architecture (OA) Control Language us-

ing an object-oriented approach.

INTRODUCTION

CMS DCS applications are implemented using the SI-

MATIC WinCC OA [1] platform, mostly written in its na-

tive programming language called control (CTRL) lan-

guage. The CTRL language is a C-like language with a

very poor type definition syntax, not suitable for program-

ming complex software architectures. The CMSfwClass

[2] is a programming framework to build object oriented

(OO) applications using CTRL language. The CMS XML-

RPC toolkit relies on the CMSfwClass framework, which
permits a better implementation of the software architec-

ture after an extensive planning and design phase. The

toolkit provides a set of software classes to build client-

server architectures (See Fig. 1), enabling heterogeneous

software entities to act as service providers (servers) or ser-

vice requesters (clients).

Client Server
DCS

Application

1. HTTP request using XML

2. Execute

3. Return data

4. HTTP response using XML

Figure 1: Client-server activity diagram on XML-RPC.

USE CASES

During the design phase, the software models were pre-

pared to support at least the following scenarios: Remote

procedure calls from the DCS user interface (UI), service-
oriented collaboration between DCS applications, and

DCS web services.

Remote procedure calls from the UIs

The CMS DCS is a large distributed environment, orga-

nized in a hierarchy of nodes and accessed from remote lo-

cations. In this context, the code associated to UIs is exe-

cuted in the client machines while the events and data pro-

cessing happens in the control nodes. Certain operations

need access to resources that are only available in a remote

control node (server). The CMS XML-RPC toolkit allows

programmers to encapsulate server-only operations in the

form of service objects that can be invoked from the UI.

This feature allows the UIs to access resources, which are

typically not accessible on the client side (E.g. local server

files, system calls, etc.). In addition, the OO implementa-
tion hides the server details from the UIs; delimiting the

concerns of the software and resulting in a cleaner imple-

mentation, compared to the classic procedural approach.

Service-oriented collaboration

Many of the DCS applications are implemented as

standalone applications, which are not ready to share func-

tionality without further development. The CMS XML-

RPC toolkit introduces a mechanism to model DCS func-

tionality as a service. Different applications can be pre-

pared to act as producers (servers) and consumers (clients)

of services, permitting a well-structured collaboration in-

terface between remote peers. In addition, this mechanism

provides an abstraction layer to connect applications on
different platforms.

DCS web services

The CMS XML-RPC toolkit complies with the standard

XML-RPC specification using HTTP over TCP. This

means that any application implementing these protocols

can make use of the features exposed by DCS web services,

including standard web applications. The CMS online por-

tal (https://cmsonline.cern.ch) is a web portal hosting DCS

related applications. Some of its applications connect to

DCS web services; offering a new set of control features to

the CMS users worldwide.

ARCHITECTURE

The CMS XML-RPC toolkit does not provide ad-hoc

functionality. Instead, it provides a software model that can

be used or extended to build new tailored client-server ap-

plications. The model includes two abstract classes de-

scribing the basic functionality of a service dispatcher and

a service client. These classes are unaware of the final im-

plementation details, as well as the message-encoding for-
mat, permitting the further extension of the architecture. In

addition, the model includes concrete classes to build dif-

ferent client-server architectures.

Service classes
The service classes are the core structures for building

service based applications. The toolkit includes three sub-
classes derived from the abstract service class. Each of

them extends the initial service implementation.

 Service class: This class implements the basic service

functionality. Objects of this class offer a list of proce-

dures to be executed remotely in the DCS context.

 Service router class: This class groups multiple service

objects; offering a single entry point to clients. Objects

of this class are particularly useful to concentrate and

minimize the number of connections between the DCS

and other platforms.

 Proxy server class: This class implement a message

forwarding mechanism. Objects of this class can inter-

cept, filter and divert requests to other service provid-

ers.

Service system interface

The service system interface describes a list of popular

RPC functions. The system interface is not part of the
XML-RPC protocol itself, but it is a common feature sup-

ported by most of the available RPC servers. Using the sys-

tem functions, clients can request the full list of available

methods, their signatures or even the encapsulation of mul-

tiple calls to a remote server into a single request.

Client classes

The CMS XML-RPC toolkit includes a set of service cli-

ent classes, derived from an abstract service client class.

Each of them implement different ways of invoking ser-

vices.

 Client class: This class implements a basic method in-

vocation by forwarding requests to specific service ob-
jects. Objects of this class use the internal WinCC OA

run-time database to pass the messages to the service

objects.

 Web client class: This class forwards the requests to a

web service. Objects of this class listen to specific host

ports using the transmission control protocol (TCP).

 Http client class: This class extends the web-service

client functionality by using the HTTP protocol over

TCP.

Proxy server configuration

By combining the server and client functionality into a

single class, objects can configure a proxy server capable
of serving, requesting, and therefore forwarding requests to

other peers (see Fig. 2). A proxy server object can be con-

figured to administer a group of resources, acting as a fire-

wall between the CMS DCS web server and external cli-

ents.

CMSfwAbstractClient

formatEncoder: CMSfwServiceFormatEncoder

sendRequest(request: string)
remoteProcedureCall(proc: string)

CMSfwAbstractService

formatEncoder: CMSfwServiceFormatEncoder

executeProcedure(proc: string, ..) : anytype
encodeResponse(response: anytype): string

CMSfwProxyServer

clientToRemoteServer: CMSfwAbstractClient

getClientToRemoveServer()
getResponse(request: string) : string

1

Figure 2: Service-client composition

Message formatting classes

The information exchange between clients and servers

require the encoding and decoding of messages. Clients

should encode their request and transmit them using one of

the available formats. Servers will decode the messages

and process the request. The results are sent back to the

client, repeating the encoding-decoding operations on both

https://cmsonline.cern.ch/

sides. The CMS XML-RPC toolkit delegates the format en-

coding operations to objects implementing the message

format. The different formatting classes implement the

same interface; which defines the common methods for en-

coding and decoding messages. Thanks to this model, new

formats can be easily included or extended without altering
the final architecture.

IMPLEMENTATION DETAILS

The CMS XML-RPC toolkit is composed of 13 classes,

8 class interfaces and a Web service application handler.

Once the framework is installed, objects can be created us-

ing a factory script or any of the available serialization

mechanisms. The configuration of the objects and the rela-
tions between them is what determines the final software

architecture. In total, the framework comprises around

3000 lines of code, in addition to the code required for

building the final application.

Web service application handler

WinCC OA provides an application programming inter-

face (API) for building a standard HTTP server using

CTRL language. The CMS XML-RPC toolkit uses the

HTTP server API to implements a web-service application

handler. Instances of any service class can be passed as pa-

rameters to the application handler to run a fully functional

web service.

Figure 3: CMS XML-RPC application handler.

As shown in figure 3, web clients initiate the procedure

with a HTTP request to the server. The application handler

configures the HTTP server to listen to a particular port

number in the control node. When the request arrives to the

server, a call-back function processes it and delegates the

execution to a service object. The service object decodes

the request, executes the requested operation and encodes

the results in the appropriate format. Results are passed

back to the HTTP server, which replies to the correspond-

ing client.

Message format

The CMS XML-RPC toolkit provides two format-en-

coding classes. The first formatting class complies with the

standard XML-RPC protocol specification. The second

class implements a variant where responses are formulated

in JSON. The usage of the JSON format is only available

to web clients, which are able to decode this type of mes-
sages. This format is particularly useful in the context of

JavaScript applications, since the encoding is part of the

language notation. Messages encoded in JSON are lighter

than the ones in XML (see table 1) requiring less space and

processing time. Using one of the XML-RPC services, we

have measured the length of the messages in the different

formats (See Table 1).

Table 1: Size of the messages

Type of message Format Bytes

Client request XML 111 bytes

Server response XML 1,042 bytes

Server response JSON 597 bytes

A single query to the system returned a list of 25 items

with 534 bytes of content data. The format of the XML

message took more than 50% of the total message space.

By contrast, the JSON format required only 1% of the mes-

sage space. For this reason, JSON is the preferred format

to exchange data with online applications.

INTEGRATION WITH CMS ONLINE

CMS Online is a web portal using the Oracle WebCenter

Portal [3] technology to access technical information of the
CMS experiment. The CMS online portal extends the DCS

capabilities by offering a set of tools to monitor and admin-

ister parts of the DCS. Initially, the data exchange between

the CMS Online and the DCS was limited by the usage of

databases. Now, the CMS XML-RPC toolkit adds a new

connection method to exchange data and perform remote

operations from the CMS Online platform. At the moment,

two web applications using the CMS XML-RPC toolkit are

available:

 Online parametrization browser: This web application

allows the users to inspect and change certain parame-
ters in the control systems.

 Online DCS log files browser: This web application

exposes the different logs available in the remote

nodes, and implements some formatting and filtering

features to facilitate the readability.

CONCLUSION

The implementation of the CMS XML-RPC toolkit
started as a prototype to prove the feasibility of the XML-

RPC protocol within the DCS domain. With the time, after

several iterations to extend and refine its design, the toolkit

became a consolidated part of the CMS DCS software. As

result, the online applications based on the XML-RPC have

also become an important tool for the CMS DCS commu-

nity, allowing experts to access DCS technical information

with the only help of a web browser.

ACKNOWLEDGEMENTS

The authors would like to thank the Swiss National Sci-

ence Foundation for the financial support.

We would like also to thank our colleague L. Masetti,

who provided insight and expertise in the topics discussed

in this paper.

REFERENCES

[1] SIMATIC WinCC OA [online],

http://www.etm.at/index_e.asp

[2] R. Jimenez Estupiñan et al. “Enhancing the Detector Control
System of the CMS Experiment with Object Oriented Mod-
elling”, ICALEPCS’15, Melbourne, Australia, October

2015, MOPGF025.

[3] Oracle WebCenter Portal [online],

https://www.oracle.com/technetwork/middleware/w

ebcenter/portal/overview/index.html

