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Abstract: The operating conditions of the High Luminosity upgrade of the Large Hadron Collider
are very demanding for the design of next generation hybrid pixel readout chips in terms of particle
rate, radiation level and data bandwidth. To this purpose, the RD53 Collaboration has developed
for the ATLAS and CMS experiments a dedicated simulation and verification environment using
industry-consolidated tools and methodologies, such as SystemVerilog and the Universal Verifica-
tion Methodology (UVM). This paper presents how the so-called VEPIX53 environment has first
guided the design of digital architectures, optimized for processing and buffering very high particle
rates, and secondly how it has been reused for the functional verification of the first large scale
demonstrator chip designed by the collaboration, which has recently been submitted.
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1 Introduction

TheHighLuminosity project for theLargeHadronCollider (HL-LHC),whichwas recently approved
at CERN, is aimed to feature a maximum peak luminosity of 5× 1034 cm−2s−1 and reach 3000 fb−1

of accumulated luminosity in a decade period. This will introduce extreme operating conditions
for upgraded pixel detectors of the so-called Phase 2 in terms of particle rate, radiation levels and
data bandwidth.

The RD53 collaboration, established in 2013 between the ATLAS and CMS experiments, has
addressed the design challenges of next generation hybrid pixel readout chips by proposing the use of
an advanced submicron technology, such as 65 nm CMOS. RD53 has focused on different aspects:
radiation tolerance, analog front-ends, Intellectual Property (IP) block library, I/O interfaces, global
floorplan, integration and simulation [1]. A full scale chip called RD53A has recently been designed
and submitted by the collaboration, with the goal of demonstrating in a large format integrated circuit
the suitability of the proposed technology. A block diagram of the chip is shown in figure 1 and the
main specifications are listed in the following:

• 20×11.8mm2 chip size, with a pixel size of 2500 µm2;

• radiation tolerance up to 500Mrad total ionizing dose;

• stable low threshold operation (600 e− minimum);

• very high hit and trigger rate capabilities (up to 3GHz/cm2 and 1MHz, respectively);

• hit loss below 1%;

• high speed readout (up to 5Gbit/s);

• operation with serial powering.

– 1 –
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Figure 1. Functional floorplan of the RD53A pixel readout chip demonstrator.

The complexity of the systemand the challenging specifications are such that a traditional design
and verification approach, based only on directed tests and targeted architectural simulations, is
no longer sufficient. Digital architecture optimization and functional verification are among the
greatest challenges of the RD53A demonstrator design. To this purpose, we developed a simulation
and verification platform called VEPIX53 (Verification Environment for RD53 PIXel chips) [2]
addressing both these issues, which is the focus of this paper. The verification platform supports
also the definition of ad-hoc directed tests, which are still useful to address specific features and
blocks, in a trade-off between comprehensive verification and time constraints.

VEPIX53 is based on consolidated high level tools and methodologies coming from the
industry domain: the hardware description and verification language SystemVerilog (SV), which
has been itself defined as a Verilog extension [3]; and the Universal Verification Methodology
(UVM) library [4]. The former provides both enhancements for the description of the Design
Under Test (DUT) at different levels of abstraction and advanced verification features; the latter
is based on a documented set of standard classes for the building blocks of the environment.
VEPIX53 provides a set of dynamic components that are reused in order to support the design
flow at different steps, from initial architectural modeling to the verification of the final design,
providing i) the generation of different types of input pixel hits including Monte Carlo physics data,
ii) the possibility of simulating designs under test (DUTs) at different levels of abstraction and
iii) automated verification features e.g. pixel chip output prediction, conformity checks, statistics
and coverage collection and configurable reporting.

This paper presents three ways we have profited from the environment for different purposes:
evaluating the performance of digital architectures, addressing their optimization for the implemen-
tation on the RD53A chip and performing extensive functional verification. It should be mentioned
that the environment was also used for performing power profiling in order to verify serial powering
operation [6]. This paper is organized as follows: section 2 describes the VEPIX53 simulation
environment and its most relevant verification components. Section 3 reports on the initial architec-
ture exploration, which was carried out with VEPIX53 simulations at behavioral level and RTL and
was finalized (section 4) with the optimization of different pixel chip architectures implemented in
RD53A. Section 5 gives an overview of how VEPIX53 has been reused for the RD53A functional
verification, including the verification plan, the testbench infrastructure and the test regressions.
Finally, section 6 concludes the work and discusses further developments.

– 2 –
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Figure 2. Block diagram of the VEPIX53 testbench configured for architecture simulation.

2 Description of the VEPIX53 framework

The VEPIX53 framework, represented in figure 2, consists of a top level testbench which contains
the DUT (wrapped in a top level harness module) and different UVM verification components
(UVCs); these are instantiated and configured according to the test scenario, which is specified by
the different tests that are run (defined in the test library). The framework has been developed based
on the UVM version 1.1, supported by default in the simulation tool adopted. UVCs communicate
between each other using transaction class objects. Most of them are associated to pixel chip
interfaces and can be configured either as active or passive, depending on the interfaces being
related to the input or the output of the chip, respectively. An interface UVC generally contains
sequencer and driver components that are in charge of generating the input stimuli to the DUT:
this takes place in a layered fashion through sequences of transactions, specified in the tests, that
are translated into physical signals. There are also monitor and subscriber components that work
the other way around, i.e. they create transactions according to the physical signals in the interface
for checks, coverage collection and forwarding to other parts of the testbench. When the interface
UVC is configured as active, all the mentioned components are instantiated inside it; in case of a
passive components, instead, the stimuli generation is missing. The interface UVCs are shared and
versioned in a generic repository (not RD53A-specific), as they are reused for different purposes in
multiple testbenches. Along with the interface UVCs there are module UVCs, which are specific to
a pixel chip and contain predictors and checkers associated to single building blocks.

Here follows a description of the VEPIX53 UVCs:

• the hit UVC, associated to the hit interface, has the main function of generating the charge
signals associated to particles crossing the detector, and injecting them into the pixel matrix.
The input hits can be either generated in a constrained-random fashion, according to a set of
pre-defined classes of clustered hits, or read from physics data in ROOT format produced by
Monte Carlo pixel detector simulations. It is also possible to mix the externally sourced hit
data with the internally generated ones;

– 3 –
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• the trigger UVC, associated to the trigger interface, is in charge of generating the external
trigger signal of the pixel array according to configurable trigger rate and latency;

• the virtual sequencer controls the coordinated generation of hit and trigger transactions;

• the output UVC, associated to the pixel array output interface, takes care of producing data
transactions by monitoring the data at the output of the pixel array;

• the pixel array analysis UVC is the module UVC associated to the whole pixel array. It
contains a reference model that predicts the pixel array output according to the monitored hit
and trigger transactions (it is, in practice, a transaction level description of the pixel array
used as a golden reference for the DUT); a scoreboard that checks for conformity between
predicted and actual output; additional components, used for performance assessment, that
monitor internal signals of the pixel array and keep track of its status. The main features of
the pixel array analysis UVC are generic and can be seamlessly used up to full chip top-level
post-layout simulations. Monitoring of the internal signals for detailed performance studies,
requires instead to modify signal probing performed at top-level, as the hierarchical paths are
modified by synthesis;

• the commandUVC and theAurora UVC are additionally defined for the functional verification
of the pixel chip, as it will be explained in more detail in section 5: the command UVC is
in charge of generating the input command stream of the chip in agreement with a dedicated
serial protocol and the Aurora UVC monitors data transactions at the pixel chip output,
encoded with the Xilinx Aurora protocol [7].

With reference to theMonte Carlo data, for the simulations described in this paper we have used
CMS ROOT trees produced by a workflow based on the CMS data analysis framework (CMSSW).
These data sets contain events related to layer 0 of the CMS pixel detector with different pixel
sizes (50×50 or 25×100 µm2, where the size is expressed as z×φ with reference to the cylindrical
coordinate scheme of the pixel detector), sensor thickness of 150 µm, a digitizer threshold of
1500 e− and a pileup of 140. Subsets have been extracted related to modules at the center and edges
of the barrel, i.e. with particles hitting the sensor at different angles, corresponding to different
cluster sizes.

3 Architecture study and optimization

The design requirements on pixel size, hit efficiency (with the defined hit and trigger rates and
trigger latency) and low power demand a dedicated optimization of the digital pixel array logic.
A relevant gain in terms of storage resources can be obtained when the information associated to
multiple hits from the same physical cluster is stored locally: an efficient architectural solution
that can be implemented is to group pixels in so called pixel regions, which share buffering logic,
leading to compact circuitry and low power. Such an approach is already followed by the FE-I4 and
Timepix3/Velopix chips [8–10].

An architecture exploration was therefore conducted, focused on investigating the optimal
sharing strategy of digital logic in pixel chip arrays: how many pixels should share storage logic

– 4 –
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Figure 3. Block diagrams of latency buffering architectures for pixel regions: (a) CBA; (b) DBA (memory
elements are highlighted in yellow) [2].

within a region, in what pattern, with which internal organization, and how region boundaries are
handled. The optimization depends on cluster size distributions, which in turn depend on sensor
type and location in the detector, and on physics input. Initial statistical and analytical studies based
on cluster shapes [11] had shown that the most convenient pixel region configuration to adopt is
square, with either 2×2 or 4×4 pixels.

3.1 Behavioral level study

A parameterized SystemVerilog pixel chip model at behavioral level was realized [12], with two dif-
ferent buffering schemes to choose from: a centralized one (Central Buffering Architecture, CBA),
featuring a single shared hit packet buffer, and a distributed one (Distributed Buffer Architecture,
DBA), containing a shared hit time buffer composed of latency counters and independent Time over
Threshold (ToT) buffers in each pixel unit cell. Both schemes are shown in figure 3. The behavior
of the analog front-end (FE) in the architectures is abstracted with a charge converter module, which
converts the input hit charge into a discriminator output pulse; the ToT is then determined with a
counter.

The CBA and DBA behavioral architectures were studied by running VEPIX53 simulations for
different pixel region sizes and number of buffer locations. Two performance metrics were defined:
buffer occupancy and hit loss, which is due to either the dead time of the single pixel/pixel region
or the overflow of the latency buffer. Simulation results (figure 4) showed an increasing dead time
for the CBA architecture as the region gets bigger in size; the hit loss rate is, instead, constant with
respect to the pixel region size for the DBA. The buffer occupancy, on the other hand, was used for
building the occupancy histogram: from this quantity it is possible to carry out the buffer overflow
probability as a function of the number of locations and subsequently determine the optimal buffer
size that keeps such a probability below a given design value, which was set to 0.1%. At this stage
of the architecture evaluation the DBA was seen to be preferable in terms of dead time losses.

3.2 RTL study

Both the architectures were prototyped on small scale chips featuring design improvements sug-
gested by the initial study at behavioral level. In particular, the DBA was implemented with a 2×2
pixel region configuration in the FE65-P2 prototype [13], featuring a buffer depth of 7 both in the
local ToT memory and in the shared hit time memory. The CBA, instead, was implemented in the
CHIPIX65 prototype [14] using 4×4 pixel regions. The write logic is such that the ToT is counted
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Figure 4. Pixel hit loss due to dead time as a function of pixel region size for the non-optimized CBA and
DBA architectures at behavioral level [12].

within a fixed dead time, which is equal to the time needed to compute the longest possible value;
the end of the processing is flagged to a region digital writer module, which saves into the shared
buffer a reduced information packet containing timestamp, a binary hit map of every pixel in the
region, and up to six pixel ToTs.

VEPIX53 simulations were run with the two RTL architectures in order to assess their compli-
ance to the RD53A chip specifications. The comparison was conducted with a DUT consisting of a
4×64 pixel multicolumn array and with respect to several different parameters, such as: i) different
analog FE behavioral models, with multiple charge-ToT relations and ToT counting clock frequen-
cies [5]; ii) different numbers of memory locations; iii) input hits featuring a 3GHz/cm2 rate with
different charge distributions, produced by mixing CMSMonte Carlo data with internally generated
clusters. Single pixel hit loss was used as a performance metric. The results, some of which were
presented in [5], are summarized in table 1, including pixel cell area occupation of the synthesized
architectures. In terms of dead time the CBA shows more losses due to the implemented fixed
buffer writing-time, when a standard analog FE running at 40MHz bunch crossing clock is used; on
the contrary, the digital logic of the DBA does not introduce any additional dead time (the range of
results is only due to multiple charge-to-ToT conversion functions used in the analog FE behavioral
models). From the buffering resources point of view, instead, the CBA shows better results thanks
to the reduction of the number of fired pixels stored in each region packet. This leads to reduced
area, which makes it possible both to fit up to 16 memory locations (corresponding to negligible
hit loss due to buffer overflow) and leave room for further optimization of the architecture by in-
serting additional features. On the contrary, the DBA requires more area for comparable buffering
performance.

4 Architecture optimization into RD53A

Given the complementary advantages and disadvantages of the two architectures, both the CBA and
DBA have been integrated into the RD53A chip. The limitations of both architectures have been
addressed: limited area (and therefore increase in buffer losses) for the DBA; power consumption
and dead time losses for the CBA. A performance comparison of the architectures has then been
performed by means of VEPIX53 simulations.

– 6 –
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Table 1. Comparative table between centralized and distributed buffering architectures at RTL.
Metrics Centralized Buffering Architecture Distributed Buffering Architecture

Dead time 40MHz FE 128MHz FE 40MHz FE 128MHz FE
(single pixel hit loss) 2.44 0.69 0.58–2.67 0.33–0.71
Buffer 14 locations: 0.46 7 locations: 0.57–0.81

Hit loss (pixel region cluster loss) 15 locations: 0.16 8 locations: 0.16–0.21
(%) 16 locations: 0.06 9 locations: 0.04–0.07

Limit on number of ToTs 0.29 –
(only ToT info loss) (6 TOTs saved out of 16) (all ToTs stored)

Area µm2/pixel 761 (14 locations) 1039 (7 locations)
(only digital logic) 786 (16 locations) 1165 (9 locations) (estimated)

Table 2. Buffering performance improvement for elongated pixel region size for multiple pixel sizes and
positions in the barrel of the detector (buffer depth set to 8).

Pixel size Portion of Hit loss (%)
(µm2) barrel 2×2 pixel region 4×1 pixel region
50×50 center 0.76 0.57

edges 1.87 0.60
25×100 center 0.78 0.44

edges 2.20 0.54

The optimization in the DBA has been aimed to reduce area occupation and buffer losses. It
should be underlined that the area density has been calculated as the percentage of the total area
available for the digital logic after the integration with a specific analog FE. The FE65-P2 prototype
has 7 buffer locations per pixel region, with an area density after place and route of almost 90%,
which does not make it possible to fit additional logic. As seen in table 1, a buffer depth of 7
is not sufficient for keeping the overall hit losses below 1%. This issue has been addressed by
implementing the ToT memories using latches instead of flip flops, leading to a significant decrease
of 10% in area utilization. An additional memory location could therefore be fitted, still keeping
area density at ∼82% depending on the analog FE. The pixel region shape was optimized as well:
simulations performed by means of VEPIX53 with Monte Carlo data, using the behavioral pixel
chip model described in section 3.1, have shown that an elongated pixel region shape is to be
preferred with respect to a square one, contrarily to what was found from the purely analytical
assumptions of [11]. Simulation results are compared in table 2 for a 2×2 and 4×1 pixel region.
Therefore, in the RD53A implementation of the DBA architecture the pixel region shape has been
changed to 4×1.

On the CBA side, the optimization has made it possible to overcome the pixel fixed dead time
issue and to increase the number of ToT values per event for each pixel region. The implemented
pixel region architecture features the insertion of an intermediate level of buffering beforemoving the
ToT values to the shared regionmemory. This section, called staging buffer, contains a 3-deep buffer
(latch-implemented) to store the pixel region hit map and a pixel region synchronization counter is
used to synchronize the access of each pixel to the shared memory, instead of the previous fixed
dead time scheme: when the counter reaches the waiting time, the hit map is propagated to a ToT
compressor module together with the ToT values; up to 8 ToTs are then stored in the shared buffer.

– 7 –
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Table 3. Comparison between CBA and DBA architectures in RD53A.
Metrics DBA CBA

Sources Center Edges Center Edges
Dead time (analog) 0.73 0.99 0.73 0.99

Hit loss (%) Dead time (digital) 0.18 0.19 0.36 0.37
Latency buffer 0.10 0.10 0.09 0.13

Total hit loss (single pixel) 1.01 1.28 1.18 1.49
Limit on number of ToTs (only ToT info) - 0.13 0.22

Area Occupation Lin. FE Diff. FE Sync. FE
(%) 88 82 87

The comparison between the optimizedRD53A architectures for the digitalmatrix is reported in
table 3, including hit loss, achieved through RTL simulation (within VEPIX53) and area occupation
after place and route.

The hierarchical block simulated for the DBA and CBA comparison is an 8-pixel wide column
with full chip height, i.e. a total of 8×192 pixels, corresponding to a so-called pixel core column in
the RD53A chip. The common simulation parameters are the following:

• mixed Monte Carlo and internally generated hits (pixel size of 50×50 for center of barrel,
25×100 for edges of barrel) to achieve the target specification of 3GHz/cm2. Internally
generated hits feature the same pixel charge distribution and similar cluster shapes as extracted
from the Monte Carlo data.

• simulation run for 500,000 bunch crossing cycles, i.e. 12.5ms;

• 12.5 µs trigger latency and 1MHz trigger rate.

RD53A integrates three different analog FE flavors called Linear, Differential and Synchronous; a
unique analog FE behavioral model has been described for the simulations, featuring an improved
charge-ToT relation. The slope of the conversion function (not necessarily linear for all FEs) is
controlled according to the bias and is normally defined as a tradeoff between efficiency, charge
resolution and dynamic range. Two points have been chosen for the linear approximation for the
threshold to correspond to a unitary ToT and for pileup inefficiency to be in the order of 1%. In
particular, the second point is defined such that a Minimum Ionizing Particle (MIP) traversing
perpendicularly a 50 µm×50 µm×150 µm sensor (12 ke−) corresponds to a half-range ToT value,
in order to improve resolution without excessively compromising losses and dynamic range. The
conversion function is represented in figure 5.

It can be noticed that no saturation of the conversion function is present, emulating the actual
behavior of FEs developed for RD53A which do not feature any discharge mechanism in case of
overflow. This clearly reflects to the dead time cycles needed for the ToT conversion (even if the
value stored by the digital logic will saturate at a ToT of 15, for a 4-bit measurement). It should
be highlighted that the choice of the final conversion function is not meant to be absolute and it
will depend on future optimizations of analog FE and digital architecture as well as on updated
simulations, including position on the detector and/or needs of the experiments. No fast speed
analog FE models have been taken into account, as they do not provide further insight on the digital
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Figure 5. Charge to ToT conversion function for the RD53A analog FE behavioral model.

architectures and have not been integrated in the whole pixel chip matrix. A faster ToT counting
leads to a reduction on dead time losses, as also seen before.

In terms of inefficiency results, the DBA and CBA architectures integrated in RD53A feature
comparable losses, which are close to specifications if the charge-to-ToT curve is chosen to limit
dead time losses. The latter are higher at the edges of the barrel unless a different conversion
function is used, since Monte Carlo data show in average a higher charge per pixel (for the pixel
size: 25×100). The digital logic has also an impact on dead time, above all in the case of the CBA
(2 clock cycles versus 1 clock cycle of the DBA). Latency buffer overflow achieves an order of
magnitude lower losses than the analog part. Moreover, it can be noticed that the DBA architecture
profits from the implemented elongated pixel region shape, as latency losses are the same in the
different portions of the detector. Inefficiency is dominated by dead time at the high hit rates
of operation and that a certain charge-ToT conversion function may need to be chosen, possibly
penalizing physics considerations (e.g position and charge resolution). To this end, the adoption of
a faster ToT counting is a valuable solution, which needs to be evaluated. With respect to area, the
DBA and CBA architectures integrated in the RD53A feature rather similar density, with the main
difference being the analog FE size (Linear: 35 µm × 35 µm, Differential: 34.71 µm × 32.44 µm,
Synchronous: 35 µm × 33.2 µm).

5 Functional verification

The VEPIX53 testbench for verifying the RD53A demonstrator reuses and extends the environment
implemented for the architecture study, which was dedicated to the pixel array logic only. When
taking into account the full chip, as shown in the digital functional block diagram of figure 6, there
are additional building blocks to be verified: the array includes also pixel configuration, calibration
injection pulse generation circuitry, and an additional HitOR channel, while the chip periphery
contains control and readout logic and global configuration registers.

Different interfaces can be identified, apart from the one related to incoming particle hits. The
command interface is associated to the serial 160Mbps input stream of the chip, which follows a

– 9 –
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Figure 6. Block diagram of the VEPIX53 testbench configured for RD53A functional verification.

dedicated, DC-balanced custom protocol that encodes clock, trigger and other commands on a single
link and features built-in framing and error detection. A corresponding command UVC has been
implemented. Its main function is to generate, drive and monitor all the possible command types,
among which are synchronization pulse, calibration pulse and read/write configuration registers;
moreover, it extends the functionality of the pre-existing trigger UVC as the driver encodes incoming
trigger transactions into high priority input commands to the chip. The chip output encodes pixel
data, configuration data and messages on 1 to 4 serial links (programmable) at 1.28Gbps nominal
bandwidth using the Xilinx Aurora 64b/66b protocol. The associated Aurora UVC monitors the
chip output decoded by a Xilinx IP receiver module and builds corresponding hit transactions or
monitoring data (configuration or messages) transactions. The additional HitOR output of the chip
is monitored as well with a dedicated UVM component. From the module UVC point of view, a
simple monitor and scoreboard have been implemented for automatic verification of the RD53A
command decoder module and its error correction functions.

Due to short time to submission constraints a fully metric-driven verification approach was
not pursued for the RD53A demonstrator. For the verification of crucial functions of the pixel chip
(such as the triggered hit data path) it has been possible to reuse and extend the constrained-random
tests initially defined for the architecture exploration. Concerning the functions related to the chip
periphery, instead, not all the verifications components have been yet implemented, notably a UVM
register model which could enable an automated verification of global and pixel configuration.
These functions have then been verified using several traditional directed tests, which were, anyway,
implemented using custom sequences run by the command UVC. It also needs to be underlined that
radiation effects, such as Single Event Upset (SEU) injection, were not included in simulations as
the UVCs do not yet support this feature. For what concerns the verification of the analog domain,
UVM tests were run for producing output Value Change Dump (VCD) files which were used as input
stimuli for fully analog simulations at schematic or post-place and route level of analog building
blocks. This has allowed the definition of a set of meaningful digital stimuli for the analog block
and verification of the interface between the analog and digital domains. For example, connectivity
issues and incorrect default configuration of such analog blocks have been highlighted thanks to
this approach.

– 10 –
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Figure 7. Cadence eManager summary of RD53A gate level test regression.

Both constrained-random and directed tests were written with respect to a detailed verification
plan document which lists in a prioritized fashion all the main functions and test cases to be verified,
from the single building block to the full chip level. The tests were first run at RTL, both for single
pixel core columns and full pixel array, to find possible bugs in the logic. Then full chip test
regressions containing a set of the most relevant functional tests (e.g. processing of random hits and
triggers, digital injections, read back of configuration data) were run at gate level in order to verify
the chip including timing back-annotation for three different simulation corners (figure 7). For the
final debug of the chip several design iterations needed to be carried out, with fixes applied both to
functional bugs and timing issues not covered by static timing analysis (e.g. reset strategy, signals
crossing asynchronous clock domains, etc.). Test regressions were repeated at both RTL and gate
level at each iteration until receiving an all-pass result.

6 Conclusion

A UVM simulation and verification environment has been developed by the RD53 Collaboration.
The environment has made it possible over the years to perform incremental architecture studies of
critical processing and buffering sections of hybrid pixel readout chip prototypes, as well as their
functional verification.

From the architecture exploration side, the collected simulationmetrics have helped understand-
ing the amount of buffering needed for processing efficiently particle hits at the High Luminosity
LHC operating conditions, as well as how to optimize different configurations for meeting the
requirements of the first large scale prototype. The UVM infrastructure so far implemented can
now easily be enhanced for pursuing the architecture optimization for the final ATLAS and CMS
pixel readout chips, whose design will be done in 2018.
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As for what concerns functional verification, the same testbench components have been reused
and expanded, profiting from the UVM library. The constrained-random tests simulating operating
conditions have been crucial for finding and fixing bugs in the RD53A chip design, especially in the
particle hits data path; such a result would have been very hard to get using a fully directed testing
approach. Time to submission constraints did not allow to finalize the implementation of all the
needed UVM components and constrained-random tests, so a considerable amount of directed ones
had to be included in the verification plan. However, due to the fact that RD53A is a prototype and
not a production chip, the extensive verification of functions with less priority could be overlooked.
This will not, by any means, be the case when verifying the final ATLAS and CMS chips, so it will
be very important to proceed with the testbench development. In particular, a future development
that includes SEU injection for radiation tolerance assessment will be mandatory.
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