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Abstract: We discuss the connection between Weyl2 supergravity and superstrings and

further discuss holography between 4-dimensional, N = 4 superconformal Weyl2 supergrav-

ity and N = 8, higher spin-four theory on AdS5. The Weyl2 plus Einstein supergravity

theory is a special kind of a bimetric gravity theory and consists of a massless graviton

multiplet plus an additional massive spin-two supermultiplet. Here, we argue that the ad-

ditional spin-two field and its superpartners originate from massive excitations in the open

string sector; just like the N = 4 super Yang-Mills gauge fields, they are localized on the

world volume of D3-branes. The ghost structure of the Weyl action should be considered as

an artifact of the truncation of the infinitely many higher derivative terms underlying the

massive spin 2 action. In field theory, N = 4 Weyl2 supergravity exhibits superconformal

invariance in the limit of vanishing Planck mass. In string theory the additional spin-two

fields become massless in the tensionless limit. Therefore low string scale scenarios with

large extra dimensions provide (almost) superconformal field theories with almost mass-

less open string spin-two fields. The full N = 4 scalar potential including the Yang-Mills

matter multiplets is presented and the supersymmetric vacua of Einstein Supergravity are

shown, as expected, to be vacua of massive Weyl supergravity. Other vacua are expected
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to exist which are not vacua of Einstein supergravity. Finally, we identify certain spin-four

operators on the 4-dimensional boundary theory that could be the holographic duals of

spin-four fields in the bulk.
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1 Introduction

It is well known that the effective action of string theory is given in terms Einstein gravity,

coupled to matter fields plus in finite series of higher derivative terms, which in particular

contain an infinite series of higher curvature terms, which are suppressed by appropriate

powers of the string scale Ms = (α′)−1. In the so-called field theory limit of sending α′ → 0,

all higher string modes decouple and all higher derivative interactions disappear, and the

effective theory is just given by the Einstein-Yang-Mills-theory. Particular string examples

of those theories are brane-world models, where the Yang-Mills degrees of freedom are

localized on the world-volumes of stack of D-branes, and where the gravitational fields,

namely the metric field gµν and its partners, correspond to closed strings, which propagate
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within the entire ten-dimensional bulk space. Here will will consider the simplest case,

namely a stack of N D3-branes, i.e. the open string Yang-Mills sector is confined on the

4D world-volume of the D3-branes.

Now, when considering also higher curvature terms up to four derivatives [1–10], it is

again well known that the R2 action and the so-called Weyl2 action propagate additional

degrees of freedom: for R2 there is an additional scalar mode and for Weyl2 there exist

an additional spin two field, denoted by wµν . In this paper we will discuss the physics

connected to the Weyl2 action and to spin-two field wµν and in particular the question

how do they arise in string theory. Since the theory contains two spin-two metric fields,

namely gµν and wµν , it is a particular example of a bimetric gravity theory [11–15]. As

we will discuss the second spin-two mode wµν is not contained in standard closed string

gravitational sector, but it corresponds to the first massive open string excitations, namely

to the massive excitations of the open string Yang-Mills gauge fields. Therefore these

massive fields wµν are also localized on the world volume of D3-branes, and the effective

Weyl2 is an entirely four-dimensional action on the world-volume of the D3-branes. As we

will discuss, performing a particular scaling limit, and one is left with an effective 4D theory

with one massless spin-two field plus one (almost) massless spin-two field, namely massless

N = 4 super Yang-Mills gauge theory plus (almost) massless N = 4 super-Weyl2 theory,

whose spectrum was recently constructed in [16]. Hence in this limit the theory becomes

(almost) superconformal invariant. Note that superconformal Weyl2 gravity [17–21], only

exists for numbers of supersymmetries N ≤ 4, just like superconformal Yang-Mills gauge

theories also only exist for N ≤ 4 [22]. This fact confirms our observation that Weyl2

gravity is not originating entirely from closed strings, but is an effective open string theory,

localized on D3-branes.

These theories are also of phenomenological interest, namely in the context of the low

string scale scenario together with large extra dimensions, which allows for unique predic-

tions for the production of the massive open string excitations at particle physics collider

machines [23]. Namely, following the discussion of this paper, the low string scale sce-

nario with light, open string spin-two excitations is a (almost) superconformally invariant

field theory.

As we will argue in the last part of the paper, the 4D (almost) super-conformal invariant

Weyl supergravity theory allows for an holographic description in terms of closed string

modes in an AdS5 bulk theory. In contrast to the standard AdS/CFT correspondence

between massless open string Yang-Mills gauge theory in the 4D boundary and supergravity

in the 5D bulk, the holographic description of the (almost) massless spin-two fields on the

boundary is given by (almost) massless spin-four fields in the higher-dimensional bulk.

The structure of the paper is as follows: in section 2 we describe Weyl supergravity

coupled to super Yang-Mills theory. In section 3, we present a string theory realization of

the theory and in section 4 we present some of its holographic aspects. Finally, section 5

contains our conclusions.

– 2 –



J
H
E
P
0
5
(
2
0
1
9
)
1
0
0

2 Field theory: (super)-Yang-Mills plus (super)-Weyl gravity

2.1 Bosonic case

The most general formulation of Einstein plus curvature-square gravity is described by an

action containing the standard Einstein term plus the following two terms being second

order in the curvature tensor:1

S =

∫
M
d4x
√
−g
(
M2
PR+ c1WµνρσW

µνρσ + c2R
2
)
. (2.1)

More details can be e.g. found in [24, 25]. The first term with Wµνρσ being the Weyl tensor

Wµνρσ = Rµνρσ + gµ[σRρ]ν + gν[ρRσ]µ +
R

3
gµ[ρgσ]ν (2.2)

is conformally invariant, whereas the R2 term is only scale invariant. Indeed, the conformal

transformation

gµν → ĝµν = Ω2gµν , (2.3)

leaves the Weyl tensor inert

Ŵµ
νρσ = Wµ

νρσ, (2.4)

whereas the curvature scalar transforms as

R̂ = Ω−2R− 6Ω−3gµν∇µ∇νΩ. (2.5)

The two couplings ci in (2.1) are dimensionless. As discussed in [24], the R2 action only

propagates a scalar mode in flat four-dimensional space-time R1,3. Since we are in particular

interested in spin-two fields and not to the additional scalar mode in the string spectrum,

the R2 action is not relevant for us, and we will set the coupling c2 = 0. However, the

action (2.1) with c2 = 0 is not conformal invariant since the Einstein-term is not invariant

under conformal transformations. Therefore the Einstein-term can be regarded as the mass

term in this theory, i.e. a mass deformation, which explicitly breaks conformal invariance.

The propagator of the Einstein-Weyl2 theory [1, 2] described by

S =

∫
M
d4x
√
−g
(
M2
PR+

1

2g2
W

WµνρσW
µνρσ

)
, (2.6)

is given by the following expression

∆µνρσ = ∆(k)Pµνρσ, (2.7)

where

∆(k) =
g2
W

k2(k2 − g2
WM

2
P )
, (2.8)

1There are two more linear combination of quadratic curvature terms, namely the Gauss-Bonnet and

the Hirzebruch–Pontryagin action. However in four-dimensions these are total derivatives and hence we

neglect them in the following. Similar considerations exist also in the supersymmetric case [26–29].
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and

Pµνρσ =
1

2

(
θµρθνσ + θµσθνρ

)
− 1

3
θµνθρσ , (2.9)

with

θµν = ηµν −
kµkν
k2

(2.10)

the usual transverse vector projection operator. Note that the propagator (2.7) for M2
P = 0

(i.e., pure Weyl2 theory) exhibits the conformal 1/k4 behaviour. When the Einstein terms

is present, we can equivalently write ∆(k) as

∆(k) = − 1

M2
P

1

k2
+

1

M2
P

1

k2 − g2
WM

2
P

, (2.11)

where the massless helicity-±2 graviton is easily identified in the first term of (2.11). More-

over, we see that there is also a massive spin-2 state (the second term in (2.11)) with mass

given by the pole at k2 = g2
WM

2
P which however has opposite residue to the usual massles

graviton, and therefore describes a ghost spin-2 state. This shows that the theory contains

as propagating degrees the standard, massless spin-two graviton gµν plus an additional

massive spin-two field wµν .

Actually, an alternative way to see this is to write down a particular bimetric gravity

theory with two spin-two fields gµν and wµν with the following two-derivative action [30]:

S =

∫
M
d4x
√
−g
(
M2
PR(g) + 2MPGµν(g)wµν −M2

W (wµνwµν − aw2)
)
. (2.12)

Here Gµν = Rµν −1/2Rgµν is the Einstein-tensor constructed from the metric gµν and the

last term is a mass term for the second metric wµν . In general the action propagates also

a massive scalar mode. However setting the parameter a = 1, the scalar mode disappears

and the action contains a massless spin-two field gµν plus a massive spin-two field wµν .

Note that the two-derivative kinetic term for wµν is hidden in the coupling Gµν(g)wµν ,

which can be seen by performing two partial integrations on this term. However after the

partial integrations the kinetic term for wµν has the wrong sign, i.e. wµν is a ghost-like

field. Now using the equation of motion

δS

δwµν
⇒ wµν =

MP

M2
W

(
Rµν(g)− 1

6
gµνR

)
, (2.13)

and plugging the solution for wµν back into the action (2.12), one can show [31] that the

resulting action is (classically) equivalent to the four-derivative W 2 action in eq. (2.6) by

using the fact that

WµνρσW
µνρσ = GB + 2

(
RµνR

µν − 1

3
R2

)
, (2.14)

where GB = RµνρσR
µνρσ−4RµνR

µν +R2 is the Gauss-Bonnet term. The bimetric gravity

action (2.12) for wµν can be made ghost-free by adding an infinite number of terms with a
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finite number of parameters to it. As shown [31], this procedure is equivalent to adding to

the W 2 action an infinite number of higher derivative terms, which resemble to additional

parameters of the ghost-free bimetric gravity theory. In other words, the ghost nature of

the massive spin-2 excitation is an artifact of the higher derivative truncation to fourth

order. En passant, let us mention that for a 6= 1, the action (2.12) is (classically) equivalent

to the action (2.1) with

c1 =
1

2g2
W

, c2 =
a− 1

4a− 1

1

3g2
W

. (2.15)

Therefore, only for a = 1 the scalar mode associated to the R2 term is absent.

2.2 Supersymmetric case

The above method can also be implemented in a supersymmetric setup [26–28]. For this,

we need to recall that the graviton hµν sits in a real vector superfield Φµ with expansion

(in Wess-Zumino gauge)

Φµ = θσνθ(hµν +Aµν) +
1

2
θ

2
θ2Aµ + · · · , (2.16)

where Aµν and Aµ are the antisymmetric two-form and one-form fields of new-minimal

supergravity, respectively. We can then define the real linear superfield Eµ as

Eµ =
1

2
εµνρσDσνD∂ρΦσ, (2.17)

which contains the Einstein term

Eµ = θσνθ

(
Gµν + ∂λF

λνµ +
1

2
ενµρσFρσ

)
+ · · · , (2.18)

with Fµνρ = ∂µAνρ + ∂ρAµν + ∂νAρµ and Fµν = ∂µAν − ∂νAµ the field strengths of the

auxiliaries Aµν and Aµ, respectively. We need also to define the Riemann multiplet Rµν
with components expansion

Rµν =
1

2
ψµν +

i

2
θ2σρ∂ρψµν −

i

2
θFµν −

i

4
σκλθ(Rκλµν + ∂νFµκλ − ∂µFνκλ). (2.19)

The Weyl tensor Wµνρσ is contained then in the Weyl multiplet Wµν defined as

Wµν =
1

8

(
σκλσµν +

1

3
σµνσ

κλ

)
Rκλ, (2.20)

as can be seen from its components expansion

Wµν =
1

16

(
σκλσµν +

1

3
σµνσ

κλ

)
ψκλ − iσκλθWκλµν + · · · . (2.21)

In terms of the real vector superfield Φµ, the Riemann and Weyl multiplets can be written

(in spinor notation),

Rµνα = −1

8
D

2
Dα (∂µΦν − ∂νΦµ) , Wαβγ =

1

16
D

2
D(α∂

α̇
βΦγ)α̇. (2.22)
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The action (2.1) (with c2 = 0) is contained in the bosonic part of the supersymmetric

Lagrangian (with MP = 1 here)

L =

∫
d4θΦµE

µ + 8c1Re

∫
d2θWµνW

µν . (2.23)

The first term contains the Einstein term and the second the Weyl2. A supersymmetric

generalization of (2.14) exists and it is written as

WµνW
µν = SGB − 1

8
D

2
(EµE

µ) +
1

3
W 2, (2.24)

where

W =
1

2
σµDEµ (2.25)

and SBG is the supersymmetric counterpart of the usual Gauss-Bonnet term and it is

such that in the real and imaginary parts of its highest θ2 component are the Hirzebruch-

Pontryagin and Gauss-Bonnet terms, respectively. We may then write (2.24) as

L =

∫
d4θ (ΦµE

µ − 4c1EµE
µ) +

8

3
c1Re

∫
d2θW 2. (2.26)

We may linearize in Eµ and W the above Lagrangian by introducing a real vector superfield

Vµ and a superfield H so that

L =

∫
d4θ

(
ΦµE

µ + 2VµE
µ +

1

4c1
VµV

µ

)
− Re

∫
d2θ

(
2WD

2
H +

3

8c1
(D

2
H)2

)
. (2.27)

Then, after performing first the shift Φµ → Φµ−Vµ and after the conformal transformation

Φµ → Φµ + DσµH + DσµH, we get that the supersymmetric action (2.26) is classically

equivalent to

L =

∫
d4θΦµE

µ −
∫
d2θ

(
VµE

µ − 1

4c1
VµV

µ +
3

8
L2

)
−Re

∫
d2θ

(
2WD

2
H +

3

8c1
(D

2
H)2

)
, (2.28)

where L = DD
2
H−DD2H [26–28]. From the above Lagrangian we see that the first term

in the first line describes a physical massless (2, 3
2) graviton multiplet (Φµ), whereas the

second term in the first line describes a massive (2, 3
2 ,

3
2 , 1) multiplet (Vµ) with mass square

m2 = 1/4c1 [32, 33]. The latter multiplet is not physical as its Lagrangian term opposite

sign from the massless multiplet and therefore it is a ghost massive spin-2 multiplet.

2.3 Including gauge fields

Now, we will also include a four-dimensional bosonic Yang-Mills U(N) gauge theory, which

is coupled to Einstein gravity. Then the action up to four orders in derivatives has the

following form:

S =

∫
d4x
√
−g
(
− 1

4g2
YM

F aµνF
aµν +

1

2g2
W

WµνρσW
µνρσ +M2

PR

)
. (2.29)
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F aµν is the standard Yang-Mills field strength and g2
W and g2

YM are dimensionless couplings.

The Yang-Mills term and the Weyl2-term in the action possess (classical) conformal invari-

ance, whereas again the Einstein-term can be regarded as the mass term in this theory.

Let us recall the propagating modes corresponding to this action. Specifically, there

are three kinds of propagating modes [1, 2, 32–35]:

(i) A massless helicity-±2 graviton gµν . This is the standard massless spin-two graviton.

(ii) Massless U(N) gauge bosons Aaµ.

(iii) A massive spin-two particle wµν with mass

MW = gWMP . (2.30)

It is related to the Weyl2 term in the action. In fact as mentioned, this massive spin

two particle is a ghost, destroying unitarity, but we will neglect this problem in the

following and we will comment on it only in the conclusions. We will call this part

of the spectrum the non-standard sector of the theory.

The Einstein plus (Weyl)2 gravity theory contains seven propagating degrees of free-

dom. As already explained, this part of the theory can be considered as a bimetric theory

of gravity with two spin-two fields, namely one the standard massless graviton gµν plus

the non-standard massive spin-two field wµν . As we will discuss in the following, in string

theory the graviton gµν originates from the closed string sector and lives in the bulk space,

whereas the spin-two field wµν as well as the Yang-Mills gauge bosons Aaµ come from the

open string sector and will be localized on the world-volume of a stack of D3-branes.

In the following we will consider the following three limits. Later we will see how these

limits are realized in string theory.

(A) Decoupling of gravity, i.e. Yang-Mills limit. First we consider the infinite

mass limit

MP →∞ . (2.31)

In this limit gravity becomes non-dynamical and decouples from the theory. In fact, for

non-zero coupling gW , both spin-two particles completely decouple, since the spin-two

particle wµν becomes infinitely heavy. Alternatively one can keep MW finite, which implies

that gW → 0, i.e. the spin-two Weyl modes are very weakly coupled.

(B) Massless bigravity limit. Second we consider the massless limit, namely the limit

of vanishing Planck mass:2

MP → 0 . (2.32)

The propagator ∆(k) now becomes

∆(k)→
g2
W

k4
. (2.33)

2The massless limit was also discussed in the context of bimetric theories in [31, 36].
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In this limit the second spin-two field wµν will become massless and we deal with massless

Weyl gravity. Therefore, for finite MP there is a Higgs effect with respect to wµν , and

in the massless limit the degrees of freedom of wµν will arrange themselves into proper

massless fields (see below). In this limit we deal with Yang-Mills gauge theory plus Weyl2

theory with action

S =

∫
d4x
√
−g
(
− 1

4g2
YM

F aµνF
aµν +

1

2g2
W

WµνρσW
µνρσ

)
. (2.34)

This theory possesses conformal invariance and it propagates the following degrees of

freedom:

(i) The standard massless, closed string spin-two graviton gµν , corresponding to a planar

wave in Einstein gravity.

(ii) Massless open string U(N) gauge bosons Aaµ.

(iii) In the non-standard sector there is massless open string spin-two ghost particle wµν ,

which corresponds to a non-planar wave. In addition there is a massless open string

vector wµ, which originates from the ±1 helicities of the massive wµν particle. How-

ever note that the helicity zero component of wµν does not correspond to a physical,

propagating mode in the massless limit, since it can be gauged away by the conformal

transformations (2.3).

(C) Light spin-two plus massless Yang-Mills limit. Now we consider the double

scaling limit

MP →∞ and gW → 0 with MW �MP . (2.35)

Therefore the coupling gW must vanish faster than M−1
P . In this limit one is left which an

action that contains the massless Yang-Mills gauge fields Aµ as well as the (almost) massless

spin-two fields wµν . In addition there is still the massless standard spin-two graviton. The

propagator has the leading behaviour (2.33) and the dynamics is described again by the

action (2.34). To see that this limit actually exists, one can recall the propagator in

eq. (2.11) which for MW = gWMP → 0 can be approximated by

∆(k) = − 1

M2
P

1

k2
+

1

M2
P

1

k2 −M2
W

≈ − 1

M2
P

1

k2
+

1

M2
P

1

k2

(
1 +

M2
W

k2
+O(M4

W )

)
≈
g2
W

k4
+O(M4

W ). (2.36)

This is the propagator (2.33) for the massless Weyl2 theory and dynamics should indeed

be described approximately by (2.34).

However, there is a difference between the case (B) and (C). In the case (B), the

vanishing of the Einstein-Hilbert term, results in the action (2.34) with the propagator

in (2.33). This is the standard propagator of a spin-2 dipole ghost. Indeed, the Lagrangian

in this case in the linearized level will be of the form

L2 ∼
1

g2
W

(�hµν)2 + hµνT
µν , (2.37)
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where hµν is transverse-traceless and we have included its coupling to the energy-

momentum tensor. Then, one can introduce a transverse-traceless spin-2 field γµν and

write (2.37) in the form (after rescaling hµν → gWhµν)

L2 ∼ γµν�hµν −
1

4
γµνγ

µν + gWhµνT
µν , (2.38)

typical of a dipole ghost [32, 33]. Indeed, integrating out γµν from (2.38), we get back (2.37.

Can we identify one of the fields γµν or hµν with the standard graviton? To answer

this question one should recall that standard graviton is the field that couples to the

energy-momentum tensor when it has the standard kinetic term. However, as one can see,

although hµν couples to the energy-momentum tensor, it does not have standard kinetic

term. Indeed, we can define fields h±µν = 1
2(hµν ± γµν) with diagonal kinetic term so that

L2 ∼ h+µν�h+µν − h−µν�h−µν −
1

4
(h+µν − h−µν)2 + gWh+µνT

µν + gWh−µνT
µν . (2.39)

Clearly, both h± coupled to the energy-momentum tensor and there is no standard graviton.

In the case (C) now, we have the linearized Lagrangian

L2 ∼ M2
Phµν�h

µν +
1

g2
W

(�hµν)2 + hµνT
µν

∼ M2
Phµν�h

µν +
1

g2
W

�hµνγµν − 1

4g2
W

γµνγ
µν + hµνT

µν (2.40)

or, after rescaling hµν → hµν/MP

L2 ∼ hµν�hµν +
1

M2
W

(�hµν)2 +
1

MP
hµνT

µν . (2.41)

In the limit of very large MP and very small gW with fixed MW = gWMP as in the case

(C), we have a light massive spin-2 (with mass MW � MP ) and the standard massless

graviton, although very weakly coupled now.

2.4 N = 4 super-Yang-Mills plus super-Weyl theory

2.4.1 Massive theory

Now let us come to the N = 4 supersymmetric version of the Einstein, Yang-Mills plus

Weyl2 theory. The spectrum of the N = 4 Super-Yang-Mills plus massive N = 4 Super-

Weyl theory has the following form [16, 37]:

(i) A standard massless spin-two super graviton multiplet gN=4 with nB + nF = 32

degrees of freedom and with the following helicities and SU(4) representations:

(+2, 1) +

(
+

3

2
, 4

)
+ (1, 6) +

(
+

1

2
, 4

)
+ (0, 1) , (2.42)

together with its CPT conjugate

(0, 1) +

(
− 1

2
, 4

)
+ (−1, 6) +

(
− 3

2
, 4

)
+ (−2, 1). (2.43)

The complex scalar corresponds to the complex coupling constant τ of the N = 4

field theory, i.e. to the massless marginal operator in the superconformal field theory.
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(ii) A standard massless spin-one, N = 4 super Yang-Mills multiplet W a (a = 1, . . . , N2)

of the U(N) gauge group with each nB + nF = 16 degrees of freedom and with the

following helicities and SU(4) representations:

(+1, 1) +

(
+

1

2
, 4

)
+ (0, 6) +

(
− 1

2
, 4

)
+ (−1, 1) . (2.44)

Here the 6×N scalars from the Cartan subalgebra superfields are additional marginal

operators, which parametrize the Coulomb branch of the N = 4 super Yang-Mills

gauge theory. Giving them generic vev’s breaks the U(N) gauge symmetry to its

maximal Abelian subgroup U(1)N . Together with the axion-dilaton field τ of the

supergravity multiplet which couples to the quadratic YM action, these massless

scalars parametrize the moduli spaceM of the theory which is given by the following

coset space:

M =
SU(1, 1)

U(1)
⊗R6N . (2.45)

Note that the 6N scalars Φij = −Φji, (i, j = 1, · · · , 4), of the N vector multiplets

are coupled to the curvature scalar in confrormal supergravity as

L = · · · − 1

12
Tr
(

ΦijΦ
ij
)(
R+ · · ·

)
, (2.46)

Therefore, the conditions

Tr
(

ΦijΦ
ij
)

= −6, Tr
(

Φijψ
j
)

= 0, (2.47)

where ψj ate the gauginos, break superconformal dilatations and S-supersymmetry,

lead to Poincaré supergravity and in this case the scalars parametrize the coset [38–41]

SU(1, 1)

U(1)
⊗ SO(6, N)

SO(6)× SO(N)
. (2.48)

In fact, the conditions (2.47) are weaker than the constraints

Tr
(

ΦijΦ
kl
)

= −1

2
δk[iδ

l
j], Tr

(
Φijψ

k
)

= 0, (2.49)

imposed by the equations of motion of the scalars Dij
kl and the fermion χijk, which

we describe in section 2.4.3. These constraints allow to remove six vector multi-

plets in massless Einstein supergravity. Notice that in rigid supersymmetry, the

Yang-Mills scalar manifold is flat R6N whereas in Poincaré supergravity the coset

is SO(6, N)/SO(6) × SO(N). It looks that in massive Weyl supergravity the scalar

manifold is SO(6, N)/SO(N) because 15 scalars have not been Higgsed. In other

words the constraints (2.47) and (2.49) remove the 1 and 20 from 6× 6 = 1 + 20 + 15

but do not remove the 15. The first constraint in (2.49) coming from the D scalars

which appear linearly in Einstein supergravity, is just a contribution to the scalar

potential in massive Weyl supergravity because the D scalars appear now quadrat-

ically in the Lagrangian. Hence, the deformation of (2.45) to (2.48) is only true if
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the Weyl term is absent so that the 15 gauge fields of the superconformal multiplet

are auxiliary and their equations of motion produce the deformation from R6N to

SO(6, N)/SO(6) × SO(N). However if the Weyl action term is added, the 15 vec-

tors are massive and propagating and the above coset is not reproduced. Poincaré

supergravity is the limit Mp → ∞ while Weyl supergravity is the limit Mp = 0.

What happen in between is a new theory we are describing. The potential of this

new theory is different from Poincaré supergravity and is strictly quartic in all scalar

fields before imposing the constraints as we will see below.

(iii) In the non-standard sector we have the spin-two massive Weyl multiplet of N = 4,

which is irreducible with nB + nF = 28 = 256 states in USp(8) representations [37]:

wN=4 : Spin(2) + 8× Spin(3/2) + 27× Spin(1) + 48× Spin(1/2) + 42× Spin(0) .(2.50)

Hence in summary, the N = 4 massive super-(Weyl)2 gravity theory contains nB +

nF = 288 + 16N degrees of freedom, where N is the number of physical vector

multiplets. General massive multiplets in extended supersymmetry were discussed

in [43].

Also note that in Einstein supergravity constraints (2.47) and (2.49) are field con-

straints while in massive Weyl supergravity they are VEV constraints (Higgs phase) since

the six vector multiplets, which appear in the massless limit (see next section) are in this

case physical degrees of freedom. As we will now see, in massless Weyl supergravity these

multiplets become unphysical gauge degrees of freedom since the massless Weyl action does

not depend on compensators being superconformal invariant. So in massless Weyl super-

gravity coupled to Yang-Mills the moduli space is that in eq. (2.45). The massive phase is

obtained when six extra singlet compensating vector multiplets are introduced.

2.4.2 Massless theory

Now we can consider the N = 4 supersymmetric version of the Higgs effect for the spin-two

Weyl superfield wN=4. In the limit MP → 0 the bosonic and fermionic degrees of freedom

of wN=4 will arrange themselves into proper massless supermultiplets, when taking into

account the additional local superconformal and gauge symmetries, which arise in the

massless limit. In order to perform the massless limit we need the branching rules of

the massive USp(8) R-symmetry group into the R-symmetry group SU(4) of the massless

states. The specific decomposition of USp(8) → SU(4) for the relevant representations is

as follows:

8 = 4⊕ 4 ,

27 = 6⊕ 6⊕ 15 ,

42 = 1⊕ 1⊕ 10 + 10⊕ 20′ ,

48 = 20⊕ 20⊕ 4⊕ 4 (2.51)

Then for MP = 0, the spectrum of the massless N = 4 Super-Weyl theory has the

following form [16]:
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(i) A standard massless spin-two supergravity multiplet with nB + nF = 32 degrees of

freedom as given in eqs. (2.42) and (2.43).

(ii) In the non-standard sector, we get first from the massive Weyl multiplet wN=4 a

massless ghost-like spin-two supermultiplet with nB +nF = 32 and with the helicites

and SU(4) quantum numbers, again as given eqs. (2.42) and (2.43).

Second we get from wN=4 four massless spin-3/2 supermultiplets (in total nB +nF =

128) with the following helicities and SU(4) representations, namely

4̄×
[(

3

2
, 1

)
+ (1, 4) +

(
1

2
, 6

)
+ (0, 4̄) +

(
− 1

2
, 1

)]
, (2.52)

together with the CPT conjugate states

4×
[(

1

2
, 1

)
+ (0, 4) +

(
− 1

2
, 6

)
+ (−1, 4̄) +

(
− 3

2
, 1

)]
. (2.53)

They contain the 15 gauge bosons of the local SU(4)R gauge symmetry.

In addition, the massive Weyl multiplet wN=4 contains six N = 4 vector multiplets

of the form:

6 (spin− one) : 6×
[
(+1, 1) +

(
+

1

2
, 4

)
+ (0, 6) +

(
− 1

2
, 4

)
+ (−1, 1).

]
(2.54)

However these multiplets are unphysical since they can be gauged away by the super-

conformal transformations together with the local SU(4)R transformations. Specif-

ically, one of the 36 scalars in these vector multiplets is a Weyl mode. Other 15

scalars are the helicity zero component of the massive vectors inside wN=4, which are

gauged away by the local SU(4)R transformations. Hence all six vector-multiplets

are unphysical, do not propagate and get removed from the spectrum.

We should note that the dipole ghost graviton and the tripole ghost spin-3/2 sector are

accompanied by a dipole ghost complex scalar since the action is a higher-derivative

action. Indeed, the equations of motion are fourth-order for the spin-2 and third

order for the spin-3/2 states. This fact is also discussed in [44] at the Lagrangian

level. This is not the case for the SU(4) gauge bosons which have standard Yang

Mills action. The sugra higher derivative action also contains a singlet vector mode

which, together with the gauge bosons, is part of the higher derivative gravitino

action (which as pointed out above obeys third order equations of motion). In other

words, the cubic gravitino action simultaneously describes the gravitino, the partner

of the graviton, as well as the gravitini of the gravitino multiplet.

Hence, the massless N = 4 super-(Weyl)2 gravity theory contains nB + nF = 192

physical, propagating degrees of freedom. The same spectrum was also obtained in [42]

using the string twistor formalism for the construction of N = 4 super-(Weyl)2 gravity.

The spin 1/2 have three sources, from the spin 3/2 cubic gravitino kinetic term, the spin

1/2 cubic kinetic term and the spin 1/2 standard Majorana kinetic term.
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Scalars SU(4) rep. w c

φα 1 0 1

Eij 10 1 −1

Dij
kl 20 2 0

Φij 6 1 0

Table 1. Scalars of the Weyl multiplet (φ,E,D) and the Yang-Mills multiplet (Φ), together with

their SU(4) assignments, Weyl (w) and chiral (c) weights.

At the end of this section, we can summarize the spectrum of Weyl supergravity in

the following way. In pure Weyl supergravity without any additional massless Yang-Mills

multiplets, the six vector multiplets with 36=1+15+20 helicity zero components play the

role of super-goldstone bosons. In the massless conformal Weyl phase (MP → 0) the six

compensators are not there and the spectrum goes from 256 massive + 32 massless states

to 160+32=192 massless states. The 160=32+128 massless states correspond to the second

graviton multiplet plus four gravitini multiplets. On the contrary if we delete the Weyl

square part and we keep the six compensator vector multiplets we have the constraints

(2.41) and (2.43), and we get back massless spin-two Einstein supergravity.

2.4.3 Scalar potential

In this section we will consider some couplings between the Yang-Mills sector and the

Weyl sector of the theory. In particular we will discuss the potential of the scalar fields that

appear in theN = 4 Yang-Mills and Weyl supermultiplets. The scalar fields of the Weyl and

the Yang-Mills multiplet of the N = 4 conformal supergravity3 coupled to super Yang-Mills

transform under specific representations of SU(4) which are tabulated in table 1, where also

their Weyl weights and chiral U(1) weights w and c, respectively are given [37, 39–41]. The

indices i, j, . . . and a, b, . . . are SU(4) and SU(1, 1) indices, respectively. In particular, φα

represent two-degrees of freedom associated to the SU(1, 1)/U(1) coset of the spin-two

dipole ghost multiplet, Eij is symmetric, Dij
kl is pseudoreal and Φij is antisymmetric, and

in the adjoint representation of the gauge group G. They satisfy the relations

φαφα = 1, Eij = Eji, Dij
kl =

1

4
εijmnεkl

pqDmn
pq, Dij

kj = 0, Φij = −Φji, (2.55)

whereas their complex conjugate fields are

φ1 = (φ1)∗, φ2 = −(φ2)∗, Eij = (Eij)
∗,

Dij
kl = (Dij

kl)
∗ = Dij

kl, Φij = (Φij)
∗ = −1

2
εijklΦkl. (2.56)

Notice that in eq. (2.50) we have seen that the spin-two massive Weyl multiplet of N = 4

in the non-standard sector has nB + nF = 28 = 256 states which are arranged in USp(8)

3We use freely the terms Weyl and conformal supergravity in an interchangable way, and similalry for

the terms Einstein and Poincaré supergravity.
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representations as follows

Spin(2) + 8× Spin(3/2) + 27× Spin(1) + 48× Spin(1/2) + 42× Spin(0) . (2.57)

Therefore the scalars in the massive multiplet are in the 42 representation of USp(8). The

latter is decomposed under SU(4) ⊂ USp(8) as

42 = 20 + 10 + 10 + 1 + 1, (2.58)

and it is associated to the pseudoreal Dij
kl (20), the complex Eij (10+10) and the complex

φα (1 + 1) of table 1. The six scalars Φij(= −Φji) in the 6 of SU(4) and in the adjoint

of the gauge group are just the scalars of the Yang-Mills multiplet. Note that the fields

Dij
kl (20), which appear in the unphysical vector multiplets in eq. (2.54), are unphysical

in the massless limit. Moreover the scalars in the 6 + 6 representations of the spin-3/2

multiplets (see eqs. (2.52) and (2.53)) are not part of the scalar potential, because they

originate from the graviphoton fields.

The most general Lagrangian for the N = 4 conformal supergravity has been con-

structed in [41]. It turns out that it is completely specified by a single holomorphic and

homogeneous of zeroth degree function H(φα) of the coset variables φα. Then the bosonic

part of the Weyl square action has a field dependent coupling constant 1/g2
W =' <

(
H(φα)

)
which is of the form of conformal supergravity in twistor-string theory [42]:

LW 2 ' <
(
H(φα)

)
WµνρσW

µνρσ . (2.59)

The structure of the scalar potential for N = 4 super Yang-Mills is coupled to N = 4

conformal supergravity can be read off from refs [39–41] and it turns out to be (in the

notation of [41])

V = H
(

1

8
Dij

klD
kl
ij −

1

16
EijE

jkEklE
li +

1

48

(
EijE

ij
)2
)

+
1

16
DHDij

klEimEjnε
klmn

+
1

384
D2HEijEklEmnEpqεikmpεjlnq −

1

48
EijE

ijTr
(

ΦklΦ
kl
)

+
1

8
Dij

klTr
(

ΦijΦ
kl
)

+
1

3
f(φ)EijTr

(
Φkl[Φik,Φjl]

)
+

1

4
|f(φ)|2Tr

(
[Φik,Φ

kj ][Φjl,Φ
li]
)

+ h.c., (2.60)

where D is the operator

D = −φαεαβ
∂

∂φβ
, and f(φ) = φ1 + φ2. (2.61)

In rigid supersymmetry, only the last term of the potential (2.60) exists. All the other

terms arise from the Weyl multiplet (terms proportional to H and its derivatives) and

the gauge-matter coupling. Note also that with the U(1) charge c assignment c(H) = 0,

c(DH) = 2 and c(D2H) = 4, the potential (2.60) is U(1) invariant (c(V ) = 0) since

c(E) = −1, c(D) = c(Φ) = 0 and c(φα) = 1. Therefore the potential in eq. (2.60) is what
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we would call “massless Weyl supergravity coupled to matter” whose massive Poincaré

supergravity deformation is obtained by adding six compensator vector multiplets with

constraints given as in eq. (2.47).

The scalars Dij
kl are auxiliaries and can be integrated out leading to

V = H
(
− 1

16
EijE

jkEklE
li +

1

48

(
EijE

ij
)2
)
− 1

128H

(
DHEimEjnεklmn + 2Tr

(
Φkl
ij

))2

+
1

384
D2HEijEklEmnEpqεikmpεjlnq −

1

48
EijE

ijTr
(

ΦklΦ
kl
)

+
1

3
f(φ)EijTr

(
Φkl[Φik,Φjl]

)
+

1

4
|f(φ)|2Tr

(
[Φik,Φ

kj ][Φjl,Φ
li]
)

+ h.c. , (2.62)

where

Φij
kl = ΦijΦkl − 2δ

[j
[l Φ

i]mΦk]m +
1

3
δi[kδ

j
l]Φ

pqΦpq. (2.63)

Note that a non-constant H function gives extra terms to the scalar potential (2.62). This

will be the case in twistor string theory where H is an exponential in the holomorphic

variable [42]. For constant H, the terms proportional to DH and D2H in the potential

drop and it is easy to see that E = 0 and Φ in the Cartan subalgebra of the gauge

group is an extremum of the potential. This is the breaking of superconformal to Poincare

supergravity if 6 auxiliary vector multiplets are added with wrong sign so that a correct

Einstein term and the solution D = 0 is possible. Indeed, let us recall that the fermions

of the theory are the gravitini ψiµ (in the 4 of SU(4)) associated with Q-supersymmetry,

the composite φµi (in the 4) associated with S-supersymmetry and the two spinor fields Λi

and χijk in the 4 and 20 of SU(4), respectively. The fermionic shifts of the spinors fields

contain among others, the terms [37]

δΛi = · · ·+ Eijε
j ,

δχijk = · · ·+Dij
klε

l − 1

2
εijlmEklηm, (2.64)

where εi and ηi are the Q- and S-supersymmetry parameters. Therefore, E = 0 and

D = 0 are the necessary conditions for unbroken supersymmetry. In addition, for Poincaré

supersymmetry, breaking of Weyl symmetry is required. This is achieved by imposing the

condition (2.47) while still E = D = 0. If there are non-trivial extrema of the scalar

potential beyond the supersymmetric Poincaré one is an interesting open problem. Such

vacua will further break Poincaré supersymmetry, which will happen if the E and D scalars

have non-vanishing vev.

We note that pure massive Weyl supergravity is obtained by adding to the Weyl

multiplet 6 vector multiplets of wrong sign. In this case the spectrum is the standard

massless N = 4 Poincaré supergravity coupled to a massive N = 4 spin-2 ghost multiplet.

The massive scalars are then 20 from the six compensators, the 10 + 10 E scalars and 1 + 1

from the dilaton dipole massive ghost. All together they make the 42 (of USp(8)) as it

should. Indeed, the constraint (2.49) is needed in Poincare supergravity because the D

scalars appear linearly in the action [39, 40]. However, this is not true in Weyl massive
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supergravity where they appear quadratically [41] so that they lead to a new potential

term after integrate them out rather than to a constraint. In the higgsed phase, the 15

scalars go away and this explains 42 = 1 + 1 + 20 + 10 + 10.

3 String realization

Now we want to discuss how to obtain Weyl2 gravity plus Yang-Mills gauge theory from

IIB superstring theory. As already mentioned, in string theory the graviton gµν originates

from the closed string sector and lives in the bulk space, whereas the spin-two field wµν
as well as the Yang-Mills gauge bosons Aaµ come from the open string sector and will be

localized on the world-volume of a stack of D3-branes. In the following we will first discuss

the closed and open string spectrum and then, how the various limits can be realized in

string theory.

Here we will discuss the case of maximal supersymmetry. This means that in four-

dimensional the closed string bulk theory possesses N = 8 supersymmetry (i.e. 32 super-

charges), whereas the open string sector localized on the D-brane worldvolume will preserve

N = 4 supersymmetry (i.e. 16 supercharges). Specifically, we will consider the type IIB

superstring on R1,3 × T 6, with an additional stack of N D3-branes with world-volumes

on R1,3. Possible other D-branes and/or orientifold planes do not play an important role

for the discussion, and we also do not address the question of tadpole cancellation. In

fact, when taking the decoupling limit of infinite T 6 volume later on, i.e. considering

a non-compact six-dimensional extra space, we just deal with N D3-branes in flat ten-

dimensional space-time.

The spectrum of this string theory is now as follows.

3.1 Open string sector

3.1.1 Massless open string Yang-Mills sector

Now we come to the massless open string spectrum of the D3-branes on the background

R1,3 × T 6. For maximally supersymmetric, toroidal compactifications of D = 10 super-

string, its excitations form supermultiplets of N = 4 supersymmetry. Before discussing

the first excited level, we recall the vertices of massless particles, which arise from the

zero modes and include, in the NS sector, the gauge bosons Aa and six real scalars

φI , I = 1, . . . , 6. In the R sector, we have four gauginos λA, I = A, . . . , 4. All in all,

these zero mode form one N = 4 gauge supermultiplet. The NS sector vertices, in the

(−1)-ghost picture, read:

V
(−1)
Aa (z, ε, k) = gA T a e−φ εµ ψµ e

ikX ,

V
(−1)

φa,I
(z, k) = gA T a e−φ ΨI eikX . (3.1)

Here, X,ψ,Z,Ψ are the fields of N = 1 worldsheet SCFT, with the Greek indices associated

to D = 4 spacetime fields Xµ, ψν and the Latin upper case labeling internal D = 6 (e.g.

ZI ,ΨI). φ is the scalar bosonizing the superghost system.
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The R sector vertices, in the (−1/2)-ghost picture, read:

V
(−1/2)

λa,A
(z, u, k) = gλ T

a e−φ/2 uσSσ ΣA eikX ,

V
(−1/2)

λ̄a,A
(z, ū, k) = gλ T

a e−φ/2 ūσ̇S̄
σ̇ Σ

A
eikX . (3.2)

Here, S and S̄ are the left and right-handed SU(2) spin fields, respectively, while ΣA and

Σ
A

are the internal Ramond spin fields. The couplings are

gA = (2α′)1/2 gYM , gλ = (2α′)1/2α′
1/4

gYM , (3.3)

where gYM is the gauge coupling. In the above definitions, T a are the Chan-Paton factors

accounting for the gauge degrees of freedom of the two open string ends, meaning that all

these massless states are in the adjoint representation of the U(N) gauge group.

We can also write these states in terms of the fermionic oscillators in the transversal

space-time directions, denoted by bir (i = 1, 2), and the internal oscillators bIr (I = 1, . . . , 6).

Then the eight bosons bosonic states in he adjoint representation look like

Aai ∼ T abi−1/2|0〉 , Φa,I ∼ T abI−1/2|0〉 (3.4)

For the eight fermions in the adjoint representation one simply has

λa,A ∼ T a|α̇, A〉 , (3.5)

where |α̇, A〉 is the Ramond ground state with four-dimensional spinor-helicity index α̇ =

1, 2 and internal spinor index A = 1, . . . , 4. These states indeed built massless N = 4 vector

multiplets in the adjoint representation of the gauge group U(N), which are displayed in

eq. (2.44). They are localized at the world-volume of the N D3-branes.

3.1.2 Massive open string spin-two sector

We will now determine the first excited, massive open string states, which are also local-

ized at the world-volume of the N D3-branes. For maximally supersymmetric, toroidal

compactifications of D = 10 superstring, NS and R sectors form one spin-two massive

supermultiplet of N = 4 supersymmetry. The bosons form one symmetric tensor field

Bmn and one completely antisymmetric tensor field Emnp. Here, the indices (m,n, p) label

D = 10. All these particles are in the adjoint representation of the gauge group. The

corresponding vertices, in the (−1)-ghost picture, read [45]:

V
(−1)
NS,a (z, k) =

gA√
2α′

T a e−φ(Emnp ψ
mψnψp + Bmn i∂X

mψn + Hm∂ψ
m ) eikX , (3.6)

where Hm is an auxiliary vector field. Note that again the open string gauge coupling

gA = (2α′)1/2 gYM appears in this vertex operator. At this level, the on-shell condition is

k2 = − 1
α′ . The constraints due to the requirement of BRS invariance are:

kmEmnp = 0 ,

2α′kmBmn +Hn = 0 , (3.7)

Bm
m + kmHm = 0 .
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In D = 10 all 128 bosonic degrees of freedom can be accounted for by setting H = 0, i.e.

with a traceless, transverse B and transverse E.

Also for the fermions, we begin with the first massive level in D = 10. In the R sector,

the fermion vertex operator [in its canonical (−1/2)-ghost picture] is parametrized by two

vectors, Majorana-Weyl spinors vAm and ρ̄n
Ḃ

of opposite chirality [45]:

V
(−1/2)
R,a (z, v, ρ̄, k) = CΛ T a

[
vAm i∂Xm + 2α′ ρ̄m

Ḃ
ψm ψ

n ΓḂAn
]

ΘA e−φ/2 eikX . (3.8)

Here, A denotes a left-handed spinor index while Ḃ is its right handed counterpart. Γn
are 16× 16 Weyl blocks of the D = 10 gamma matrices and ΘA are the conformal weight

h = 5
8 chiral spin fields.

Requiring BRST invariance imposes two on-shell constraints on vAm and ρ̄m
Ḃ

which

determine ρ̄ in terms of v and leave 144 independent components in the latter. Furthermore,

a set of 16 spurious states exists which allows to take ρ̄ and v as transverse and Γ-traceless:

km vAm = vAm Γm
AḂ

= km ρ̄
m
Ḃ

= ρ̄m
Ḃ

ΓḂAm = 0 . (3.9)

These 128 = 144− 16 physical degrees of freedom match the counting for bosons.

As for the massless states, we can also write the massive states, that are created by

these vertex operators, in terms of the bosonic and fermionic oscillators αn and br. Now

we split the indices into uncompactified and internal indices. Furthermore we will omit

the gauge index, i.e. we drop the Chan-Paton factor T a, which means that we consider the

neutral, excited states of the Abelian U(1) vector-multiplet. This U(1) gauge group is just

the Abelian part of the full gauge group U(N) = SU(N) × U(1). Alternatively we could

consider the case of a single D3-brane, i.e. N = 1, where the excited states are also neutral.

Then one obtains at the first massive level the following massive open string states (see for

example [46]):

bi−1/2b
j
−1/2b

I
−1/2|0〉 , bi−1/2b

I
−1/2b

J
−1/2|0〉 , bI−1/2b

J
−1/2b

K
−1/2|0〉 ,

bi−3/2|0〉 , bI−3/2|0〉

αi−1b
j
−1/2|0〉 , αi−1b

I
−1/2|0〉 , αI−1b

i
−1/2|0〉 , αI−1b

J
−1/2|0〉 . (3.10)

(Here the b’s and the α’s are the oscillators of the world-sheet fermions and bosons.)

Collecting all states and putting them into proper massive representations of the four-

dimensional little group SO(3) as well as in proper representations of the N = 4 SU(4)

R-symmetry, one obtains the following massive spectrum:

1× Spin(2) + (6 + 6 + 15)× Spin(1) + (2× 1 + 10 + 1̄0 + 20′)× Spin(0) . (3.11)

For massive states in N = 4 supersymmetry the R-symmetry group is enhanced from U(4)

to USp(8) ⊃ U(4) with the following branching rules:

8 = 4 + 4̄ ,

27 = 6 + 6 + 15 ,

36 = 1 + 10 + 1̄0 + 15 ,

42 = 2× 1 + 10 + 1̄0 + 20′ ,

48 = 4 + 4̄ + 20 + 2̄0 (3.12)
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Then the massive bosons transform under USp(8) as

1× Spin(2) + (27)× Spin(1) + (42)× Spin(0) . (3.13)

In ten dimensions, the 128 massive fermions are given by the following string states:

(8)c + (56)c : bA−1|a〉 , (8)s + (56)s : αA−1|ȧ〉 . (3.14)

In terms of four-dimensional massive spinors this leads to:

(4 + 4̄)× Spin(3/2) + (4 + 4̄ + 20 + 2̄0)× Spin(1/2) , (3.15)

where in this decomposition each spin 3/2 Rarita Schwinger field in four dimensions con-

tains 4 degrees of freedom and each spin 1/2 Dirac fermion possess 2 degrees of freedom.

Under USp(8) the massive fermions transform as

(8)× Spin(3/2) + (48)× Spin(1/2) , (3.16)

The bosons in eq. (3.11) together with the fermions in eq. (3.16) build one long, massive

N = 4 spin 2 supermultiplet. It precisely agrees with the super Weyl multiplet wN=4, which

is displayed in eq. (2.50).

3.2 Closed string sector

In the following we will also provide the closed string spectrum of the theory, both in the

bulk and also on the stack of the D3-branes. The vertex operators are similar to one of

the open strings and obtained by the tensor product of left- and right-moving open string

states at each mass level, taking into account the level matching constraint hL = hR.

3.2.1 Massless gravity sector

Let us us first recall the closed string type II B spectrum of the bulk theory on the back-

ground space R1,3 × T 6. As it is well known, the massless closed string states originate

from the (NS,NS), (R,R), (R,NS) and (NS,R) sectors of the theory. Altogether they built

the standard massless N = 8 supergravity multiplet with nB + nF = 256 propagating

massless degrees of freedom. However on the world volume of the stack of N D3-branes

supersymmetry is broken by half from N = 8 to N = 4, where 16 supersymmetries are

linearly realized and the other half of 16 supersymmetries are non-linearly realized on the

D3-branes. Therefore the massless closed string spectrum on the D3-branes is precisely

the one of N = 4 supergravity. The corresponding massless states precisely build the

standard massless spin-two super graviton multiplet gN=4, which is displayed in eqs. (2.42)

and (2.43).

3.2.2 Massive closed string spin-four sector

As discussed in [47], the first excited closed string states are obtained by performing the

tensor product of two super-Weyl supermultiplets. This leads to a massive supermultiplet

with a highest spin-four tensor field Φ4 in the closed string sector, whereas the massive spin-

two sector, i.e. the massive Weyl supermultiplets, correspond to open string excitations.
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For the case under consideration with background space R1,3× T 6, the bulk spectrum

is then given in terms of massive spin-four N = 8 supermultiplet Φ4
N=8:

Φ4
N=8 = wN=4 ⊗ wN=4 . (3.17)

It contains nB + nF = 256 × 256 = 1016 = 65.536 degrees of freedom. When restricting

it to the world volume of the N D3-branes, it gets truncated and becomes massive spin-

four N = 4 supermultiplet Φ4
N=4 with nB + nF = 1280. Its exact multiplet structure is

as follows:

1× Spin(4) + 8× Spin(7/2) + (1 + 27)× Spin(3) + (8 + 48)× Spin(5/2)

+(1 + 27 + 42)× Spin(2) + (8 + 48)× Spin(3/2) + (1 + 27)× Spin(1)

+8× Spin(1/2) + 1× Spin(0) . (3.18)

3.3 Effective field theory and limits

Now we will discuss the four-dimensional effective field theory on the stack of N D3 branes.

From the closed strings we will restrict ourselves to the massless gravitational sector, and

the closed string spin-four in the bulk will be mentioned later in the next section on

holography. For the open strings, we will consider the massless spin-one Yang-Mills sector

as well as on the massive spin-two Weyl sector. Since both types of fields belong to open

string with ends lying on the D3-branes, the Yang-Mills field as well as the Weyl fields are

confined to the world-volumes of the D3-branes.

3.3.1 Ten-dimensional picture, non-compact space

Here we consider a stack of N D3-branes in a non-compact space R1,9. The ten-dimensional

action can be schematically written as

S = Sbulk + Sbrane + Sint , (3.19)

where Sbulk is the effective action of the massless gravitons and their superpartners from

the closed strings, Sbrane is the four-dimensional effective action of the massless Yang-Mills

fields and the massive spin-two field wµν on the D3-branes,

Sbrane = SYM + SW , (3.20)

and Sint describes the interactions between the open and closed string modes.

Let us now determine the effective couplings in terms of the basic string parameters,

which are

(i) gs = eφ, the string coupling constant, which is determined by the vev of the dilaton

and

(ii) Ms = 1/
√
α′, namely the string scale.
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In the string frame, the effective ten-dimensional Planck mass is given as

κ(10) =
(
M

(10)
P

)−4
=

1

M4
s

gs . (3.21)

The masses Mn of the string excitations in the string frame directly follow from the fun-

damental string tension and are given by M2
n = nM2

s . Namely in the string scale the mass

MW of the first open string excitations is simply given as

MW = Ms . (3.22)

In order to go to the Einstein frame, one has to perform a Weyl rescaling of the metric,

which in D dimensions takes the form

g → exp(φ/2)g ,√
|g|D → exp(Dφ/4)

√
|g|D ,

R → exp(−φ/2)R . (3.23)

(Hence for D = 4 the Weyl action W 2
√
|g| is indeed invariant under this rescaling.)

Therefore the ten-dimensional Einstein-Hilbert term transforms from the string frame

into the Einstein frame as √
|g|10e

−2φR→
√
|g|10R (3.24)

and in the Einstein frame the Planck mass is therefore independent of gs:

κ(10) =
(
M

(10)
P

)−4
=

1

M4
s

. (3.25)

Second, the gauge kinetic term of a Dp-brane transforms from the string frame into

the Einstein frame as√
|g|p+1e

−φFµνFµν → e((p−7)/4φ)
√
|g|p+1F

µνFµν (3.26)

Hence, for D3-branes (p = 3) the effective gauge coupling in the Einstein frame is given as

gYM =
√
gs . (3.27)

Finally for the fundamental string tension one obtains that√
|g|1+1 → eφ/2

√
|g|1+1 (3.28)

Therefore the masses of the excited strings in the Einstein frame scale as

M2
n ∼ n

√
gsM

2
s , (3.29)

and hence the ratio between these masses and the 10d Planck scale remains invariant. In

D dimensions, a mass, when measured in the Einstein metric, is related to gs as

M2
n ∼ ngs

4
D−2M2

s . (3.30)
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In the limit α′ = M−2
s → 0, while keeping gs, N and all other physical length scales,

such as curvature scales fixed, all massive string excitations decouple and the higher deriva-

tive interactions can be neglected. Furthermore, open and closed string modes decouple

and gravity becomes free, i.e. we arrive at a theory of free gravitons and its supersymme-

try partners. This decoupling limit is also referred to the Maldacena limit: free type IIB

supergravity in the bulk and four-dimensional SYM theory with 16 supercharges on the

world-volume of the branes. To see the more precise form of the decoupling limit, which

zooms into the near horizon region of the D3-brane SUGRA solution, we recall that it is

defined as follows:

LMs → ∞ with L4 =
gsN

M4
s

. (3.31)

On the gauge theory side this limit corresponds to the limit of infinite ’t Hooft coupling

λ → ∞ with λ = g2
YMN . (3.32)

In this the near-horizon limit the type IIB background of the N D3 branes is given by the

well-known AdS5 × S5 geometry. Note that this limit can be obtained by sending L to

infinity while keeping Ms fixed, which means that the near horizon limit can be obtained

for finite masses of the string excitations.

3.3.2 Four-dimensional picture, compact internal space

Now we switch to four dimensions and consider the theory compactified on R1,3 × T 6.

As we have discussed in section 3.1.2 the massive open string excitations precisely agree

with the N = 4 spin-two Weyl supermultiplet. The question is now, which is the correct

effective action for these massive states. Since these states appear at the first mass level,

the corresponding effective action must contain four derivatives. Hence a priori, it could

be either the R2-action or the W 2-action. Since the R2 propagates a scalar degree of

freedom, whereas the W 2-action propagates precisely the spin-two degrees of freedom of

the Weyl-supermultiplet, we can safely conclude that the W 2-action is the correct effective

action for the massive open string fields. Therefore the four-dimensional string effective

active action for closed string gravity plus open string Yang-Mills plus open string massive

spin-two fields has the following form:

Seff =

∫
d4x
√
−g
(
− 1

4g2
YM

F aµνF
aµν +

1

2g2
W

WµνρσW
µνρσ +M2

PR

)
. (3.33)

In addition to the ten-dimensional string parameters gs and Ms we now gain a third

parameter, namely:

(iii) Ri: the radius of the internal space, i.e. the volume of the T 6 is given by R6
i . In units

of the string length Ls the size of the internal scape is given by the dimensionless

parameter r = Ri/Ls = RiMs.

The three string parameters gs, Ms and r are identified with the three four-dimensional

coupling constants of the effective theory in the following way:
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(i) The four-dimensional gravitational closed string coupling MP in the Einstein frame:

MP = Msr
3 . (3.34)

(ii) The open string Yang-Mills coupling gYM for the gauge fields on the D3-branes:

gYM =
√
gs . (3.35)

(iii) The bimetric Weyl coupling gW : the effective 4D coupling gW can be determined by

the requirement that the mass of the massive open string spin-two fields wµν is given

in the Einstein frame as (see eq. (3.30)))

MW = gsMs . (3.36)

It then follows from eq. (2.30) that

gW = gs/r
3 . (3.37)

Observe that in the four-dimensional Einstein frame, the Weyl coupling gW is scaling

with respect to gs as the gravitational coupling, because it corresponds to a coupling

between closed and open strings. Moreover is proportional to the inverse of the

internal volume.

Now we can consider the following four decoupling limits in the four-dimensional ef-

fective string theory, which we already mentioned before in section two:

(A) Decoupling of gravity. The decoupling of the closed string modes namely the

decoupling of standard gravity is achieved sending the Planck mass to infinity:

MP → ∞ . (3.38)

In this limit either the string scale Ms is very large, i.e. α′ → 0 with r kept fixed. Alterna-

tively one can keep Ms finite, but sending r →∞, implying that Ri � Ls and the internal

space becomes very large. Then the near horizon geometry close to the N D3-branes be-

comes AdS5 × S5. In this sense the size Ri of the internal space corresponds to the length

parameter L in the non-compact case. Both, for finite r and large Ms and also for large

r and finite Ms the massive spin-two open string fields wµν decouple, because these fields

become either very heavy (Ms large) or their coupling constant gW becomes very small (r

large).

(B) Massless bigravity limit. Second, we consider the massless limit, namely the limit

of vanishing Planck mass:

MP → 0 . (3.39)

It can be realized in string theory by sending the string scale Ms to zero: Ms → 0 or

equivalently α′ →∞. In this limit, the open string spin-two fields become massless and the

bimetric gravity theory becomes conformal. However in string theory this is the tensionless
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limit, where an infinite tower of string states becomes massless in this limit. Therefore the

massless bimetric gravity theory only exists as an enormous truncation of higher spin theory

with an infinite number of massless higher spin fields. Alternatively, for fixed string scale

Ms, a vanishing Planck mass is obtained by sending r → 0. Here the size of the internal

space becomes much smaller than the string length. Furthermore gW becomes large and

the open string spin-two fields wµν become strongly coupled.

(C) Light spin-two plus massless Yang-Mills limit. Now let us consider the case

where the string scale is very small compared to the Planck mass. This is the socalled low

string scale scenario, which implies large extra dimensions:

Ms �MP . (3.40)

This limit can be achieved by sending r → ∞, and MW becomes very light compared to

MP . The spin-two open string fields wµν become very light, i.e. almost massless, and they

are very weakly coupled: gW → 0. Therefore this limit describes an (almost) conformal

field theory on the N D3-branes, with two kinds of open strings: U(N) Yang-Mills gauge

fields and (almost) free spin-two fields wµν . Hence, all fields can be made weakly coupled,

and hence this limit is well-defined and feasible. Note that MW �MP can be alternatively

obtained by keeping r finite, but sending gs → 0. Then the string theory is weakly coupled

and again gW → 0. Small gs in fact implies that the string scale Ms in string units is small

compared to the ten-dimensional Planck mass.

4 Holographic aspects between spin-two on the boundary and spin-four

in the bulk

All open string degrees of freedom/excitations on a D3-brane have a holographic description

on AdS5. Moreover, the AdS/CFT correspondence is not only true for the massless states,

but rather for the entire string modes. We will discuss in this section some aspects of the

holography between the first excited open strings, namely the N = 4 Weyl multiplet, and

the first excited N = 8 spin-four supermultiplets of the closed superstring. Holography

for N = 4 superconformal gravity in the context of AdS5/CFT4 was already discussed

by various authors [48–51], but mainly for non-dynamical superconformal gravitational

backgrounds. Here we are dealing with a dynamical spin-two field on the four-dimensional

boundary, which will, as we will discuss, correspond to a dynamical spin-four field in the

dual five-dimensional bulk theory.

The AdS/CFT correspondence is a duality between open strings on a d-dimensional

boundary space and closed strings in a (d+1)-dimensional bulk space. The most famous

example is 4-dimensional N = 4 super-Yang-Mills gauge theory located on a stack of N

D3-branes, which is holographically dual to N = 8 supergravity on AdS5 × S5. Hence for

holography to work in general, it is important to consider a limit in string theory, where all

closed string modes decouple from the boundary theory. Furthermore we need an (almost)

superconformal field theory on the boundary, which possesses the same symmetries as

the bulk AdS5 background geometry. More precisely, on the boundary we deal with a
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superconformal field theory, with superconformal symmetry group SU(2, 2/4) × SU(N ),

where SU(4) is the R-symmetry group. This agrees with the symmetry group of N = 8

supergravity on AdS5.

Here we want to describe a possible way, how to include also the open string Weyl-

supermultiplet wµν into the N = 4 ↔ N = 8 boundary-bulk holography. Limit A is also

not suitable for holography, since closed strings are not decoupled on the brane. Limit

A corresponds to the standard AdS/CFT correspondence, namely to the hologrographic

duality between the massless spin-one gauge fields on the 4-dimensional boundary and the

massless spin-two gravitons in the 5-dimensional bulk. Instead we will focus on the limit B

and in particular on the limit C, where closed string gravity on the boundary is decoupled

via MP → ∞, whereas the string scale Ms = MW is kept very small compared to the

Planck mass, which means that we are considering a large extra volume scenario in string

theory. Then the 4-dimensional, non-standard spin-two sector on the boundary possesses

an (almost) superconformal symmetry and is supposed to be holographically dual to closed

strings in the 5-dimensional AdS5 bulk space.

Generally in holography, each field φ(x) propagating on AdS space is in a one to one

correspondence with an operator O(x) in the field theory, which are coupled together by

a term
∫
d4xφ(x)O(x). For a rank s symmetric traceless tensor, there is the following

relation between the corresponding mass of the field in the (d + 1)-dimensional bulk and

the scaling dimension ∆ and the spin s of the operator in the conformal field theory on the

d-dimensional boundary:

m2α′ = (∆ + s− 2)(∆− s+ 2− d) . (4.1)

This formula is consistent with the unitarity bound, which is given as

∆ ≥ s− 2 + d . (4.2)

According to the standard holographic dictionary, the most relevant operator is the

conserved boundary energy momentum tensor T νµ , which has conformal dimension ∆ = 4

and spin s = 2 and hence it saturates the unitarity bound in four dimensions. T νµ is is

coupled to a symmetric tensor gµν , which becomes the massless spin-two graviton field in

the higher-dimensional bulk theory.4 In our concrete case of four-dimensional super Yang-

Mills theory plus Weyl2 gravity given in eq. (2.34), we can derive the energy momentum

tensor from the Yang-Mills action plus the linearized gravity action

S =

∫
d4x
√
−g
(
− 1

4g2
YM

F aµνF
aµν +

2

gW
Gµνw

µν − (wµνw
µν − w2)

)
. (4.3)

However, let us mention that although the original (2.34) theory is invariant under

conformal transformations, it seems that (4.3) fails as the Einstein tensor transforms non-

homogeneously. Therefore, in order to restore conformal invariance of (4.3), we have to

4In case the energy momentum tensor is non-conserved and has dimension ∆ > 2 + s, the corresponding

bulk spin-two field becomes massive [53].
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assign a non-homogeneous transformation for the field wµν . In fact, it can be verified that

under an infinitesimal conformal transformation

δgµν = 2λ(x)gµν , (4.4)

the Einstein tensor transforms as

δGµν = −2∇µ∇νλ+ 2�λgµν . (4.5)

Then, it can be verified [52] that the action (4.3) is invariant if wµν transforms as

δwµν = − 2

gW
∇µ∇νλ = ∇µξν +∇νξµ (4.6)

where

ξµ = − 1

gW
∇µλ. (4.7)

In other words, under a conformal transformation, the field wµν transforms as it would

transform under a diffeomorphism generated by the gradient of the conformal factor.

It is straightforward to calculate the energy-momentum tensor for the theory (4.3)

which turns out to be

T νµ = TµνF + Tµνw , (4.8)

where

TµνF =
1

g2
YM

(
F aµρF

a νρ − 1

4
gµνF aρσF

a ρσ

)
, (4.9)

Tµνw =
2

gW

{
�wµν −∇σ∇νwµσ −∇σ∇µwνσ +Rµνw −Rwµν

+∇µ∇νw + 2
(
wµρwνρ − wwµν

)
− 2
(
Gµρω

νρ +Gνρω
µρ
)

+gµν
(
Gρσw

ρσ − gW
2

(wρσw
ρσ − w2) +∇σ∇ρwρσ −�w

)}
(4.10)

The equation of motion for wµν is

wµν =
2

gW
Sµν , (4.11)

where Sµν is the Schouten tensor

Sµν =
1

2

(
Rµν −

1

6
Rgµν

)
, (4.12)

and it turns out that TµνF on-shell is

TµνF =
16

gW
Bµν , (4.13)
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where

Bµν = ∇ρ∇σWµρνσ +
1

2
RρσWµρνσ (4.14)

is the Bach tensor. The latter is symmetric, traceless and divergence-free

Bµ
ν = 0, ∇µBµν = 0, (4.15)

and therefore, TµνF is also traceless (due to conformal invariance) and divergence-free (due

to diff invariance). In addition Bµν transforms under a conformal transformation gµν →
Ω2gµν as

Bµ
ν → Ω−4Bµ

ν (4.16)

and therefore it has dimension ∆B = 4 (as the energy-momentu tensor).

Next we proceed to the massive spin-four operators on the boundary in dimension

d = 4, which are coupled to massive spin-four, closed string fields in the bulk. In order

to be massive their scaling dimension ∆ should be larger than 6. These fields will become

massless in the limit α′ → ∞, i.e. Ms → 0. In our concrete case, the relevant spin-four

operator Jµνρσ could be for example

Jµνρσ = ST[BµνBρσ]

= BµνBρσ +BρνBµσ +BσνBρµ

−1

2
(gµρBανBρ

α + gµσBανBσ
α + gνρBαµBρ

α + gνσBαµBσ
α) , (4.17)

where ST[] denotes symmetric traceless. Other spin-four operators are

Jµνρσ = ST[TµναβT
ρσαβ ], (4.18)

or products of the Weyl tensor, as for example

Jµνρσ = ST[WµαγκW ρ
αδκW

ν
βγλW

σβδλ], (4.19)

where

Tµνρσ =
1

4

(
W λ κ

νµ Wλσρκ +
1

2
ελντξε

χψ
λσ W τξ κ

µ Wχψρκ

)
=

1

4

(
W λ κ

νµ Wλσρκ +W λ κ
σµ Wλνρκ −

1

2
gνσW

λτ κ
µ Wλτσκ

)
. (4.20)

is the Bel-Robinson tensor [54–57]. The dimension of the latter is ∆T = 4 as under

conformal transformations, it transforms as

Tµνρσ → T̂µνρσ = Ω−4Tµνρσ. (4.21)

The operators Jµσνρ above have spin s = 4, they transform under conformal transforma-

tions as

Jµσνρ → Ω−8Jµσνρ, (4.22)
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and their dimension is therefore ∆J = 8. Hence these operators are then holographically

coupled to massive spin-four fields in the bulk, such that we are dealing with a higher

spin-four theory in the bulk. In string theory, Jµνρσ can be viewed as massive composite

field with mass square m2 = 20/α′, corresponding to the product of two closed string

graviton vertex operators. Note that this mass is the mass on AdS5, which is not the

same as the mass of the corresponding string state on a flat Minkowski background. In

the supersymmetric case, the field content and the supermultiplet structure is precisely

as the one given in section 3.2.2, which is obtained by the tensor product of two N = 4

super-Weyl multiplets. Since in the decoupling limit, the spin-two fields wµν are free fields

on the 4D boundary, also the spin-four field in the AdS5 bulk space should be a free field,

with the following free field equation:(
∇2 +

3

10
R−m2

)
ΦMNKΛ = 0,

∇MΦMNKΛ = ΦM
NKΛ = 0, M,N, · · · = 0, 1, · · · 4, (4.23)

where R is the scalar curvature of the AdS5 space.5

So in summary, the Yang-Mills energy momentum tensor Tµν couples to a spin-two

field in the bulk, the standard graviton on AdS5×S5, whereas Jµνρσ couples to a spin-four

field in the bulk. It means in particular when considering just the N -extended (Weyl)2

supergravity theory in four dimensions without the Yang-Mills part that this theory is the

holographically dual boundary theory of an AdS5 bulk theory, which is a higher spin theory

with a spin-four multiplet of the 2N -extended supersymmetry algebra in five dimensions.

These kind of theories, denoted by W-supergravities, were recently constructed [47] in

flat four-dimensional space-time using a double copy construction. Therefore, the (almost)

massless spin-two fields wµν are conjectured to be dual to N = 8 spin-four fields on AdS5×
S5. To support this conjecture it would be important to compute some correlation functions

of Jµνρσ on the boundary and compare them with the corresponding spin-four correlation

functions in the bulk.

5 Conclusions

In this paper we have discussed a special version of N = 4 supersymmetric bimetric gravity

coupled to N = 4 super Yang-Mills gauge theory. We have argued that, just like the open

string Yang-Mills gauge fields, the massive spin-two graviton supermultiplet originates from

open string excitations on D3-branes and hence is localized in four space-time dimensions,

5In general, a spin-s field in (A)dSd is described by a totally symmetric, traceless and divergentless

tensor ΦM1···Ms and obeys the equation [58, 59][
(∇2 + (s2 + s(d− 6) + 6− 2d)

R

d(d− 1)
−m2

]
ΦM1···Ms = 0,

∇M1ΦM1···Ms = ΦM1
M1···Ms

= 0, Mi · · · = 0, 1, · · · d− 1.

.
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whereas the standard massless spin-two graviton supermultiplet is coming from the closed

string sector. We then argued that effective action of this bimetric theory is given by the

four-derivative, N = 4 supersymmetric Weyl2 action, whose Weyl-supermultiplet precisely

embraces the same number of degrees of freedom as the first massive open string excitations

on the D3-branes. In the massless limit, where the mass of the open string “gravitons” and

their superpartners go to zero, the theory becomes N = 4 superconformal. We discussed

that the holographic description of this quadratic spin-two superconformal gravity on the

four-dimensional boundary is given in terms of a higher N = 8 spin-four theory in the

AdS5 bulk space. We have constructed the corresponding N = 8 spin-four supermultiplet

in terms of massive closed string excitations in four space-time dimensions, which then can

be lifted to the five-dimensional AdS5 space. In addition we have identified certain spin-

four operators on the four-dimensional boundary space, which, following the holographic

dictionary, can couple to the spin-four fields in the five-dimensional bulk.

At the end of the paper, we like to close with the following additional remarks:

• It is clear from string theory that the massive open string spin-two state cannot be a

ghost state. So eventually one has to write down an effective action for this spin-two

state, which is ghost-free. But here we are truncating the spectrum to the first excited

level and neglecting all the higher open string excitations. In the same way we are

restricting the effective action to be just with four derivatives, but we neglect all the

higher derivative interactions [60]. It is now still a conjecture that the full effective

action action of this open string spin-two state can be written as an infinite power

series expansion of the Weyl-tensor. In fact it was recently argued in [31] that adding

an infinite series of curvature tensors should provide an action which propagated a

ghost-free open string spin-two particle. Truncating this series to Weyl2, the spin-two

particle becomes a ghost.

• In case we are dealing with a stack of N D3-branes, the massive N = 4 Weyl super-

multiplet is colored, just like the U(N) gauge fields. Therefore one is dealing with

N2 copies of interacting spin-two Weyl supermuliplets. In this paper we have consid-

ered the simpler case of just one single, neutral Weyl supermuliplet, which belongs

to the U(1) part of the U(N) symmetry group, or simply is the relevant open string

excitation for the case N = 1. For an U(1) open string one might expect as effective

action the full tower of α′ terms of the Born-Infeld action, but at the two derivative

level the effective action is still given by the Maxwell plus conformal gravity action.

• It would be interesting to compute the string scattering amplitudes between the

massless and massive string fields using techniques already applied in [45] in order to

confirm the effective Weyl2 action and the couplings between the Yang-Mills and the

Weyl sectors, proposed in this paper.6

6As discussed with the referee of this paper, the string amplitudes are apparently matched by the action

given in eq. (2.59) of conformal supergravity in twistor-string theory [42]. For constant function H(φα) this

is of course nothing else than the standard Weyl square action, which basically confirms in this way the

results of the paper. We are grateful to the referee for drawing our attention to this point.
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• The massive closed string spin-four field can be viewed as a kind of a bound state

of two massive open string spin-two states, in analogy to the massless closed string

graviton, which can be regarded as the bound state of two massless open string gauge

bosons. This observation relies in the structure of the string vertex operators and is

also the basis of the double copy constructions, which was recently also worked out

four the spin-four case [47].

• It should be possible to perform a socalled S-fold projection, getting completely get rid

off the massless Yang-Mills sector. In this case one would entirely deal with strongly

coupled, massive Weyl2 supergravity on the boundary and with massive spin-four

supergravity in the bulk, a theory denoted by W-supergravity, recently constructed

in [47]. In the massless, superconformal limit, the spin-four W-supergravity on AdS5

also becomes massless.

• The scalar potential should capture also the solutions which are not the one of Ein-

stein supergravity. In the bosonic case these are the solutions where the Bach tensor

vanishes but not the Ricci tensor. While the first break conformal to Poincare su-

pergravity, the others may also break supersymmetry even partially, which still has

to be discovered yet. It is likely that any conformally flat space is a solution with

vanishing Bach tensor so it is conceivable that AdS or even dS space are solutions of

massless Weyl supergravity, as it is true in the simplest bosonic case.

• Finally, we would like to stress that the superconformal symmetry of the supersym-

metric Weyl2 theory is a classical symmetry.7 Althought such theories are power-

counting renormalizable, their one-loop beta-functions are be non-vanishing [62] and

therefore they suffer from a conformal anomaly. The latter leads to serious prob-

lems since conformal symmetry is gauged in Weyl gravity and therefore leads to

inconsistencies [63–65]. The same conclusion can be drawn by considering the chiral

gauge anomalies of the SU(4) R-symmetry [66] and recalling that all anomalies are

accommodated in the same multiplet of the N = 4 superconformal symmetry.
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