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This paper discusses novel coherent beam-beam instability in collisions with a large crossing angle. The
instability appears in the correlated head-tail motion of two colliding beams. A cross-wake force, which is
localized at the collision point, is introduced to represent the head-tail correlation between colliding beams.
A mode-coupling theory based on this localized cross-wake force enables us to explain the correlated heal-
tail instability. The use of a collision scheme with a large crossing angle is becoming popular in the design
of electron–positron colliders. An example thereof is the SuperKEKB project, in which a collision with a
large crossing angle is performed to boost the luminosity to 0.8 × 1036 cm−2 s−1. Future circular colliders
will also be designed with a large crossing angle. Strong-strong simulations, which have shown the first
coherent head-tail instability, can limit the performance of proposed future colliders. The mechanism
whereby this instability occurs is mode coupling due to the cross-wake force. This instability may affect all
collider designs based on the crab waist scheme.
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I. INTRODUCTION

An ordinary transverse wake force characterizes a trans-
verse momentum kick of a particle at z according to the
dipole moment density at z0 in a bunch:

ΔpxðzÞ ¼ −
Z

∞

z
Wðz − z0Þρxðz0Þdz0: ð1Þ

Based on the causality, the head part of the dipole moment
affects the tail part of the particles,Wðz − z0Þ ≠ 0 for z0 > z.
px, which is normalized by the total momentum, is dimen-
sionless. The dipole moment is expressed by ρxðzÞ ¼
xðzÞρðzÞ, which is the product of the dipole amplitude and
normalized density distribution along z. WðzÞ, which is
expressed by NreWðzÞ=γ in the conventional formula [1],
contains the bunch population and γ factor.
In a beam-beam collision with a crossing angle, a

transverse dipole moment ρð�Þ
x ðz0Þ of an e� beam can

induce a transverse momentum kick of a colliding e∓
beam. We consider the cross-wake force to represent the
momentum kick as follows [2,3]:

Δpð�Þ
x ðzÞ ¼ −

Z
∞

−∞
Wð�Þ

x ðz − z0Þρð∓Þ
x ðz0Þdz0: ð2Þ

The momentum kick is significant in the area jz − z0j ∼
σx=θc where two beams overlap, where σx and θc are the
horizontal beam size and half-crossing angle, respectively.
The wake force is independent of the sign of z − z0, that is,
there is no causal property, unlike the ordinary wake force.
Another important point is that the cross-wake force is
localized at the point at which the two beams interact, and
this localized wake force is used as the basis on which the
mode-coupling theory is developed. The theory explains
that the wake force can cause coherent beam-beam insta-
bility, in which correlated head-tail modes between two
beams are induced.
The “crab waist collision” scheme [4,5], which has

become popular for circular eþe− colliders, forms the
basis for the design of several future colliders. The crab
waist collision is premised on the large crossing angle
collision. The SuperKEKB accelerator adopts the collision
scheme with a large crossing angle to boost the luminosity
to 0.8 × 1036 cm−2 s−1. Future circular colliders (FCCs)
will also be designed based on the crab waist scheme with a
large crossing angle [6–8]. However, strong-strong beam-
beam simulations have shown instability in collisions with
a large crossing angle [3,9–12]. The present mode-coupling
theory for the cross-wake force explains the instability
observed in the simulations. Understanding this instability
is indispensable for future accelerator designs.
This paper is organized as follows. The cross-wake force

is introduced in Sec. II. The wake force is regarded as a
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conventional single-bunch wake force when the coherent
beam-beam mode is limited to either the σ or π mode.
Ordinary mode-coupling theory is applied to the single-
bunch wake force. Particle-tracking simulations using the
cross- and single-bunch wake forces are discussed in
Sec. III. The simulations imply that the instability occurs
only for a localized wake force. The mode-coupling theory
for the localized single-bunch wake force is discussed in
Sec. IV. The mode-coupling theory is extended for two
beams for the cross-wake force in Sec. V. Section VI draws
some conclusions.

II. CROSS-WAKE FORCE INDUCED
BY BEAM-BEAM COLLISION

We begin by discussing cross-wake force induced by
beam-beam collisions with a large crossing angle. Figure 1
illustrates the method by which to evaluate the cross-wake
force. Two beams (bunches) collide with a half-crossing
angle θc. The region in which the two bunches overlap at
the collision point is Δz ¼ �σx=θc. Using the Lorentz
transformation for the x-direction, the bunches e−=eþ with
a tilt angle θc move to the left/right, respectively, at the
speed of light [13,14]. Electromagnetic fields of the
relativistic e� bunches are formed in the transverse plane.
The parts in the e� bunches at the same s position interact
with each other. We assume a Gaussian distribution of
bunches in the transverse plane.
The momentum kick of the e∓ bunch at z, which collides

with a part of the e� bunch with length δz0 at z0, can be
expressed by

δpð∓Þ
y ðx; yÞ þ iδpð∓Þ

x ðx; yÞ ¼ Nð�Þρð�Þδz0re
γð∓Þ Fðx; yÞ; ð3Þ

where ðx; yÞ is the relative position vector between the
transverse center of the bunches at z (e∓) and z0 (e�), and
Nð�Þρð�Þðz0Þδz0 is the number of particles contained in the
δz0 of the e� bunch. Interaction between the bunches with
z, z0 occurs at s ¼ ðz − z0Þ=2. F is represented by the
complex error function w [15]:

F ¼ Fy þ iFx ¼
2

ffiffiffi
π

p
Σ

½wðAÞ − expð−BÞwðCÞ�; ð4Þ

where A, B, C are defined as follows:

A ¼ xþ iy
Σ

; B ¼ x2

4σ̄2x
þ y2

4σ̄2y
; C ¼

σ̄y
σ̄x
xþ i σ̄xσ̄y y

Σ
;

ð5Þ

where Σ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ̄2x − σ̄2yÞ

q
. The root mean of the beam sizes

is σ̄2x;y ¼ ðσðþÞ2
x;y þ σð−Þ2x;y Þ=2.

Part of the eþ bunch “I” at z0 deviates by Δx in the
x-direction, as shown in Fig. 1. The part marked “II” at z of
the e− bunch interacts with the deviated part of the
eþ bunch.
The part II (z) colliding with I shifts as the collision

progresses. The cross-wake force is given by the difference
between momentum kicks with and without the deviation
Δx. For a collisionwith a crossing angle, the horizontal offset
is related to the longitudinal position of a bunch by x ¼ zθc.
The difference in the momentum kick is expressed by

Δpð−Þ
x ≡ δpð−Þ

x ðx− − xþ − ΔxÞ − δpð−Þ
x ðx− − xþÞ

¼ NðþÞρðþÞðz0Þδz0re
γð−Þ

∂Fx

∂x
����
x¼ðz−z0Þθc

Δxþ: ð6Þ

The cross-wake force is determined by the right side of
Eq. (6), expressed as follows:

Δpð−Þ
x ¼ −Wð−Þðz − z0ÞρðþÞΔxþδz: ð7Þ

Using ρðz0ÞΔx ¼ ρxðz0Þ, the cross-wake force is given by the
differential of the beam-beam force as follows:

Wð−Þ
x ðz − z0Þ ¼ −

NðþÞre
γð−Þ

∂Fx

∂x
����
x¼ðz−z0Þθc

ð8Þ

∂F=∂x can be written as follows:

∂F
∂x ¼ 2

ffiffiffi
π

p
Σ

�
2iffiffiffi
π

p
Σ

�
1 −

σy
σx

expð−BÞ
�

−
2A
Σ

wðAÞ þ
�
x
σ2x

þ 2σy
Σσx

C
�
expð−BÞwðCÞ

	
; ð9Þ

where the differential formula of the complex error function,
w0ðzÞ ¼ −2zwðzÞ þ 2i=

ffiffiffi
π

p
, is used.

We consider the reaction of the force for the positron
beam in Eq. (7):

FIG. 1. Illustrative representation of the evaluation of the cross-
wake force.
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ΔpðþÞ
x ðz0Þ ¼ −

Nð−Þre
γðþÞ

∂Fx

∂x
����
x¼ðz−z0Þθc

ρð−ÞðzÞδz × Δxþ:

ð10Þ

This force induces a tune shift, the term for which is added
in Eq. (2):

Δpð�Þ
x ðzÞ ¼ −

Z
∞

−∞
Wð�Þ

x ðz − z0Þρð∓Þ
x ðz0Þdz0

þ
Z

∞

−∞
Wð�Þ

x ðz − z0Þρð∓Þðz0Þdz0xð�ÞðzÞ: ð11Þ

The coefficient of xð�ÞðzÞ in the second term contains z.
It is straightforward to treat Eq. (11) in particle-tracking
simulations.
Integrating over z, this momentum kick gives the

horizontal beam-beam tune shift for the positron beam
[16,17]. We now assume collisions between two Gaussian
bunches. Thus, the tune shift is half of the nominal value.
The tune shift gives an offset of the horizontal tune in
mode-coupling analysis. We basically study the first term,
which is attributed to beam instabilities. The effects of the
tune shift are discussed toward the end of Sec. IV.
In recent eþe− colliders, the aspect ratio of the beam size

at the interaction point is very small; both the emittance
coupling εy=εx and beta ratio β�y=β�x are less than 1%, thus,
σy=σx < 0.01. Neglecting the dependence on y and σ̄y, the
wake force is expressed using A ¼ x=ð2σ̄xÞ, B ¼ A2, and
C ¼ 0 as follows:

Wð−Þ
x ðzÞ ¼ −

NðþÞre
γð−Þσ̄2x

�
1 −

ffiffiffi
π

p
θPz

2σ̄z
Imw

�
θPz
2σ̄z

�	
; ð12Þ

where θP ¼ θcσ̄z=σ̄x is the Piwinski angle [18]. The
normalized wake force is defined by

WNðζÞ ¼ −1þ ffiffiffi
π

p
ζ=2Imwðζ=2Þ

¼ −1þ ζe−ζ
2=4

Z
ζ=2

0

eu
2

du; ð13Þ

where ζ ¼ θPz=σz. The cross-wake force for e� beams can
be expressed by

Wð�Þ
x ðzÞ ¼ Nð∓Þre

γð�Þσ̄2x
WNðζÞ: ð14Þ

Figure 2 shows the normalized cross-wake force. This
wake force is significant in an area several times the size of
σ̄z=θP ¼ σ̄x=θc. The characteristics of the wake force can
be summarized as follows: W ¼ 0 at z ≈�1.8σ̄x=θc �
1.8σ̄z=θP. The maximal value is WðzÞ ≈ 0.28jWxð0Þj at
z ≈�3.0σ̄x=θc ¼ �3.0σ̄z=θP. The peak frequency of the
wake is estimated as ω ¼ 2πc=λ ¼ 2πcθP=6.0σ̄z, because
of λ ¼ 6.0σ̄z=θP. The oscillation period of the frequency in
a bunch is ωσ̄z=c ≈ θP.

The corresponding impedance is obtained by the Fourier
transform of the wake force,

Zð�ÞðωÞ ¼ i
Z

∞

−∞
Wð�ÞðzÞe−iωz=c dz

c
: ð15Þ

The normalized cross impedance can be defined by the
Fourier transformation of the normalized wake force.

ZNðυÞ ¼ i
Z

∞

−∞
WNðζÞe−iυζdζ ð16Þ

The variable of the impedance is υ ¼ ωσ̄z=ðcθPÞ. The cross
impedance is related to the normalized one as follows:

Zð�ÞðωÞ ¼ Nð∓Þre
γð�Þσ̄2x

σ̄z
cθP

ZNðυÞ: ð17Þ

Figure 3 shows the normalized cross impedance. The
cross-wake force is symmetric for the sign of z. Therefore,
the real part of the sine transform is 0. Only the imaginary
part of the cosine transform is significant. Because the wake
force has its minimum at z ¼ 0 (the maximum in the
absolute), it is dampened within one period. Therefore, the
imaginary part of the impedance is negative.
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FIG. 2. Normalized cross wake force, WNðζÞ ¼ −1þffiffiffi
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We assume transparency conditions in which two beams
have the same parameters in terms of their energy, bunch
population, emittances, β�, and tunes. By limiting the
relation for the dipole moment distributions of the electron
and positron bunches, the cross-wake force can be treated
as a normal wake for a single bunch. The first mode is the σ
mode, in which the dipole moment distributions of the two

beams as a function of z are identical, ρðþÞ
x ðzÞ ¼ ρð−Þx ðzÞ.

The other is the π mode, in which the dipole moments are

opposite, ρðþÞ
x ðzÞ ¼ −ρð−Þx ðzÞ. Substituting the relation for

ρð�Þ
x into Eq. (2), the momentum kick can be expressed by
the usual formula for a normal wake force,

ΔpxðzÞ ¼ ∓
Z

∞

−∞
Wxðz − z0Þρxðz0Þdz: ð18Þ

The equation represents an effective momentum kick given
by a dipole moment distribution inside a bunch. Choosing
the sign of the wake force, the behavior of the σ=π mode
can be studied as exhibiting transverse single-bunch
instability.
At the end of this section, we discuss the ordinary

instability theory [1] for the wake force in Eq. (14). The
beam distribution function for the dipole mode is expanded
by the azimuthal and radial modes in longitudinal phase
space. The tune for each mode is given by solving the
matrix relation,

ðμ − μx − lμzÞakl ¼
X∞

k0l0¼−∞

Mkl;k0l0ak0l0 ; ð19Þ

where akl is the amplitude of the kth radial and lth
azimuthal mode. Further, μx ¼ 2πνx and μz ¼ 2πνz are
the betatron and synchrotron tunes, respectively. The tune
μ ¼ 2πν is obtained as an eigenvalue of the matrix,
ðμx þ lμzÞδll0δkk0 þMkl;k0l0 . The matrix is truncated for 0 ≤
k ≤ nk − 1 and −lmax ≤ l ≤ lmax, where nk and lmax are
integer numbers. Choosing of numbers is performed
depending on the dominant modes caused by the wake
force. In this regard, the convergence of the solution for nk,
lmax should be investigated. The matrix M is expressed by

Mkl;k0l0 ¼ � βx
2
il−l

0−1
Z

∞

−∞
dωZðωÞgklðωÞgk0l0 ðωÞ; ð20Þ

where

gklðωÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πk!ðjlj þ kÞ!p �
ωσffiffiffi
2

p
c

�jljþ2k
e−ω

2σ2=2c2 : ð21Þ

When the wake force has zero strength, the eigentune is
μx þ lμz. In the lowest perturbation, the diagonal compo-
nents of M cause the modes to undergo tune shifts, which
are expressed for the σ=π mode by

Δνkl ¼∓ βx
2π

iZkl;eff ð22Þ

where

Zkl;eff ¼
Z

∞

−∞
dωZðωÞgklðωÞgklðωÞ: ð23Þ

Here, Zkl;eff is referred to as the effective impedance, which
is purely imaginary and results in a pure real tune shift. The
imaginary part of Zkl;eff is negative; therefore, the tune shift
is negative for the σ mode and positive for the π mode.
Considering the off-diagonal elements of M, Eq. (19) is

solved as the eigenvalue problem. The matrix elements are
given as the integration of the impedance with the bunch
spectrum. The matrix elements are 0 for l, l0 with different
parities as the impedance is symmetric for the frequency.
The matrix elements are retained for the exchange of l ↔ l0
and k ↔ k0 for l, l0 with the same parity. That is, the matrix
is real symmetric. As the eigenvalues of a real symmetric
matrix are real, the wake force of Eq. (14) causes a tune
shift, but this is not attributed to instability.
Equation (19) is given by an equation of motion, in

which the wake force is applied continuously [1]. This
wake force, which is induced by beam-beam interaction, is
localized at the interaction point. The localized property is
not considered in Eq. (19).
The normalized expression forM in Eq. (20) is obtained

using the normalized expression of the impedance in
Eq. (16):

Mklk0l0 ¼ πξxð1þ θ2PÞil−l0−1Nklk0l0 ðθPÞ; ð24Þ

where ξx is the horizontal beam-beam tune shift:

ξx ¼
Nð∓Þre
2πγε∓x

1

1þ θ2P
:

The normalized matrix Nklk0l0 is given as a function that
only depends on θP:

Nklk0l0 ðθPÞ ¼
Z

dυZNðυÞḡklðθPυÞḡk0l0 ðθPυÞ; ð25Þ

where

ḡklðθPυÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πk!ðjlj þ kÞ!p �
θPυffiffiffi
2

p
�jljþ2k

e−θ
2
Pυ

2=2:

The matrix M, which appears again in the discussion
concerning the localized wake force in Sec. IV, characterizes
the beam instability phenomenon due to the cross-wake
force. The matrix can be written using two parameters, the
horizontal beam-beam tune shift and the Piwinski angle θP.
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Numerical examples are presented for the linear tune
shift in Eq. (22) and eigenvalues (tune) for solving Eq. (19).
The parameters are those that were employed for the high-
luminosity version of FCCee-Z in 2016 [3,19], where the
horizontal beam-beam tune shift and Piwinski angle are
ξx ¼ 0.025 and θP ¼ 10, respectively. Figure 4 shows the
tune shift of each mode for the σ mode, which linearly
depends on the bunch population for which the tune shift is
real and negative. The largest tune shift has a negative
value, Δν ¼ −ξx=2, for k ¼ l ¼ 0. By contrast, the tune
shift for the π mode, which is opposite to that of the σ
mode, is positive.
The tune and instability growth are obtained by the

eigenvalues solved by Eq. (19), which implies that no
instability remains, because M is real symmetric. The
bunch population is scanned from 0 to the design number
N0 ¼ 1011, where the tune shift is ξxðN0Þ ¼ 0.025. The
eigentunes for every bunch population are calculated and
plotted in Fig. 5, where the mode numbers are truncated at
lmax ¼ 8; nk ¼ 20. The tunes, which are νx � lνz for a zero-
bunch population, shift linearly for a small population and
then deviate from the linear slope for a larger population.
Although the tunes overlap, imaginary parts do not appear.

III. PARTICLE TRACKING USING THE
CROSS-WAKE FORCE

A. Tracking algorithm

We performed a particle-tracking simulation for the
cross-wake force. The main purpose of the tracking

simulation was to investigate the characteristics of the
instability caused by the cross-wake force and obtain the
keys to complete the theory. The beam particles experience
beam-beam interaction, which is expressed by the cross-
wake force, at the collision point. The beam traverses an arc
section after/before the beam-beam interaction. In simu-
lations, it is straightforward to represent the wake force
localized at the collision point. The representation can be
achieved by alternately performing transformations for the
synchro-betatron motion in the arc section and for the
cross-wake force at the interaction point.
The betatron and synchrotron variables ðx; px; z; pzÞ are

transferred in the arc section by the following matrix:

Mi ¼
�

cos μi βi sin μi
−sin μi=βi cos μi

�
i ¼ x; z: ð26Þ

where the longitudinal beta is βz ¼ −σz=σδ and βz is
negative for positive momentum compaction.
The momentum kick due to the cross-wake force is

expressed by Eq. (2). Here, Δpx as a function of z depends
on the longitudinal distribution of the dipole moment of the
colliding beam.
The number of macroparticles generated by the Gaussian

distribution with the beam size and bunch length in the
transverse and longitudinal phase space is Nmp ¼ 10 000.
We take �3σz as the integration region for z0. The region

is discretized by zj with the width of Δz ¼ 0.02σz. The
density at zj [ρðzjÞ] is calculated by counting the number of
particles (nj) including zj � Δz=2, ρðzjÞ ¼ nðzjÞ=Nmp.
The dipole moment density [ρxðzjÞ] is the product of the
average position and density (

P
xi=nðzjÞ × ρðzjÞ ¼P

xi=Nmp) at zj. The integral of Eq. (2) can be represented
as follows:

Δpð�Þ
x ðzjÞ ¼ −

X
j0
Wð�Þ

x ðzj − zj0 Þρð∓Þ
x ðzj0 ÞΔz: ð27Þ

The momentum kick [ΔpxðzÞ] at z is calculated by
interpolating ΔpxðzjÞ.
The simulation was performed to repeat the transforma-

tions in Eqs. (26) and (27). The variables for the macro-
particles, hxi, hxzi, σx, and so on, were averaged in
succession.

B. Simulation results

We first study the cases satisfying the transparency
conditions. The head-tail instability caused by the cross-
wake force was studied. hxzi=ðσzσxÞ, which is the dipole
position xðzÞ=σx at z ¼ σz, informs the tilt of the beam for a
simple head-tail motion with l ¼ 1. Figure 6 presents the
simulation result for SuperKEKB beta detuned eight
times in both x and y [3,20,21], where the transparency
condition for the e� beams is assumed to be satisfied such
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that ξx ¼ 0.0054 and θP ¼ 8.0. Plot (a) shows the evolution
of hxzi=σzσx turn-by-turn. The evolution of the e− and eþ
beams has the same value and their signs change alternately
turn-by-turn. The phases of the oscillations are identical
and the tune is 0.5. The growth time is approximately
30 turns.
Plot (b) presents the distributions of the e−=eþ bunch at

the end of the tracking (300-th turn). The amplitude x is
plotted in arbitrary units because the momentum kick is
linear for x. The distributions of the two beams are

identical, ρðþÞ
x ðzÞ ¼ ρð−Þx ðzÞ, that is, the σ mode is induced.

The distributions imply that the l ¼ �1 mode is dominant.
Systematic studies were performed using the parameters

of FCCee-Z (HiLumi) [3], i.e., ξx ¼ 0.025, θP ¼ 10,
νx ¼ 0.54, and νz ¼ 0.018. The particle-tracking simula-
tion for the single beam using Eq. (18) was performed
assuming the σ mode. The bunch population was scanned
in the range of ξx ¼ 0.0025–0.025, corresponding to the
bunch population of Nð�Þ ¼ 0.1–1.0N0, in order to deter-
mine the threshold of the instability, where N0 ¼ 1 × 1011

is the design bunch population. Figure 7 shows the
evolution of the horizontal beam size, where the design
size is 10−5 m. The growth in the beam size appears at the
threshold of the bunch intensity, Nð�Þ ¼ 0.12N0,
ξx ¼ 0.0030. These simulations are based on linear theory.
Thus, the beam size is not saturated. For the π mode, in
which the plus sign of Eq. (18) is taken, the beam is stable
at ξx ¼ 0.025, Nð�Þ ¼ N0.
These results are in good agreement with the fact that the

two-beam simulation for SuperKEKB exhibits only clear σ
mode instability. The results for the two-beam simulation
using the cross-wake force in FCCee-Z also provided the
same result as in Fig. 7, and only the σ mode was observed.
In the previous section, we showed that the wake

force did not cause instability in the ordinary theory.

Equation (19) was derived for a continuously distributed
wake force, whereas a head-tail instability appeared in the
tracking simulation using a localized wake force.
This discrepancy in the appearance of instability is now

discussed. The essential question iswhether thewake force is
localized at the interaction point or uniformly distributed in
the ring. We investigated this by comparing the cases in the
tracking simulation in which the wake force is localized and
distributed. The distributed wake force was simulated by
dividing both the strength of the wake and the synchrotron
phase advance into ndiv ¼ 1, 2, 5, 8, 10. The particles
experience a reduced wake force ndiv times in a revolution.
Figure 8 shows the evolution of the horizontal beam size for
ndiv. The instability appears when the number of divisions
reaches ndiv ≦ 8. This indicates that the instability is only
caused by the “localized” cross-wake force.
We next investigated the dependency of the unstable

mode on the horizontal tune. Figure 9 presents the x − z
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distribution in the instability for various parameters of
FCCee-Z. Plots (a), (b), (c), and (d) present the distributions
for νx ¼ 0.54, 0.7, 0.8, and 0.96, respectively. The insta-
bility occurs in the σ mode at the design tune νx ¼ 0.54.
The azimuthal mode appears to be l ¼ �2. Plots (a) and
(d) have very similar distributions, except for the difference
between the σ and π modes. Plots (b) and (c) have complex
distributions; thus, a high-order azimuthal mode seems to
be induced. The latter two plots are also very similar, except
for the σ and π modes, i.e., π mode instability is dominant
in the horizontal tune νx > 0.75.
These results indicate that the beam-beam modes were

clearly separated. That is, either the σ or π mode was
observed. We can conclude that the wake force model
assuming either the σ or π mode in Eq. (18) is plausible.
Furthermore, whether the σ or π mode appears depends on
the horizontal tune: the σ mode appears for 0.5 < νx < 0.75,
whereas the πmode appears for 0.75 < νx < 1. The unstable
eigenmodes are almost identical for the symmetric point of
νx ¼ 0.75, except for σ or π.
The π mode instability can be observed depending on the

parameters even if the tune is νx < 0.75. An example is
shown in plot (e), where the bunch intensity is lower and
shows that ξx ¼ 0.01, 0.4N0, and νx ¼ 0.55.
An interesting case is for νx ¼ 0.75. Plot (f) presents the

x − z distribution of the unstable mode for N0. Instability
with a complex mode structure can be seen.

Here, we take into account the tune shift depending on z
in Eq. (11). Figure 10 shows the evolution of the horizontal
beam size. The threshold of the bunch intensity is
Nð�Þ ¼ 0.25N0, ξx ¼ 0.006. The distribution of the two
beams is almost the same as in Fig. 7(a). That is, the
azimuthal mode is l ¼ �2.
Thus far, we have studied cases satisfying the trans-

parency conditions. For asymmetric colliders such as
SuperKEKB, the parameters are different for the e� beams.

The horizontal beam-beam tune shifts are ξðþÞ
x ¼ 0.0174

and ξð−Þx ¼ 0.0099 for the eþ and e− beams, respectively, in
the operation with the detuned beta (8 × βxy; θP ¼ 8). The

synchrotron tunes are νðþÞ
z ¼ 0.0244 and νð−Þz ¼ 0.028.

When both horizontal tunes are the same for the design
number νx ¼ 0.53, the induced mode closely approximates

the σ mode. We show a special example for the tunes νð−Þx ¼
0.57 and νðþÞ

x ¼ 0.53 in which neither the σ nor the π mode
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FIG. 9. Beam distribution in the x − z plane at the collision
point in FCCee-Z. The horizontal tunes are (a) νx ¼ 0.54,
(b) νx ¼ 0.7, (c) νx ¼ 0.8, (d) νx ¼ 0.96, (e) νx ¼ 0.55,
N ¼ 0.4N0, and (f) νx ¼ 0.75.
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can be an eigenmode. Figure 11 presents the x − z
distributions of the two beams. The structure of the e−

beam is more complex than that of the eþ beam. The
number of azimuthal (l) modes of the e− beam appears to
be larger than those of the eþ beam.

IV. EIGENVALUE PROBLEM FOR LOCALIZED
SINGLE-BEAM WAKE FORCE

A. Formalism for localized single-beam wake force

We develop a mode-coupling theory guided by the
results of the tracking simulations in the previous section.
The wake force we are studying here is localized at the
interaction point as it is induced by the beam-beam
interaction. In Sec. II, we considered a wake force that
was uniformly distributed in a ring using Eq. (19). The
localized property of the wake force was not considered,
Thus, the instability was not caused by the wake force. The
localized property in the tracking simulation was consid-
ered by alternately performing transformations for the
synchro-betatron motion and wake force. Instability was
only observed for the particle tracking using the localized
wake force. We develop a mode-coupling theory based on
the same algorithm by alternately performing transforma-
tions. A similar study for a localized wake force is reported
in Ref. [22].
Let Ψðx; px; z; δ; tÞ be the distribution function of the

phase space at the collision point, where t is the time in
units of revolution time. x; px are normalized by p

ffiffiffiffiffi
βx

p
→p

and x=
ffiffiffiffiffi
βx

p
→ x. The density in longitudinal space is

given by

ψðJÞ ¼
Z

Ψdxdpx ρðzÞ ¼
Z

ψðz; δÞdδ: ð28Þ

The density is assumed to be Gaussian in longitudinal
phase space ψðJÞ ¼ expð−J=εzÞ=ð2πεzÞ, as a function only
of J ¼ ðz2=βz þ βzδ

2Þ=2, where ψ and ρ are independent of
t. The horizontal amplitude in longitudinal phase space and
dipole moment distribution in z are expressed by

xðJ;ϕ; tÞ ¼
R
xΨdxdpx

ψðJÞ
ρxðz; tÞ ¼

Z
xðJ;ϕ; tÞψðJÞdδ: ð29Þ

pxðJ;ϕ; tÞ is given by a similar formula in which x is
replaced with px.
½xðJ;ϕ; tÞ; pxðJ;ϕ; tÞ� is transferred to ½xðJ;ϕ; tþ 1Þ;

pxðJ;ϕ; tþ 1Þ� by the matrix for the betatron motion in the
arc section as follows:

Mβ ¼
�

cos μx sin μx
−sin μx cos μx

�
; ð30Þ

For the synchrotron motion, the position of the longitudinal
phase space ðJ;ϕÞ is transferred to ðJ;ϕþ μsÞ,

xðJ;ϕþ μs; tþ 1Þ ¼ xðJ;ϕ; tÞ: ð31Þ
The momentum change due to the wake force can be

expressed using Eq. (29) as follows:

ΔpxðJ;ϕ; tÞ ¼ ∓
Z

Wxðz − z0ÞxðJ0;ϕ0; tÞψðJ0ÞdJ0dϕ0:

ð32Þ
Equations (30), (31), and (32) are the linear trans-

formations for ½xðJ;ϕ; tÞ; pxðJ;ϕ; tÞ�. The combined trans-
formation multiplied by these three represents one
revolution, t to tþ 1. The transformations, which are the
synchro-betatron motion and the wake force at the inter-
action point, are performed alternately. The localized
property of the wake force is now considered. The trans-
formation is independent of t.
When the revolution transformation is expressed by a

matrix with a size that is approximately finite, the stability
of the colliding system can be studied by the eigenvalues/
vectors of the revolution matrix.
One method to obtain a matrix with finite size is to

discretize the longitudinal phase space, Ji, ϕj [23]. The
dipole amplitudes can be expressed by

xij ¼ xðJi;ϕj; tÞ pij ¼ pxðJi;ϕj; tÞ: ð33Þ
The synchrotron tune is assumed to be the inverse of an
integer nz ¼ 1=νz; ϕ is ϕj ¼ 2πjνz. Ji is divided asffiffiffiffi
Ji

p ¼ iΔJ
ffiffiffiffi
εz

p
, i ¼ 1; nJ. nJ, ΔJ are chosen such that

the dominant head-tail modes are sufficiently represented.
The convergence of nJ should be investigated. The size of
the matrix is 2 × nJ × nz. The synchrotron motion of
Eq. (31) is represented by the transformation of j to
jþ 1. Matrix M0 for the transformation of the synchro-
betatron motion is given by [3]

M0 ¼ δi;i0δj−1;j0

�
cos μx sin μx
−sin μx cos μx

�
: ð34Þ

The transformation for the momentum kick due to the wake
force MW can be expressed by

MW ¼
�

δi:i0δj;j0 0

−βxWðzi;j − zi0;j0 Þψ i0ΔJΔϕ δi:i0δj;j0

�
: ð35Þ

The matricesMW ,M0, and the revolution matrix of their
product are symplectic. The eigenvalues of the revolution
matrix appear as pairs of λ ¼ e�iμ. When μ is complex,
their complex conjugates λ� ¼ e∓iμ� are also eigenvalues.
We refer to ν ¼ μ=2π ¼ νR þ iνI as an eigentune. The real
part �νR is ambiguous for an integer. There are three cases
of eigenvalues of the symplectic matrix [24]: (1) A pair of
eigenvalues represented by e�iμ for a real μ. The real part of
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the tune is �νR. The tune can fall within the range of 0–0.5
or 0.5–1. The modes corresponding to the eigenvalues are
stable. (2) A pair of eigenvalues represented by e�μI or
−e�μI for the purely imaginary μ ¼ iμI. The real part of the
eigentune is 0 or 0.5 depending on the sign of the
eigenvalue. This is known as an integer or half-integer
resonance. The two modes with the eigenvalues e�μI are the
growth and damping modes with the same rate. (3) A set of
eigenvalues consists of four values, e�iμ and e∓iμ� for a
complex μ ¼ μR þ iμI . The four modes with the eigenval-
ues e�iμR�μI , which have two tunes�νR, are the growth and
damping modes with the same rate. The tune can occur
within the range of 0–0.5 or 0.5–1.0. The four eigenvalues
basically originate from two modes. The coupling between
the two modes results in modes represented by a complex
value containing imaginary μ. This is known as mode
coupling. The colliding beams are stable when all μ values
are real, whereas they are unstable when one or more μ
values are complex.
An eigenvector corresponding to an eigenvalue pro-

vides the mode for ½xðJ;ϕÞ; pxðJ;ϕÞ� with the eigentune.
The growth rate per revolution and the real part of the
tune are given by taking the eigenvalues as log jλj and
tan−1ðImλ=ReλÞ=ð2πÞ, respectively. The eigenvalues are
plotted in Fig. 5 of Ref. [3]. Here, we present the
eigenvector with the fastest growth rate in Fig. 12.
The ðJ;ϕÞ space is discretized by ΔJ ¼ 0.05; nJ ¼ 40.
The circular area of the ðJ;ϕÞ; ðz; δÞ space is ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jmax=εz
p ¼

zmax=σz ¼ δmax=σδ ¼ 2
ffiffiffi
2

p
. The surface on the ðz; δÞ space

represents the dipole amplitude distribution of the most
unstablemode. There are twopeaks along the azimuth angle,
such that the number of modes is l ¼ �2.
We next consider the dipole modes expanded by

azimuthal and radial modes as achieved in Eqs. (19) and
(20) [1],

xðJ;ϕ; tÞ ¼
X
l;k

xklðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k!
ðjlj þ kÞ!

s
Ĵjlj=2LðjljÞ

k ðĴÞeilϕ; ð36Þ

where LðlÞ
k is the Laguerre polynomial. pxðJ;ϕ; tÞ is

expanded in the same manner. The summation of l and
k is terminated by �lmax and kmax ¼ nk − 1, respectively.
The length of the dipole moment vector ðxkl; pklÞ
is 2ð2lmax þ 1Þnk.
The vector is transferred for t → tþ 1 by the matrix M0

for synchro-betatron motion in the arc section as follows:

M0 ¼ e−2πilνzδkk0δll0
�

cos μx sin μx
−sin μx cos μx

�
: ð37Þ

The momentum change for modes due to the wake force
can be expressed by

ΔpklðtÞ ¼ −2
X
k0l0

Mklk0l0xk0l0 ðtÞ: ð38Þ

The matrix Mklk0l0 , which is given in Eq. (20), is a real and
symmetric matrix and has off-diagonal elements between
modes with the same parity for l and l0. The vector ðxkl; pklÞ
is transferred by the wake force as follows:

MW ¼
�

1 0

−2Mklk0l0 1.

�
ð39Þ

The stability can be discussed by solving the eigenvalue
problem for the revolution matrix,MWM0. Incidentally, the
tune shift formula, Δν ¼ Kβx=4π, K ¼ 2Mklk0l0 , gives
Eq. (19).
The matrices MW , M0, and their product are symplectic.

The three cases mentioned above apply here as well. The
real part of the eigentune appears at νR ∼ νx � lmaxνz. The
tune can either occur within the range of 0–0.5 or 0.5–1.0.
The tune is wrapped when it crosses a half-integer or
integer. Both modes with �νR experience growth and
damping at the same rate.

B. Eigensystem for single-beam wake force

Here, the eigenvalue problem for a single beam is solved
for FCC-ee-Z, ξx ¼ 0.025, θc ¼ 10. We first discuss the
results for the design tune, νx ¼ 0.54, νz ¼ 0.018.
Figure 13 shows the growth rate for the σ=π modes, where
lmax ¼ 8; kmax ¼ 20 are chosen. The tune is terminated at
0.54þ 0.018 × 8 ¼ 0.684. For negative values of l, it
is wrapped and terminated at 1 − ð0.54 − 0.018 × 8Þ ¼
0.604.
The σ modes are unstable, whereas all the π modes are

stable. The unstable tunes are terminated at 0.5þmνz ≈ 0.6,
m ≤ 7, because of lmax ¼ 8. The equivalent value was
m ≤ 14 for the first method using Eqs. (34) and (35) in
Fig. 5 of Ref. [3]. The most unstable mode is at ν ¼ 0.5

FIG. 12. Eigenvector of an unstable mode with the fastest
growth rate. The z and δ axes are in units of σz and σδ,
respectively. x is in arbitrary units.
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and the growth rate is 0.18/turn. Thus, the result is consistent
with the previous result [3] for the dominant modes. This
result confirms that the assumption νz ¼ 1=nz and the choice
of lmax; kmax in this method are reasonable.
Plotting the eigentune spectrum as a function of the

bunch population is helpful for illustrating the mode-
coupling feature. The bunch population is used as a control
parameter for the wake force strength. The eigenvalues are
calculated and plotted for scanning the bunch population
Nð�Þ ¼ 0 − N0, where N0 ¼ 1 × 1011 in FCCee-Z.
Figure 14 presents the eigenvalues as a function of the
bunch population. Plots (a) and (b) show the tune (νR) and
growth rate (μI) for the σ (red points) and π (blue) modes,
respectively. In the plots, the lines start from ν ¼ νx þ lνz at
N ¼ 0, ν ¼ 0.504; 0.522; 0.54; 0.558; 0.576;…, which are
synchrotron sidebands. For ν < 0.5, ν, which is wrapped,
the results are ν ¼ 1 − ðνx þ lνzÞ for l ≤ −3. For
l ¼ −3;−4;−5, ν is 0.514, 0.532, and 0.55, respectively,
at Nð�Þ ¼ 0.
The σ mode is plotted using red points. The tune shift is

negative for the σ mode in this model. An instability
appears when the l ¼ −2; ν ¼ 0.504 mode approaches 0.5
at Nð�Þ ≈ 0.1N0. A half-integer resonance arises for the
l ¼ −2 mode. At similar Nð�Þ ≈ 0.1N0, the l ¼ −1;−3 and
l ¼ 0;−4 modes merge and an imaginary tune appears.
Mode coupling occurs between modes with the same parity.
Increasing the wake strength, modes l ¼ 1;−5, l ¼ 2;−6,
and so on, are coupled. Figure 4 indicates that the tune shift
is smaller for larger jlj. The threshold is higher when jlj is
larger. As shown in Fig. 14, the half-integer resonance for
the l ¼ −2 mode is the strongest.
The π modes are plotted using blue points. The tune shift

is positive for the π mode. The tune of the l ¼ −2 mode
increases and crosses to l ¼ −3 at Nð�Þ ¼ 0.7N0. No
coupling occurs between the l ¼ −2 (even) and l ¼ −3
(odd) modes. The tune remains real even above ≥ 0.7N0.
That is, instability only occurs at the σ mode for νx ¼ 0.54.

Several lines start from the same tune with different
radial modes, k. The threshold seems to be higher with the
increase in k as the tune shift decreases with k.
The same calculation is carried out for νx ¼ 0.55.

Figure 15 shows the variation in the (a) tune and (b) growth
rate for the σ (red) and π (blue) modes. The tune of the
l ¼ −3 mode is closest to 0.5 but less than 0.5,
νx − 3νz ¼ 0.496. For increasing Nð�Þ, the tune shifts
upward for the σ mode, Thus, it does not approach 0.5.
The mode ν ¼ 0.514ðl ¼ −2Þ reaches 0.5 at 0.4N0. For the
instability of the σ mode, the threshold increases four
times compared with that for νx ¼ 0.54. The modes with
l ¼ −1;−3 couple at a similar bunch population 0.4N0.
The growth rates (μI ¼ 0.22) at N0 are similar to that
for νx ¼ 0.54.
The tune shift of the π mode is positive. For increasing

Nð�Þ, the tune shifts downward for l ¼ −3 (wrapped).
Hence, it easily reaches 0.5 at Nð�Þ ¼ 0.2N0. The threshold
decreases, while the growth rate above the threshold is lower
compared with that of the σ mode. The π mode instability at
0.4N0 can be seen in the simulation of Fig. 9 (e). The growth
rate of the σ mode is one order larger than that of the π mode
at Nð�Þ ¼ N0, as seen in plot (b).
The same calculation is carried out for νx ¼ 0.96. The

tune of the π mode increases at the reflected symmetric for
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FIG. 13. Growth rate for each eigenmode as a function of the
eigenmode tune for a bare tune νx ¼ 0.54 in FCCee-Z. The red
and blue points in the plot represent the σ and π modes,
respectively.

FIG. 14. Eigenvalues of σ and π modes as a function of the
bunch population (N) for FCCee-Z parameter, where
ξxðN0 ¼ 1011Þ ¼ 0.025, θP ¼ 10, νx ¼ 0.54, and νz ¼ 0.018.
The tune and growth rate for scanning the bunch population
Nð�Þ ¼ 0 − N0 are plotted in (a) and (b). Red and blue points are
used for the σ and π modes, respectively.
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νx ¼ 0.75. The unstable π modes appear at the same Nð�Þ
as that for νx ¼ 0.54 and at the reflected tune for 0.75, that
is, 1.5 − ν.
Figure 16 presents the (a) tunes and (b) growth rate of the

σ modes at νx ¼ 0.75, where nk ¼ 60; lmax ¼ 30. It can be
seen that beam instability arises and the beam shape is
complex in the particle tracking in Fig. 9. It is seen that the
higher-order mode is dominant for νx ¼ 0.75. It makes
sense that the tune approaches from 0.75 to 0.5 at
l ¼ 0.25=0.018 ¼ 14. Plot (a) shows the tune near ν ¼ 0
or 1. Mode-coupling behaviors are seen near ν ¼ 0.5, 0.75,
and 1(0). Plot (b) shows the growth rate in the tune range
0.5 < ν < 0.7 (blue), 0.7 < ν < 0.8 (green), and ν > 0.8
(red). The growth rate near ν ∼ 0.5 is the highest, that
near ν ∼ 1 is medium, and that near ν ∼ 0.75 is low at N0.
A similar figure is obtained for the π mode; however,
the order for the tune range of fast to slow growth is
reversed.
These results enable the desirable tune for instability to

be found. Choosing νx ¼ ð−nþ 0.5Þνz (n is an integer)
maximizes the distance between the σ and π modes. If the π
mode is weak, it is possible to choose a somewhat
higher tune.
We now consider the horizontal beam-beam tune shift

discussed in Eqs. (10) and (11). When two Gaussian beams
collide, each beam experiences a coherent tune shift of

ξx=2. In Sec. II, the tune shift of the σ=π mode for the
k ¼ l ¼ 0 mode was ∓ξx=2. The total tune shift of the
σ mode is 0, whereas that of the π mode is ξx for the k ¼
l ¼ 0 mode. These tune shifts agree with the common
understanding for the beam-beam tune shift. Considering
the beam-beam tune shift, the synchro-betatron matrix M0

in Eq. (37) can be replaced by

M0ξ ¼ e−2πilνzδkk0δll0
�

1 0

−2πξx 1

��
cos μx sin μx
−sin μx cos μx

�
:

ð40Þ

Figure 17 presents the eigenvalues including the beam-
beam tune shift as a function of the bunch population. All
tunes of the σ and π modes shift in positive proportion to
Nð�Þ. The threshold of the σ mode instability, which is
Nð�Þ ¼ 0.2N0, increases twice, whereas the growth rate at
N0, μI ¼ 0.15, decreases slightly. These results agree with
those of the particle-tracking results in Fig. 10. The π mode
instability appears at 0.6N0, but the growth rate, μI ¼ 0.03,
is 1=5 lower than that of the σ mode. Overall, these results
do not qualitatively differ from the previous results without
the beam-beam tune shift in terms of the appearance of the
beam-beam instability.

FIG. 15. Eigenvalues of the σ and π modes as a function of the
bunch population for the FCC-ee-Z parameter, where νx ¼ 0.55
and νz ¼ 0.018. The tune and growth rate are plotted in (a) and
(b), respectively. The red and blue points represent the σ and π
modes, respectively.

FIG. 16. Eigenvalues of the σ modes as a function of the bunch
population for the FCC-ee-Z parameter, where νx ¼ 0.75 and
νz ¼ 0.018. (a) Tune near ν ¼ 0 or 1. (b) Growth rate in the tune
range 0.5 < ν < 0.7 (blue), 0.7 < ν < 0.8 (green), and ν > 0.8
(red).
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V. EIGENVALUE PROBLEM FOR LOCALIZED
CROSS-WAKE FORCE

A. Formalism for two-beam mode

The mode-coupling theory is extended to study two-
beam modes correlated by the cross-wake force in Eq. (2).
Two methods were used in the single-beam wake force:
(1) dipole amplitudes discretized in longitudinal phase
space and (2) expanded by azimuthal and radial modes.
Both methods can be extended to the two-beam mode. We
discuss an extension of the second method using the
azimuthal (l) and radial (k) mode expansion. A vector
for the dipole amplitudes of the e� beams is defined by

xkl ¼ ðxðþÞ
kl ; pðþÞ

kl ; xð−Þkl ; pð−Þ
kl Þ. The length of the vector is

4 × nkð2lmax þ 1Þ. Each component is a coefficient of the
kl expansion in Eq. (36). The vector is transferred by the
matrices, Ms and Mβ, for the synchrotron and betatron
motion in a revolution, respectively. Ms is a diagonal
matrix with the synchrotron phase advance, e2πilνz ,

Ms ¼
�
e−2πilν

ðþÞ
s 0

0 e−2πilν
ð−Þ
s

�
; ð41Þ

where νð�Þ
z are the synchrotron tunes for the e� beam.

Additionally, Mβ consists of eight diagonal submatrices
that describe the betatron motion with phase advances

2πνð�Þ
x for the e� beams. The submatrices are diagonal, and

their size is ½nkð2lmax þ 1Þ�2. The diagonal elements are

sin μð�Þ
x or cos μð�Þ

x ,

Mβ ¼

0
BBBBB@

cos μðþÞ
x sin μðþÞ

x 0 0

−sin μðþÞ
x cos μðþÞ

x 0 0

0 0 cos μð−Þx sin μð−Þx

0 0 −sin μð−Þx cos μð−Þx

1
CCCCCA:

ð42Þ

The momentum change due to the cross-wake force is
given by

ΔpðþÞ
kl ¼ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðþÞ
x βð−Þx

q X
k0l0

MðþÞ
klk0l0x

ð−Þ
k0l0 : ð43Þ

The matrix M is expressed by

MðþÞ
klk0l0 ¼

1

2
il−l

0−1
Z

∞

−∞
dωZðþÞ

1 ðωÞgðþÞ
kl ðωÞgð−Þk0l0 ðωÞ; ð44Þ

where

gð�Þ
kl ðωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2πk!ðjlj þ kÞ!

s �
ωσð�Þffiffiffi

2
p

c

�
2kþjlj

exp

�
−
ω2σ2ð�Þ
2c2

�
;

ð45Þ

where the impedance for the e� beam is provided in
Eq. (17). The transfer matrix for xkl is expressed by

MW ¼

0
BBBBB@

1 0 0 0

0 1 −2MðþÞ
klk0l0 0

0 0 1 0

−2Mð−Þ
klk0l0 0 0 1

1
CCCCCA: ð46Þ

The revolution matrix is represented by the product of
the matricesMWMs andMβ. They are symplectic matrices,
and as such, the eigenvalues of the revolution matrix are
expressed by e�iμ. The stability of the two-beam system is
determined by μ.

B. Examples of two-beam mode

We discuss the two-beam mode for the three cases
studied in the previous sections, (1) FCCee-Z, νx ¼ 0.54=
0.96, (2) FCCee-Z, νx ¼ 0.75, (3) asymmetric collision of

SuperKEKB, νðþ=−Þ
x ¼ 0.53=0.57.

The eigensystem in two-beam formalism compares
with that of the single beam in Sec. IV for FCCee-Z
at νx ¼ 0.54=0.96, where ξx ¼ 0.025, θc ¼ 10, and

FIG. 17. Eigenvalues of the σ and π modes including the beam-
beam tune shift (ξx=2) as a function of the bunch population (N)
for FCCee-Z. The tune and growth rate for scanning the bunch
population Nð�Þ ¼ 0 − N0 are plotted in (a) and (b), respectively.
The red and blue points represent the σ and π modes, respectively.
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νz ¼ 0.018. The reliability of single-beam formalism
assuming the σ or π mode is examined. The eigenvalue
problem is solved for nk ¼ 41; lmax ¼ 10. The length of the
vector xkl is 3,444. The same plot as in Fig. 13 was obtained
for the two-beam mode. The eigenvector informs the beam-
beam mode with the eigentune. Figure 18 presents
the eigenvector for the mode in which the eigenvalue

has the largest absolute value. Plots (a) and (b) show xð�Þ
kl

for the horizontal tune νx ¼ 0.54 and 0.96 as a function of
k. The upper and lower plots are the real and imaginary
parts of the eigenvector, xkl, respectively. Several points
with different l are plotted as a function of k. The
eigenvector is significant for k ≤ 20 jlj ≤ 7, and xðJ;ϕÞ
is reconstructed by the eigenvector xkl using Eq. (36).
In plot (a), the eigenvector components are equal for the

eþ and e− beams, xðþÞ
kl ¼ xð−Þkl . A similar plot given for the

momentum pð�Þ
kl indicates the same relation, pðþÞ

kl ¼ pð−Þ
kl .

Hence, the σ mode is excited at νx ¼ 0.54.
Conversely, in (b), the eigenvector components are

opposite for the e� beams, xðþÞ
kl ¼ −xð−Þkl . It can also be

seen that pðþÞ
kl ¼ −pð−Þ

kl . The π mode is excited at
νx ¼ 0.96. The eigenvector for νx ¼ 0.54 or 0.96 in the
two-beam mode explains the dominance of σ or π for νx <
0.75 or > 0.75 in Secs. III and IV.
In νx ¼ 0.75, eigenvalue analysis using a single beam

exhibits instability for both the σ=π modes. This suggests
that the assumption that either the σ or π mode arises for
νx ¼ 0.75 is unsuitable. Therefore, the two-beam mode
should be studied. Figure 19 presents the eigenvalues and
growth rate as a function of the tune at N0. Plots (a) and
(b) show the eigenvalues for the two-beam and single-beam
formalisms, respectively. In plot (b), the red and blue points
represent the assumption of the σ and π modes, respec-
tively. The growth rates for the tune in plots (a) agree with

the merged rate of the σ and π modes in plot (b). The most
unstable modes are ν ¼ 0.5 for the σ mode and ν ¼ 1 for
the π mode. The eigenvectors corresponding to the modes

were xðþÞ
kl ¼ xð−Þkl for ν ¼ 0.5 and xðþÞ

kl ¼ −xð−Þkl for ν ¼ 1.
We found that single-beam formalism can be applied to the
problem, even for νx ¼ 0.75.
When the transparency condition between the two beams

is broken, it is clear that single-beam formalism cannot be
applied. This is the only way to treat the two-beam mode.
The particle-tracking results are presented in Fig. 11 for
SuperKEKB, where the tunes of the e� beams are νðþÞ

x ¼
0.53 and νð−Þx ¼ 0.57, respectively. The beam parameters
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(a) horizontal tune νx ¼ 0.54 and (b) 0.96, as a function of k
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parts of the eigenvector, respectively.
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are ξðþÞ
x ¼ 0.0174, ξð−Þx ¼ 0.0099, and θP ¼ 8. This sug-

gests that the different azimuthal modes for the e� beams
are excited. Figure 20 presents the eigenvalues and growth
rate vs the tune for SuperKEKB. Unstable modes are seen
at ν ¼ 0.5 and 0.528. Figure 21 presents an eigenvector
with the largest eigenvalue in absolute terms. Plots (a) and
(b) show the eigenvector as functions of l and k, respec-
tively. The mode with the fastest growth is l ¼ �1 for the
eþ and �1;�3 for the e− beam. This is reasonable when
we recall the tune and the condition νx þ lνz ≈ 0.5.

VI. CONCLUSIONS

Beam-beam interactions with a large crossing angle
induce a cross-wake force in which the dipole moment
density of one beam provides a transverse kick to the other
colliding beam. We obtained a formula for the cross-wake
force, which could be treated as the usual single-beamwake
force, assuming the same (σ mode) or opposite (π mode)
dipole moment distributions of the two beams. The wake
force did not exhibit instability in ordinary mode-coupling
theory.
Particle-tracking simulations were examined using the

single-beam wake and cross-wake force. σ mode instability
was observed in the horizontal tune slightly above half an
integer, νx ¼ 0.54. This tune is adopted in most lepton
colliders to obtain high luminosity. For the single-beam
wake force, assuming the existence of a π mode, instability
did not occur. The simulations also showed that a localized
wake force is essential to give rise to an instability.
Because the ordinary mode-coupling theory did not

consider the localized wake force such as that induced
by beam-beam interaction, a mode-coupling theory for the
localized wake force was developed. Most of the character-
istics of the instability seen in the tracking simulation are
explained by the theory: the eigentune and number of
unstable modes, the threshold of the instability, and the
appearance of a σ or π mode.
The mode-coupling theory was further extended to treat

the two-beam mode correlated by the cross-wake force
without the assumption of the π or σ mode. We found the
σ=π separation to be effective for two beams satisfying the
transparency conditions on the beam-beam tune shifts and
tunes. For asymmetric colliders such as SuperKEKB, it is
essential to study the two-beam mode. Eigenvalues and
eigenvectors for νx ¼ 0.53=0.57 for the e� beams were
presented.
Future aspects that remain to be studied are the follow-

ing. It is necessary to study the instability experimentally at
SuperKEKB during the upcoming Phase-II commission-
ing. The strong-strong simulation showed the growth of the
horizontal emittance above the instability threshold [3].
This growth appears to be caused by the damping of
coherent motion and requires a detailed comparison with
the strong-strong simulation. Other factors that require

investigation are the effects of chromaticity, collisions with
two interaction points, and combined phenomena coupled
with beamstrahlung [25].
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