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Abstract. We evaluate the theoretical uncertainties in next-to-leading order plus parton shower predictions
for top quark pair production and decay in hadronic collisions. Our work is carried out using the Herwig 7
event generator and presents an in-depth study of variations in matching schemes with two systematically
different shower algorithms, the traditional angular-ordered and alternative dipole shower. We also present
all of the required extensions of the Herwig dipole shower algorithm to properly take into account quark
mass effects, as well as its ability to perform top quark decays. The predictions are compared at parton
level as well as to LHC data, including in the boosted regime. We find that the regions where predictions
with a non-top-quark-specific tune differ drastically from data are plagued by large uncertainties which
are consistent between our two shower and matching algorithms.

1 Introduction

Top quark pair production is an extremely important
process at the Large Hadron Collider (LHC) due to its
significant cross section. As the top quark decays before
it can hadronize, top quark pair production provides us
with a unique opportunity to study Quantum Chromody-
namics (QCD) radiation and corrections involving massive
particles. This includes measurements of the top quark
mass, which is important to constrain the higher-order
corrections in the electroweak sector of the Standard Model.
Top quark pair production at hadron colliders has become
a ‘standard candle’ due to the accurate calculation [1] and
measurement of the total cross section. However, the large
production rate also allows the measurement of an ever
increasing range of kinematic quantities. This means that
different kinematic reconstruction strategies for the top
quark, and its mass in particular, including in the boosted
regime, can be evaluated. It also means that we can study
QCD in detail by comparing with less inclusive calcula-
tions and Monte Carlo event generators. The large produc-
tion rate also means that top quark pair production, par-
ticularly with the presence of extra jets from QCD radia-
tion, is often the main background to searches for physics
Beyond the Standard Model. A number of measurements
are available both extracting the top quark mass [2,3], as
well as a number of kinematic properties, e.g. [4].

Monte Carlo event generators [5–7] used for predictions
of top quark pair production have seen several improve-
ments, which mainly concentrated on combining next-to-
leading order QCD corrections with subsequent parton
shower algorithms [8–11], and the production of additional
jets using multi-jet merging algorithms, e.g. those em-
ployed in the Herwig 7 event generator [12, 13]. Some of
the matching algorithms have addressed off-shell effects
in the calculation of the hard process [14], though none of
the event generators yet features shower algorithms which
properly take into account the effect of the finite width
of the top quark and its interplay with the parton shower
infrared cutoff.

As compared to indirect approaches based on total
cross section measurements, these state-of-the-art simu-
lations provide a very sophisticated description of kine-
matic properties and thus allow to extract the top quark
mass from kinematic properties with an unprecedented
precision through template fits. These fits determine the
top quark mass parameter used by the event generator
simulation. The question in what scheme this mass pa-
rameter needs to be interpreted, and what uncertainties
need to be taken into account, is still subject to ongoing
research [15–17], and for coherent parton shower evolution
in e+e− collisions first analytic and numeric insights have
been gained on the role of the mass parameter, including
measurements of the top quark mass from reconstruction
of its decay products [18]. Some aspects of the hadroniza-
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2 K. Cormier et al.: Parton Showers and Matching for Top Quark Pair Production

tion effects in such observables have recently been evalu-
ated [19], however a comprehensive analysis of variations
in parton shower evolution, and the impact of different
paradigms to include higher order corrections has not yet
been performed.

The present work therefore, in comparison to what one
would typically consider state of the art, makes a deliber-
ate step back and is centred around a thorough investiga-
tion of how reliable predictions by established paradigms
are across phase space. This question has not yet been
answered by an in-depth comparison of similar, yet algo-
rithmically very different, predictions and their associated
variations which can be established to constitute a set of
uncertainties when meeting well-defined constraints [20].
We do this particularly in the light of event generator
predictions which are highly specialized in their parame-
ter choices and thus might generate a wrong impression of
how well theoretical understanding is under control, and
the associated question of what improvements, specifically
concerning multi-jet merging, are required. Also it seems
likely that these simulations will remain the main tool
used by the LHC experiments to study top quark physics
for the foreseeable future.

We also use this study to introduce some improvements
to both radiation from heavy quarks and the handling of
their decays in the Herwig dipole shower module. These
changes enable us to perform this study between different
matching and shower algorithms in a consistent way, using
the same hadronization and underlying event models and
with control over shower starting scales and resummation
in the hard emission region.

2 Outline of this Work

In this study we use the most recent version, 7.1.4, of
the Herwig event generator to make use of the various
improvements to the simulation of heavy quarks in pro-
duction, shower emissions and decays. The modelling of
this physics will be discussed in detail in the following sec-
tions. In the version considered Herwig sets up the next-
to-leading order (NLO) QCD corrections to the top quark
pair production process using the automated facilities out-
lined in [10], using external libraries [21, 22] to evaluate
the required amplitudes on a phase-space point by phase-
space point basis. The production of top quark pairs has
been validated against MCFM [23–26]. NLO corrections
to the decays are included within a NLO matched parton
shower simulation, while we neglect non-factorizable cor-
rections which are beyond the leading contribution in the
narrow-width approximation.

Matching the production process to the parton shower
is possible within both the subtractive (MC@NLO-type
[8]) and the multiplicative (Powheg-type [27]) matching
paradigms, using the matching subtractions obtained by
the Matchbox module along with the QCD corrections
required. The matching of the decay to the parton shower
is available within the multiplicative paradigm in both

the QTilde1 (angular-ordered) [28] and Dipole (Catani-
Seymour [29,30] dipole-type) [31] shower modules.

The details of the simulation inputs including the scale
choices, parton distribution functions (PDFs), strong cou-
pling running and analyses used to obtain results are in-
cluded in the subsequent sections. The default electroweak
parameters of Herwig 7.1 are used in all runs and for the
decay corrections the top mass is used as the renormaliza-
tion scale.

The remainder of this work is organized as follows.
In Section 3 we consider QCD radiation from the top
quark pair production process. In Section 4 the parton
shower simulation of the decay stage is discussed in detail.
We then proceed with an in-depth discussion of the NLO
matching in Section 5. We use the framework to assess
phenomenologically relevant uncertainties in the matched
NLO+PS predictions in Section 6 and conclude with a
detailed analysis of our predictions compared to available
data from the LHC in Sections 7 and 8. Finally we present
our conclusions.

3 Radiation in Production of Heavy Quarks

3.1 Generalities

For both parton shower algorithms used in the Her-
wig event generator, a colour flow is assigned to the hard
process on the basis of the tree-level colour sub-amplitudes
sq. This is a consequence of evaluating the colour corre-
lations relevant to the soft radiation pattern in the limit
of a large number of colour charges, Nc →∞. The chosen
colour flow is used to set the initial conditions in both
parton shower modules, in particular identifying which
‘dipole’-type systems radiate coherently. Radiation in both
parton showers is also subject to a veto on hard emissions,
as set by the hard shower scale, to be discussed in more
detail in Sec. 6.

Since a comprehensive treatment of non-factorizable
QCD effects which connect the production process and
the decay beyond the narrow-width-approximation is not
available both parton shower algorithms evolve the pro-
duction process down to the infrared cutoff which, in the
current version, is a cutoff on the relative transverse mo-
mentum of the emissions. Once the cutoff has been reached
by the evolution of the hard process, the decay of the top
quark(s) is performed, and further showering of the decay
system is simulated as discussed in Sec. 4.

3.2 Angular-Ordered Shower

The improved angular-ordered shower used by default
in Herwig is described in detail in Refs. [6, 28]. Here

1 An old-style matrix element correction is used by default
in the angular-ordered shower, which is formally equivalent to
the Powheg method.
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we will only summarize the important details relevant
for heavy quark production together with recent improve-
ments not described in Refs. [6, 28]. The momenta of the
partons produced in the parton shower are decomposed in
terms of the 4-momentum of the parton initiating the jet,
p (p2 = m2, the on-shell parton mass-squared), a light-like
reference vector, n, in the direction of the colour partner
of the parton initiating the jet and the momentum trans-
verse to the direction of p and n. The four momentum of
any parton produced in the evolution of the jet can be
decomposed as

qi = αip+ βin+ q⊥i, (1)

where αi and βi are coefficients and q⊥i is the transverse
four momentum of the parton (q⊥i · p = q⊥i · n = 0). If
we consider the branching of a final-state parton i to two
partons j and k, i.e. i→ jk, the evolution variable is

q̃2
i =

q2
i −m2

i

zi(1− zi)
, (2)

where q2
i is the square of the virtual mass developed by

the parton i in the branching, mi is the physical mass of
parton i, and zi is the momentum fraction of the parton
j defined such that

αj = ziαi, αk = (1− zi)αi. (3)

The transverse momenta of the partons produced in the
branching are

q⊥j = ziq⊥i + k⊥i, q⊥k = (1− zi)q⊥i − k⊥i, (4)

where k⊥i is the transverse momentum generated in the
branching. In this case the virtuality of the parton i is

q2
i =

p2
Ti

z(1− z) +
m2
j

z
+

m2
k

1− z , (5)

where pTi is the magnitude of the transverse momentum
produced in the branching defined such that k2

⊥i = −p2
Ti.

In this case the probability for a single branching to
occur is

dP =
dq̃2
i

q̃2
i

αS
2π

dφi
2π

dziPi→jk(z, q̃), (6)

where Pi→jk(z, q̃) is the quasi-collinear splitting function
and φi is the azimuthal angle of the transverse momentum
k⊥i generated in the splitting.

As described in Ref. [28] this choice of evolution vari-
able, including the mass of the radiating parton, together
with the use of the quasi-collinear splitting functions gives
a better treatment of radiation from the parton in the
small-angle region. In this region we expect a suppression
of soft radiation for angles θ . m/E, where θ is the angle
of emission, m and E the mass and energy of the radiating
parton, respectively. The choices used in Herwig 7 give
the expected smooth turn-off of soft radiation rather than
the ‘dead-cone’2 [32] used in HERWIG 6 [33].

2 i.e. radiation was forbidden for θ < m/E

The angular-ordered shower is simulated as a series of
individual emissions, and only the shower variables (q̃, z, φ)
are calculated for each emission. Once the evolution has
terminated, i.e. there is no phase space available for fur-
ther emissions, the external particles are taken to be on-
shell and the physical momenta reconstructed.

If we set αi = 1 for final-state progenitors3 and αi = x,
the light-cone momentum fraction, for initial-state progen-
itors then using Eq. (3) and the momentum conservation
relation αi = αj + αk, all the α values can be iteratively
calculated, starting from the hard process and working
outward to the external legs. For final-state radiation the
transverse momenta can be calculated in the same way us-
ing Eq. (4), whereas for initial-state radiation the trans-
verse momentum is calculated iteratively assuming that
the parton extracted from the proton as a result of the
backward evolution has zero transverse momentum.4 The
β variables for the external partons can then be calculated
using the on-shell condition and those for radiating par-
tons using momentum conservation, i.e. βi = βj+βk. The
latter step may be iterated until the progenitor is reached
giving all the β coefficients.

As a result of the shower evolution all the progenitor
partons, I, produced in the hard process gain a virtual
mass, i.e. the progenitor partons, which initiated the jets,
are no longer on mass shell, q2

I 6= m2
I . We need to restore

momentum conservation in a way that disturbs the inter-
nal structure of the jet as little as possible. The easiest
way to achieve this is by boosting each jet along its axis
so that their momenta are rescaled, i.e. for every jet a
Lorentz boost is applied such that

qI =

(
qI ;
√
q2
I + q2

I

)
boost−→ q′I =

(
kIpI ;

√
k2p2

I + q2
I

)
,

(7)
where kI is the rescaling factor. The rescaling factors, and
the choice of frame in which to apply the boosts, are de-
termined by the choice of which kinematic variables we
wish to preserve in the rescaling process. In Ref. [28] an
approach was suggested based on the colour connections
between the partons initiating the jets:

– for colour-connected final-state partons the reconstruc-
tion was performed in the centre-of-mass frame of the
partons and the momenta rescaled such that the centre-
of-mass energy was conserved, i.e.

n∑

I=1

√
k2p2

I + q2
J =
√
s, (8)

where
√
s is the centre-of-mass energy and the same

rescaling factor k is used for all the jets;
– for colour-connected initial-state partons the recon-

struction is performed in the hadronic centre-of-mass

3 the partons from the hard process which initiate the parton
shower.

4 or a non-perturbative ‘intrinsic’ transverse momentum.
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frame and the partonic centre-of-mass energy is pre-
served. In order to fully specify the kinematics an ad-
ditional constraint is required which in Ref. [28] was
chosen such that the rapidity of the partonic collision
was preserved;

– for partons with a colour connection between the initial
and final state, such as Deep Inelastic scattering (DIS),
the system is reconstructed in the Breit frame of the
partons such that the virtuality of the system is pre-
served.

As the majority of hadronic collisions cannot be decom-
posed into separate colour-singlet systems in early versions
of Herwig++ hadronic collisions were all reconstructed
by first using the procedure for colour-connected initial-
state partons and then that for final-state partons. This
was changed such that if possible the hard process was
decomposed into separate colour-singlet systems5, for ex-
ample in qq̄ → tt̄, then the separate colour-singlet systems
were reconstructed as described above.

In Herwig 7 we have adopted an approach which
attempts to use as much information as possible on the
colour structure of the hard process when performing the
reconstruction. In order to achieve this we now consider
all the partons in the hard process and commence the re-
construction with the parton which had the hardest, i.e.
largest pT , emission in the parton shower. The system
formed by this parton and its colour partner is then re-
constructed, with either a full reconstruction of the jet
produced by the colour partner, the default, or optionally
just using the partner to absorb the recoil leaving it on its
partonic mass shell and not performing the reconstruction
of the full jet. This procedure is repeated for the parton
with the hardest shower emission which has not been re-
constructed until all the kinematics of all the jets have
been reconstructed. Together with an additional option of
preserving the momentum fraction of the softer incoming
parton in the hard process, for systems with colour con-
nections between initial-state partons, this means that for
a single emission the kinematics reduce to those of the
Catani-Seymour [29, 30] dipoles making matching in the
MC@NLO approach simpler.

3.3 Dipole Shower

The dipole shower algorithm evolves singlet systems of
colour connected dipoles, referred to chains [10], based on
the colour flow information assigned to the hard process.
For the massless case the details of the dipole shower algo-
rithm in Herwig have been discussed in Refs. [10,31]. In
this paper we focus on the generalization of the algorithm
to radiation from heavy quarks, and radiation in the de-
cays of coloured objects, to be covered in detail in Sec. 4.
While the heavy quark treatment in Ref. [34] has previ-
ously been based on Ref. [35], an improved description
is presented here which is in one-to-one correspondence

5 in the large number of colours, NC limit.

b̃

b

ĩj

i

j

(a) Final-initial dipole.

a

j

ãj
k̃

k

(b) Initial-final dipole.

k̃

k

ĩj
j

(c) Final-final dipole.

Fig. 1: Diagrams of the massive dipoles.

to the massless case, and in particular adopts the trans-
verse momentum relevant in the quasi-collinear limit [30],
with a smooth massless limit. Throughout this work we
use the terminology ‘massive dipole’ to refer to a dipole
that includes at least one massive parton and/or splits to
produce at least one massive parton.

Splittings involving massive incoming partons are not
currently implemented in the Herwig dipole shower. This
means that there are three possible dipole configurations
involving massive partons. These are shown diagrammati-
cally in Fig. 1. Massive final-final (FF) dipoles, with final-
state emitter and spectator, Fig. 1c, must include at least
one massive outgoing parton before or after the splitting.
Massive final-initial (FI) dipoles, Fig. 1a, consist of a mass-
less incoming spectator and an outgoing emitter. At least
one of the outgoing partons before or after the splitting
must be massive. Massive initial-final (IF) dipoles, Fig. 1b,
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consist of a massless incoming emitter and massive final-
state spectator.

Due to its large mass, parton shower emissions from
top quarks are highly suppressed. This means that emis-
sions from massive FI dipoles do not make a significant
contribution in the parton shower. Similarly emissions from
FF dipoles with a top quark emitter are highly suppressed,
however emissions from FF dipoles with a massless emit-
ter and top quark spectator are not suppressed in this way.
Therefore both massive FF and IF dipole splittings make
a significant contribution in the parton shower.

A detailed understanding of these radiation processes
with full mass effects is therefore mandatory, and the main
goal of this work is to formulate the relevant kinematic
parametrization and evolution quantities in a similar way
to the massless case, with emphasis on a covariant formu-
lation and an evolution variable which reflects the trans-
verse momentum relevant to the enhancements present
for collinear radiation. We present the kinematics used for
splittings of all massive dipoles in the following sections.
The kernels used to describe the splittings are those given
in Ref. [30].

For each dipole the kernels and kinematics used to de-
scribe a splitting are parametrized by two splitting vari-
ables and an azimuthal angle. In Herwig 7.1 we use spin-
averaged dipole splitting kernels, therefore we randomly
generate the azimuthal angle for each splitting according
to a uniform distribution. The splitting variables used to
parametrize the splitting for each dipole are those used
in Ref. [30] and are given for each dipole in the following
sections.

In the dipole shower in Herwig we actually generate
the transverse momentum, p⊥, and the light-cone momen-
tum fraction, z, as used in the standard quasi-collinear Su-
dakov parametrization of the momenta following a split-
ting. This is the parametrization used in the angular-
ordered shower [28], see Sec. 3.2. We choose a light-like
vector n to define the collinear direction and for a splitting
from a final-state emitter with momentum p̃ij we write the
momentum, qj , of the emitted parton as

qj = (1− z)p̃ij +
m2
j − (1− z)2m2

ij + p2
⊥

2p̃ij · n(1− z) n− k⊥, (9)

where m is the mass of the emitted parton and mij is
the mass of the emitter. The space-like vector k⊥ satisfies
k⊥ · p̃ij = k⊥ · n = 0 and k2

⊥ = −p2
⊥ .

Similarly for a splitting from a massless incoming par-
ton we write the momentum of the emitted parton as

qj = (1− z)qa +
p2
⊥

2qa · n(1− z)n− k⊥, (10)

where qa is the momentum of the parton incoming from
the proton following the splitting and k⊥ · qa = k⊥ ·n = 0.

In view of these parametrizations, which are the ones
relevant in the (quasi-)collinear limit, we choose to set up

kinematic mappings for a dipole splitting including mo-
mentum conservation in a way that we express the result-
ing kinematics in terms of these physical variables, p⊥ and
z, rather than the ones which most conveniently allow the
separation and integration over the phase space. This has
been done in the massless case, and the mappings below
generalize this to the massive case with a smooth massless
limit.

3.3.1 Final-Final Dipoles

We consider the splitting process p̃ij , p̃k → qi, qj , qk
where all momenta before and after the splitting are on-
shell, p̃2

ij = m2
ij , p̃

2
k = q2

k = m2
k, q2

i,j = m2
i,j and sat-

isfy momentum conservation for the dipole considered, i.e.
Q = p̃ij + p̃k = qi + qj + qk with s = Q2. Splittings from
FF dipoles are conveniently parametrized by the splitting
variables zi and yij,k which are defined in terms of the
physical momenta as

zi =
qi · qk

(qi + qj) · qk
, (11a)

yij,k =
qi · qj

qi · qj + qi · qk + qj · qk
. (11b)

A fully consistent mapping from p̃ij , p̃k → qi,j,k written in
terms of zi and yij,k is presented in Appendix A.1, how-
ever we do not consider it further here. This is because,
while this mapping and the corresponding mapping from
qi,j,k → p̃ij , p̃k defined in Ref. [30] are formulated for ar-
bitrary particle masses, the identification of the physical
degrees of freedom relevant in the quasi-collinear limit [36]
is not directly obvious.

For a massless spectator the relevant direction can be
directly identified, however for a massive spectator we first
need to map both of the massive dipole momenta prior
to emission into light-like momenta nij and nk, which in
general have nij + nk 6= Q. We therefore define

(nij + nk)2 = 2nij · nk ≡ sij,k . (12)

We can write these light-like vectors in terms of the emit-
ter and spectator momenta as

nij =
s2
ij,k

s2
ij,k −m2

ijm
2
k

(
p̃ij −

m2
ij

sij,k
p̃k

)
, (13a)

nk =
s2
ij,k

s2
ij,k −m2

ijm
2
k

(
p̃k −

m2
k

sij,k
p̃ij

)
, (13b)

which gives

sij,k = 2nij · nk =

1

2

(
s−m2

ij −m2
k +

√
(s−m2

ij −m2
k)2 − 4m2

ijm
2
k

)
.

(14)
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The scaled emitter and spectator momenta can be
parametrized as

qij = xijnij +
m2
ij

xijsij,k
nk , (15)

qk = xknk +
m2
k

xksij,k
nij .

The emitter and spectator momenta relevant in the quasi-
collinear limit for the definition of z and p⊥ are expressed
as

qi = zqij +
m2
i − z2m2

ij − k2
⊥

xijsij,kz
nk + k⊥ , (16)

qj = (1− z) qij +
m2
j − (1− z)2m2

ij − k2
⊥

xijsij,k(1− z) nk − k⊥ .

Notice that the limit mk → 0 smoothly reproduces the
parametrization where one works with a light-like collinear
direction along the spectator. Comparison to Eq. (9) al-
lows us to identify the physical branching variables p⊥ and
z, which relate to the propagator involved in the splitting
as

1

z(1− z)
(
p2
⊥ + zm2

j + (1− z)m2
i − z(1− z)m2

ij

)
=

[
(qi + qj)

2 −m2
ij

]
. (17)

The remaining details of this formulation, including
expressions for the scaling variables xij and xk and ex-
pressions for zi and yij,k in terms of the variables p⊥ and
z, are provided in Appendix A.2. A formulation similar
to that presented here is described in Ref. [37], however
it differs in the definition of the momenta of the splitting
products and the variables used.

The probability for a single branching to occur from a
final-final dipole is

dPbranching =
1

(qi + qj)2 −m2
ij

〈Vij,k (zi, yij,k)〉dqj , (18)

where 〈Vij,k (zi, yij,k)〉 is the spin-averaged dipole splitting
kernel used to describe the branching of a final-state emit-
ter into partons i and j with final-state spectator, k. The
single-particle emission phase space, discussed in more de-
tail in Appendix A.2, is denoted by dqj .

Finally, we show that this formulation of the split-
ting momenta is consistent with the definitions of the ker-
nels and requirements in Ref. [30]. Following the split-
ting there are three momenta that must be determined,
(qi, qj , qk), with no considerations this system contains
twelve degrees-of-freedom. Given that we know the iden-
tity and therefore the mass of each parton, we can imme-
diately remove three degrees-of-freedom. We are now left
with nine degrees-of-freedom, namely the energy, En, po-
lar angle, θn, and azimuthal angle, φn, for each parton n,
i.e.

qi : {Ei, θi, φi} ,
qj : {Ej , θj , φj} , (19)

qk : {Ek, θk, φk} .

We choose to work in the rest frame of the dipole with
p̃ij along the positive z-axis. Implicitly p̃k must lie along
the negative z-axis and the mapping from qi,j,k → p̃ij , p̃k
defined in Ref. [30] requires that, in this frame, the specta-
tor only absorbs longitudinal momentum in the splitting.
Therefore θk = φk = 0 which eliminates two degrees-of-
freedom. Furthermore we require that the momentum Q is
conserved in the splitting which eliminates a further four
degrees of freedom. Finally we generate the azimuthal an-
gle of the splitting φ = φi = −φj , where the second equal-
ity follows from momentum conservation, according to a
uniform distribution. We are now left with two degrees-
of-freedom.

It is important to note that the above constraints on
the degrees-of-freedom follow from the requirement of mo-
mentum conservation in the splitting and the requirements
in Ref. [30]. We have also chosen to simplify the picture by
working in a convenient frame which additionally defines
the meaning of the azimuthal angle φ. Therefore, given
φ, the momenta following the splitting must be fully con-
strained by two independent variables. Hence for a given
zi and yij,k the momenta are fully constrained. Therefore
regardless of the variables we generate and the explicit co-
variant expressions that we use, so long as zi and yij,k can
be uniquely expressed in terms of the generated variables,
the splitting momenta are uniquely defined. Importantly,
we can use the splitting kernels and phase-space limits
given in Ref. [30] with our covariant formulation of the
splitting kinematics.

3.3.2 Final-Initial Dipoles

As the spectator in a FI dipole is necessarily massless,
one can use the standard quasi-collinear parametrization
of the kinematics to describe splittings from massive FI
dipoles. In order to be consistent with the formulation
used to describe splittings from IF dipoles, Section 3.3.3,
we instead choose to provide a parametrization in terms
of the dipole splitting variables. The four-momenta of the
spectator and emitter prior to the splitting are p̃b and p̃ij ,
respectively. The four-momenta of the spectator, emitter
and emission following the splitting are qb, qi and qj , re-
spectively. The mass of the emitter prior to the splitting
and the masses of the emitter and emitted partons follow-
ing the splitting are mij , mi and mj , respectively.

Splittings from FI dipoles are parametrized by the
splitting variables zi and xij,b which are defined in terms
of the physical momenta as

zi =
qi · qb

(qi + qj) · qb
, (20)

xij,b =
(qi + qj) · qb − qi · qj + 1

2

(
m2
ij −m2

i −m2
j

)

(qi + qj) · qb
.(21)

As the spectator is incoming and therefore massless, zi is
identical to the generated variable z. We define the con-
served momentum transfer

Q = p̃ij − p̃b = qi + qj − qb , (22)
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and for convenience the invariant

sij,b = 2p̃ij · p̃b . (23)

The momenta prior to the splitting are written in terms
of the momenta following the splitting as

p̃b = xij,b qb , (24)

p̃ij = qi + qj − (1− xij,b)qb . (25)

These expressions are satisfied by writing the momenta
following the splitting as

qi = zip̃ij + k⊥ +

[
(1− zi)

(
1− xij,b
xij,b

)

+
1

sij,b

(
m2
i −m2

j + (1− 2zi)m
2
ij

)]
p̃b , (26a)

qj = (1− zi)p̃ij − k⊥ +

[
zi

(
1− xij,b
xij,b

)

+
1

sij,b

(
−m2

i +m2
j − (1− 2zi)m

2
ij

)]
p̃b , (26b)

qb =
1

xij,b
p̃b . (26c)

We obtain an expression for the splitting variable xij,b in
terms of the generated variables p⊥ and z by comparison
with Eq. (9), giving

xij,b =

[
1 +

p2
⊥ + (1− z)m2

i + zm2
j − z(1− z)m2

ij

sij,bz(1− z)

]−1

.

(27)

The probability for a single branching to occur from a
FI dipole is given by

dPbranching =
1

(qi + qj)2 −m2
ij

1

xij,b

fb(xs/xij,b)

fb(xs)

×〈V bij (zi, xij,b)〉dqj , (28)

where 〈V bij (zi, xij,b)〉 is the spin-averaged dipole splitting
kernel used to describe the branching of a final-state emit-
ter into the partons i and j with an initial-state specta-
tor, b. The parton density function of the incoming spec-
tator is fb(x) and xs is the proton momentum fraction
carried by the spectator prior to the splitting, and dqj de-
notes the single-particle emission phase space. A detailed
description of the emission phase space is given in Ap-
pendix A.3.

3.3.3 Initial-Final Dipoles

The momenta of the incoming emitter and outgoing
spectator prior to the splitting are p̃aj and p̃k, respectively.
The new emitter following the splitting is defined to be
the parton incoming from the proton while the emitted
particle is the emitted final-state parton. The momenta of

the emitter, emitted particle and spectator following the
splitting are qa, qj and qk, respectively. The mass of the
spectator is mk.

Splittings from IF dipoles are parametrized by the
splitting variables xjk,a and uj which are defined in terms
of the physical momenta as

xjk,a =
qa · qj + qa · qk − qj · qk

(qj + qk) · qa
, (29)

uj =
qa · qj

(qj + qk) · qa
. (30)

We define the conserved momentum transfer

Q = p̃k − p̃aj = qj + qk − qa , (31)

and the invariant

saj,k = 2p̃aj · p̃k . (32)

The momenta prior to the splitting are written in terms
of the momenta following the splitting as

p̃aj = xjk,a qa , (33a)

p̃k = qj + qk − (1− xjk,a)qa . (33b)

These expressions are satisfied by writing the momenta
following the splitting as

qa =
1

xjk,a
p̃aj , (34a)

qj =

[(
1− xjk,a
xjk,a

)
(1− uj)− uj

2m2
k

saj,k

]
p̃aj

+ uj p̃k − k⊥ , (34b)

qk =

[(
1− xjk,a
xjk,a

)
uj + uj

2m2
k

saj,k

]
p̃aj

+ (1− uj)p̃k + k⊥ . (34c)

We need to write the splitting variables in terms of the
variables generated in the parton shower, p⊥ and z. We
set n = p̃k − (m2

k/saj,k)p̃aj in Eq. (10) and equate this to
Eq. (34b) giving

xjk,a =
saj,k

2r(saj,k −m2
k)

(1− z + r) (35a)

×
[

1−
√

1− 4r(saj,k −m2
k)

saj,k

z(1− z)
(1− z + r)2

]
,

uj = xjk,a

(
r

1− z

)
, (35b)

where we have defined r = p2
⊥/saj,k. These expressions

again relate the backward-evolution, dipole picture recoil
to the quantities involved in the physical forward branch-
ing process, Eq. 10.

The probability for a single branching to occur from
an IF dipole is

dPbranching =
1

2qj · qa
1

xjk,a

fa(xe/xjk,a)

f̃aj(xe)

× 〈V ajk (uj , xjk,a)〉dqj , (36)
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where 〈V ajk (uj , xjk,a)〉 is the spin-averaged dipole split-
ting kernel used to describe the branching of an initial-
state emitter ãj into an initial-state parton a and a final-
state parton j with a final-state spectator k. The par-
ton density function of the incoming partons ãj and a
are f̃aj(x) and fa(x), respectively. The proton-momentum

fraction carried by the parton ãj is xe and dqj denotes the
single-particle emission phase space. A detailed descrip-
tion of the emission phase space is given in Appendix A.4.

4 Radiation in the Decays of Heavy Quarks

In both Herwig parton showers the production and
decay processes are showered independently, following a
factorized approach. In the case of top quark pair produc-
tion, the hard process, e.g. pp → tt̄, is first evolved down
to the IR cutoff µIR ≈ 1GeV, as described in Section 3.
This involves radiation from both the initial- and final-
state partons, including the top quarks. When simulating
predictions with unstable top quarks, these then undergo
a perturbative decay, and further shower evolution from
the decaying system, and possible further decay products,
e.g. those originating form a hadronic W decay. The hard
scale relevant for emissions from the decaying top quark is
the mass of the top quark, and the evolution will preserve
its four-momentum including the virtuality.

Matchbox is currently limited to generating hard pro-
cesses with on-shell outgoing particles, because in the fac-
torized approach a smearing of the mass with some in-
put distribution consistently is only possible at leading
order (LO), and poses major challenges at next-to-leading
order unless one resorts to a complete off-shell calculation,
which can in principle be handled by the framework. While
the angular-ordered shower can handle off-shell coloured
particles, the dipole shower can currently only deal with
on-shell coloured particles, such that we do not consider a
reconstructed resonance hierarchy from a full calculation
as an input to the showers. This also implies that in the
hard process the top width is set to zero, as we could oth-
erwise not treat it as an on-shell particle at the level of
the hard process.

In Herwig by default top quarks, t, are decayed ac-
cording to the 3-body matrix element to a bottom quark,
b, and two fermions, f and f̄ ′, via an intermediate W-
boson in order that off-shell effects are included for the W-
boson. The decay system is then showered as described in
Section 4.1 for the angular-ordered shower and Section 4.2
for the dipole shower, which presents a new development
which we cover in detail.

In both cases we first shower the top-bottom-W-boson,
tbW , system followed by the W-boson-fermion-antifermion,
Wff̄ ′, system. In the shower the tbW and Wff̄ ′ systems
are considered to be colour isolated from each other and
the rest of the process. In this sense each decay system
is showered independently from the rest of the process.
This pattern of evolving ‘down’ decay trees, i.e. from the

hard process towards the final-state particles, is true for
all decays in Herwig 7.

In both parton showers we have the option of perform-
ing the first emission from the decay system according to
the real-emission matrix element using the builtin Powheg
decay correction [38] for all SM decay processes, including
both the top quark and W -boson decay. In practice this
is sufficient as the NLO virtual corrections only effect the
calculation of the width and not the physical distributions.
This is switched on by default in the dipole shower whereas
the angular-ordered shower uses a matrix-element correc-
tion by default. While the angular-ordered shower also in-
cludes QED radiation this is not currently available in the
dipole shower. However, in the case of SM decays involv-
ing no coloured particles, for example a leptonic W-boson
decay, QED radiation is generated using the SOPHTY im-
plementation in Herwig [39] which is used by default in
the dipole shower.

4.1 Angular Ordered Shower

The improved angular-ordered shower used in Her-
wig proceeds in much the same way for decays as for
hard processes. The main difference is the handling of ra-
diation with a coloured decaying particle connected to one
of the decay products, e.g. t→ bW+. In order to cover the
full soft phase-space region we must have radiation from
both the decaying particle and the decay product [28].6

This can be seen in Fig. 2 where in order to cover the full
phase-space region for soft emission, i.e. xg → 0, we need
radiation in both the upper region, from b → bg branch-
ings, and the lower region from t → tg branchings. As
can be seen in Fig. 2 the shower approximation overesti-
mates the leading-order real emission matrix element over
all the filled phase space and the two results agree in the
soft xg → 0 and collinear limit where xW tens to its maxi-
mum value. The angular-ordered shower has a ‘dead-zone’
where there is no emission from the parton shower, and
a region at large xg which could in principle be filled by
the parton shower. In this region the parton shower sig-
nificantly underestimates the real emission matrix element
and therefore as this region contains to soft or collinear
enhancements we choose not to generate parton shower
emissions in it. As described in detail in Refs. [6, 28] the
recoil from any shower emissions in this case is absorbed
such that any recoil perpendicular to the direction of the
W boson in the top rest frame is absorbed by the bottom
quark, while the remaining component parallel to the W
boson direction is absorbed by the W boson.

As with Herwig 6 [40] in Herwig 7 we apply both a
hard matrix-element correction, to fill the ‘dead-zone’ and
unfilled shower region as well as a soft matrix element to
correct the hardest-so-far emission in the parton shower
regions, this is described in more detail in Ref. [41]. This

6 The original angular-ordered shower in HERWIG 6 [40] did
not have radiation from the decaying particle and therefore did
not cover the full soft phase-space region.
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Fig. 2: Dalitz plot for t→ bW+g where the gluon is emit-
ted by the angular-ordered parton shower. The energy
fractions of the gluon and W+ boson are xg = 2Eg/mtop

and xW = 2EW /mtop, respectively. In the regions of al-
lowed emission in the angular-ordered parton shower the
plot shows the ratio of the leading-order matrix element
result over the parton-shower approximation. The red re-
gion, the ‘dead-zone’, is not filled by the parton shower
while the empty region for large xg could be filled by the
parton shower, in practice the the shower provides a poor
approximation in this region and it and the ‘dead-zone’
are filled using a hard matrix-element correction.

is the default option, however there is also an option to
apply a Powheg correction to the decay [38] including the
truncated shower.

4.2 Dipole Shower

In a top quark decay a dipole is formed by the decaying
top quark and the outgoing bottom quark. During show-
ering the incoming top quark can also form dipoles with
other partons outgoing from the decay. In the current im-
plementation of the dipole shower in Herwig we include
emissions from final-initial decay (FI-decay) dipoles only
and do not include initial-final decay (IF-decay) dipoles.
In other words we explicitly consider emissions from out-
going emitter partons only and do not explicitly include
emissions from the incoming top quark. This choice is jus-
tified in Section 4.2.3.

The simulation of top quark decays is the primary mo-
tivation behind the new developments outlined in this sec-
tion, therefore we follow the example of top quark decays
throughout. These developments have been implemented
such that they are applicable to general decays, including
BSM processes. In particular the new technical develop-
ments in the implementation of the dipole shower, Sec-
tion 4.2.1, and the kinematics for splittings from decay

dipoles, Section 4.2.2, are independent of the identity of
the particles involved.

4.2.1 Implementation

In each decay system the colour chains and dipoles
are constructed and updated following each splitting using
exactly the same procedure as for the showering of hard
production processes [10]. The shower starting scale for
each decay system is chosen to be the mass of the incoming
decayed particle.

In the case of a top quark decay, with the default
POWHEG correction, we attempt to produce the first
emission from the tbW system using the exponentiated
real-emission matrix element. Following this corrected real
emission we shower the system starting from a scale equal
to the transverse momentum of the emission. In the rare
case that there is no POWHEG emission above the IR
cutoff, we do not shower the system.

The Wff̄ ′ system is a FF dipole, therefore we require
no new kinematics or kernels to shower the system. On-
the-other-hand the top quark decay introduces new com-
plications. The momentum of the top quark is set, prior
to its decay, in the production process and we must not
change its momentum following its decay. Therefore in
dipoles with the top quark as spectator we cannot use the
top quark to absorb the recoil from the splitting. Instead
we choose to apply a boost to the rest of the outgoing
particles in the decay system to absorb the recoil. This is
discussed in more detail in Section 4.2.2.

The tbW system is showered until no further emission
above the IR cutoff can be generated. This is followed by
a ‘reshuffling’ of the momenta of the particles outgoing
from the decay in order to put all partons on their con-
stituent mass-shell as required for hadronization. In the
case of a decay system we must ensure that the sum of
the outgoing momenta is equal to the four-momentum of
the decayed particle. It is this constraint that we enforce
in the reshuffling procedure.

In the case where there are two or more outgoing par-
tons, we simply rescale the masses and 3-momenta of each
parton such that all partons are put on their constituent
mass shell. In the rare case of no emission from a tbW
system we must put the bottom quark on its constituent
mass-shell but without reshuffling the momenta amongst
other partons. In this case we conserve the momentum
of the system by using the W-boson to absorb the mo-
mentum change of the bottom quark while keeping the
virtuality of the W-boson unchanged.

Splittings from decay dipoles and the reshuffling pro-
cedure can modify the momentum of the W-boson from
the value set in the 3-body decay of the top-quark. There-
fore following the showering of the tbW system and the
subsequent reshuffling, we must apply a boost to the de-
cay products of the W-boson to ensure that momentum
is conserved in the W-boson decay. This boost is applied
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prior to showering the Wff̄ ′ system. In longer decay trees,
following the showering of each decay, we work down the
decay tree updating the momenta of decay products as
appropriate.

4.2.2 Kinematics

As a colour partner of the emitter we refer to the in-
coming top quark as the ‘spectator’, however we wish to
preserve the 4-momentum of the top quark as its momen-
tum has been set, before its decay, in the showering of
the production process. Therefore the top quark is not
used to absorb the recoil in splittings. Instead the recoil
is absorbed by all outgoing particles from the top decay
system, except for the emitter and the new emission.

Fig. 3 shows a diagram of a decay dipole. The mo-
menta of the incoming decayed parton and the outgoing
emitter prior to the splitting are qb and p̃ij , respectively.
The total momentum of all other outgoing particles in the
decay system is p̃k. Following the splitting the momenta
of the new outgoing emitter and emission are qi and qj ,
respectively and the total momentum of all other outgo-
ing particles in the decay system is qk. It is implicit from
our definition of the recoil system as all particles outgo-
ing from the decay except the emitter that the incoming
parton momentum qb is the conserved dipole momentum

Q = qb = p̃ij + p̃k = qi + qj + qk . (37)

The splitting kinematics then exactly follow those for a
splitting from a massive final-final dipole given in Sec-
tion 3.3.1. The only difference is that for splittings from
a decay dipole the recoil, p̃k → qk, is absorbed through
the application of an appropriate Lorentz transformation
to the recoil system rather than by a single spectator par-
ton.

4.2.3 Decay Kernels

As stated in Section 4.2 we do not include explicit split-
tings from IF-decay dipoles. This is because the kernel for
a gluon emission from the incoming top quark contains a
negative term proportional to the top quark mass-squared
which gives rise to a kernel that is almost always negative.
We have therefore chosen to include the IF-decay splitting
kernels in the FI-decay splitting kernels which are usually
large enough to remain positive following the inclusion
of the negative mass-squared term. With these consider-
ations there are two possible dipoles and three possible
splittings we must consider: the t− q dipole where the fi-
nal state quark emits a gluon and the t − g dipole where
the final state gluon can split into either a qq̄-pair or a
pair of gluons.

Following the discussion in Section 4.2.2 the notation
used to express the kernels follows that used for splittings

k̃

b

ĩj

i

j

k

Fig. 3: The final-initial decay dipole.

from FF dipoles given in Section 3.3.1. We denote the
mass of the incoming decayed parton as mb.

There is only one possible splitting from the t− q FI-
decay dipole, q → qg, therefore we must include the entire
contribution from the corresponding t → tg splitting in
this kernel. We have used some discretion with regard to
which finite pieces are included in the kernels. The ker-
nel, Vq→qg, used to describe splittings from a t − q FI-
decay dipole in Herwig 7.1 is given in Eq (38a). Note
that following the conventions of Ref. [30] there is a prop-
agator factor of 1/qi · qj taken out of the kernel. This is
the origin of the factor yij,k/(1− zi(1− yij,k)) in front of
the t → tg piece of the kernel and correctly reproduces
the eikonal formula that would otherwise be obtained by
summing over all possible splittings and configurations for
each dipole.

In order to be consistent with the kernels used for split-
tings from other massive dipoles, we follow the convention
from Ref. [30] of multiplying certain terms in the kernels
by a finite ratio of relative velocities. The explicit forms
of these terms are given in Eq. (39a).

The t−g dipole is more complicated because there are
two possible splittings, g → gg and g → qq̄. The splitting
kernels Vg→gg and Vg→qq̄ used to describe the g → gg and
g → qq̄ splittings in Herwig 7.1 are given in Eq. (38b)
and Eq. (38c), respectively.

The limits on zi, zi,±, and the relative velocity term
vij,i required to express these kernels are given explicitly
in Eq. (39b) and Eq. (39c) respectively. We have followed
the convention of Ref. [30] and used a parameter κ to dis-
tribute finite pieces between the two kernels. In Herwig
7.1, κ is set to zero in all dipole shower splitting kernels.

We include divergences arising from the IR limits of
both qi and qj in Vg→gg such that Vg→gg is symmetric
with regard to qi and qj . This is because this splitting
produces indistinguishable final-state gluons and it is con-
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sistent with the other g → gg kernels used in the parton
shower.7

Vq−>qg = 8παSCF (38a){
2
(
2m2

i + 2yij,ks̄+ s̄
)

(1 + yij,k)s̄− zi(1− yij,k)s̄
− ṽij,k
vij,k

(
(1 + zi) +

2m2
i

ys̄

)

+
yij,k

1− zi(1− yij,k)

[
2
(
2m2

i + 2yij,ks̄+ s̄
)

(1 + yij,k)s̄− zi(1− yij,k)s̄

− ṽij,k
vij,k

(
2 +

2m2
b

(1− zi(1− yij,k)) s̄

)]}
,

Vg−>gg = 16παSCA (38b){
1 + 2yij,k

(1 + yij,k)− zi(1− yij,k)

+
1 + 2yij,k

(1 + yij,k)− (1− zi)(1− yij,k)

+
1

vij,k
[zi(1− zi)− (1− κ)zi,+zi,− − 2]

}

+8παSCF {
yij,k

1− zi(1− yij,k)

[
2(1 + 2yij,k)

(1 + yij,k)− zi(1− yij,k)

− ṽij,k
vij,k

(
2 +

2m2
b

(1− zi(1− yij,k))s̄

)]

+
yij,k

1− (1− zi)(1− yij,k)

[
2(1 + 2yij,k)

(1 + yij,k)− (1− zi)(1− yij,k)

− ṽij,k
vij,k

(
2 +

2m2
b

(1− (1− zi)(1− yij,k))s̄

)]}
,

Vg−>qq̄ = 8παSTR (38c){
1− 2

(
zi(1− zi)− (1− κ)zi,+zi,− −

κm2
i

2m2
i + s̄yij,k

)}

ṽij,k =

√
λ
(
s,m2

ij ,m
2
k

)

s−m2
ij −m2

k

, (39a)

vij,k =√[
2m2

k +
(
s−m2

i −m2
j −m2

k

)
(1− yij,k)

]2 − 4m2
k(

s−m2
i −m2

j −m2
k

)
(1− yij,k)

,

zi,± (yij,k) =
2m2

i +
(
s−m2

i −m2
j −m2

k

)
yij,k

2
[
m2
i +m2

j +
(
s−m2

i −m2
j −m2

k

)
yij,k

]

(1± vij,ivij,k) , (39b)

vij,i =

√(
s−m2

i −m2
j −m2

k

)2
y2
ij,k − 4m2

im
2
j(

s−m2
i −m2

j −m2
k

)
yij,k + 2m2

i

.

(39c)

Finally we include a symmetry factor of 1
2 , which is

not written explicitly here, in front of the g → gg pieces

7 The g → gg splitting can be adjusted to contain only one
soft singularity as a means of selecting from the two possible
colour flows in that splitting, if a different option has not been
pursued, see also the discussions in [42,43].
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Fig. 4: Dalitz plot for t→ bW+g where the gluon is show-
ing the ratio of the leading-order matrix element result
over the dipole-shower approximation. The energy frac-
tions of the gluon and W+ boson are xg = 2Eg/mtop and
xW = 2EW /mtop, respectively.

of Vg→gg. With the inclusion of this symmetry factor the
factors in front of the eikonal parts from the g → gg and
q → qg pieces are consistent in the large-NC limit and we
reproduce the correct eikonal expression.

4.2.4 Validation

We present results to validate the new decay kernels
and kinematics in the dipole shower. We consider observ-
ables which depend primarily on the first, hardest, emis-
sion from the decay system and we compare results ob-
tained with and without the real emission decay correc-
tion. This comparison directly evaluates how well Vq→qg,
Eq. (38a), reproduces the full real emission correction. As
can be seen in Fig. 4 the kernel overestimates the leading-
order matrix element over most of the phase space, apart
from a small region near the lower phase-space boundary
for 0.1 < xg < 0.4.

Our procedure for the following tests exactly follows
that used in Refs. [40, 41, 44]. We generate e+e− → tt̄
events at LO at a collision energy of 360 GeV. This col-
lision energy is chosen to be close to the threshold en-
ergy for the process, i.e. 2mtop, in order to reduce ra-
diation from the production process. We work at parton
level and include only dileptonic processes. All final-state
quarks and gluons are clustered into three jets using the
k⊥ algorithm [45] implemented in FastJet [46] and we ex-
clude events containing a jet with transverse energy less
than 10 GeV. We additionally exclude events in which
the minimum jet separation is less than ∆R = 0.7 where
∆R2 = ∆η2 +∆φ2, where η and φ denote pseudorapidity
and azimuthal angle respectively.
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We present results for two observables; the separation
∆Rmin of the closest pair of jets in the event and the
jet measure y3, defined as the value of the jet resolution
parameter at which the three jet event would be identified
as a two jet event. This is given by

y3 =
2

s
minij

(
min

(
E2
i , E

2
j

)
(1− cos θij)

)
, (40)

where s is the centre-of-mass energy squared of the colli-
sion, Ei and Ej are the energy of jets i and j respectively
and θij is the angular separation of jets i and j.

Fig. 5 shows the distribution of the minimum jet sepa-
ration for events showered with and without the real emis-
sion decay correction. In general a harder first emission
will produce a greater separation of the two closest jets.
Therefore, as we expect, the shower with the real emission
decay correction produces more events with a larger mini-
mum jet separation. We see that the results with and with-
out the real emission decay correction agree well (∼ 10%)
at small jet separations. Furthermore even at large mini-
mum jet separations, where we do not expect the splitting
kernel alone to give a good description of the emission, the
results agree to within roughly 30%.

Fig. 5 also shows the distribution of y3 for events show-
ered with and without the real emission decay correction.
Again, a harder first emission will in general lead to a
larger separation of the two closest jets and thus such 2-
jet events can be resolved into 3-jet events at a larger
value of y3. As we would expect there is a skew towards
larger values of y3 for the results with the real emission-
corrected decay versus the results without the correction.
We see that the results at low y3, corresponding to a softer
first emission, are well described by the shower without
the real emission decay correction. The log scale used for
y3 in Fig. 5 emphasises the limitations of the splitting
kernel in describing hard emissions. This is evident from
the increasing disagreement between the results with and
without the real emission decay correction at larger values
of y3.

These results show that the kernel Vq→qg behaves well
in the IR region as we require. It also performs reasonably
well in the case of harder emissions but its limitations are
apparent in the distribution of y3 in Fig. 5. There is a
major limitation to these tests in that they only directly
probe the q → qg splitting kernel. The effects of subse-
quent emissions are small and it is difficult to create a
test to probe g → gg and g → qq̄ emissions from decay
dipoles directly.

As a further comparison we have also included the re-
sults from showering with the angular-ordered shower with
the appropriate full matrix element correction to the de-
cay in both figures. In all except the lowest bins we see a
good agreement between the dipole shower with the real
emission decay correction and the angular-ordered shower.
This verifies that the corrections in the two showers pro-
duce the same behaviour, as we would expect. The dis-
agreement in the lower bins is not a concern as there are
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Fig. 5: The distribution of (upper) the minimum jet sep-
aration and (lower) the jet measure y3 in 3-jet e+e− → tt̄
events. The distributions are shown for events showered
using the dipole shower with (DS-PowhegCorr) and with-
out (DS-NoCorr) the real emission decay correction. In
addition we show the distributions obtained using the
angular-ordered shower (QS) with the full matrix-element
decay correction.

numerous differences between the showers and we do not
expect agreement to be exact in all regions of phase space.

5 NLO Matching and Scale Choices

A major improvement to the simulation of top quark
production and decay in the Herwig 7 event generator is
the inclusion of NLO QCD corrections consistently com-
bined with the subsequent parton shower evolution. NLO
matching paradigms are typically less ambiguous than
their merging counterparts and entirely driven by solving
a matching condition such that the combination of a NLO
cross section with a parton-shower evolution reproduces
the NLO cross section exactly, plus higher-order terms.
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In the following we will elaborate on the basic matching
algorithms available in Herwig 7 and their implementa-
tion, and will consider in detail the sources of uncertainty
involved in matched predictions.

5.1 Hard Process Setup and NLO Subtraction

The partonic cross section for the hard process at lead-
ing order can be written as

σLO[u] =

∫
dσB(φn)df u(φn) , (41)

where dσB is the Born cross section, df denotes the par-
tonic luminosity (parton distribution functions), and u(φn)
represents a generic observable defined on the Born phase-
space point φn = {pa, pb → p1, ..., pn}. The Herwig 7
Matchbox module [10] identifies the possible subpro-
cesses contributing to the cross section, and sets up a
multi-channel phase-space generator to map the phase-
space measure dφn, which includes the momentum con-
serving δ-function as well as mass-shell constraints.

For a NLO calculation, which we carry out in the
dipole subtraction formalism based on Catani-Seymour
dipole subtraction [29,30], real emission processes includ-
ing an additional jet are then identified in the same way
as for the leading-order cross section, and the NLO cross
section is calculated as

σNLO[u] = σLO[u] + σV+A+C [u] + σR−A[u] , (42)

with

σR−A[u] =

∫ [
dσR(φn+1)u(φn+1) (43)

−
∑

i

dσ
(i)
A (φn+1)u(Φ(i)

n (φn+1))
]
df .

The first two terms in Eq. (42) contain the leading-order
cross section, as well as the finite combination
σV+A+C = σV+I+P+K of virtual corrections, analytically
integrated subtraction terms, as well as collinear coun-
terterms, which are all defined over the Born phase-space
point φn and handled accordingly. We have further in-
troduced the dipole subtraction terms dσA(φn+1)(i) and
the real-emission contributions dσR(φn+1) which are all
functions of the real-emission phase-space point φn+1, and
the index i runs over the possible dipole configurations,
each of which is associated with a particular kinematic
mapping Φ

(i)
n (φn+1) onto the so-called ‘tilde’ or underly-

ing Born kinematics. The phase-space mappings trigger
phase-space convolutions which can be cast into phase-
space factorizations upon introducing suitably adapted
parton distribution functions

dφn+1df |
φn+1=Φ

(i)
n+1(φn,r)

= J (i)(φn, r)dφndf (i)dr , (44)

where Φ
(i)
n+1(φn, r) is the inverse mapping to the mapping

Φ
(i)
n (φn+1), and r here refers to the collection of variables

required to describe the additional emission, i.e. a scale
of the emission, a momentum fraction, and an azimuthal
variable. We can also associate the respective definitions as
functions of the real emission variables, R(i)(φn+1), such
that

Φ
(i)
n+1(Φ(i)

n (φn+1), R(i)(φn+1)) = φn+1 . (45)

Matchbox uses diagrammatic information to deduce
which subtraction terms need to be included, and auto-
matically sets up a cross section in the form above.

5.2 Parton-Shower Action and Matching

The parton-shower action can conveniently be described
as

σ[u]→ σ[PSµIR
[u]], (46)

where the parton-shower operator up to the first emission
is

PSµIR
[u](φn) =

∏

i

∆(i)(φn, µIR)u(φn)+

∑

i

dP (i)(φn, r)κ(Q(i)(φn), p⊥(r))θ(q(r)− µIR) ×
∏

j

∆(j)(φn, µIR)u(Φ
(i)
n+1(φn, r)) . (47)

Here q(r) is the evolution variable which we have singled
out only in the phase-space limits on the evolution, start-
ing at a hard scale Q(i)(φn) and ending at the infrared cut-
off µIR. The differential splitting probability is the combi-
nation of the respective phase-space factors and a ratio of
parton luminosities, and the Sudakov form factor starting
at the hard configuration is

− ln∆(i)(φn, µIR) =∫
dP (i)(φn, r)κ(Q(i)(φn), p⊥(r))θ(q(r)− µIR) . (48)

Notice that the constraint on the hard scale is in gen-
eral not a sharp cutoff, but might be imposed in dif-
ferent ways, see [20] and the discussion below in Sec-
tions 5.4 and 5.5. We have, not accidentally, chosen the
same kinematic mapping as has been used for the dipole
subtraction terms. Indeed, the kinematic reconstruction
algorithm, and not least the kinematics used in the dipole
shower and the Powheg correction to be discussed below,
resemble, for one emission, exactly the dipole subtraction
kinematics, such that we do not need to consider any ad-
ditional Jacobian factors.

At this point we can expand the shower action to first
order in αS and subtract this contribution from the NLO
cross section to set up the matched cross section. To this
extent it is worth noting that we can recast both, the in-
tegrand of the Sudakov exponent as well as the emission
rate multiplied by the Born cross section into another ap-
proximate cross section using the inverse of the kinematic
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mapping,

dσ
(i)
PS(φn+1)df ≡

[
dσBdf (i)dP (i)(φn, r) ×

κ(Q(i)(φn), p⊥(r))
]
φn=Φ

(i)
n (φn+1),r=R(i)(φn+1)

. (49)

We have explicitly left out the infrared cutoff in this ex-
pression for reasons which will soon become clear. The
NLO matching subtraction term is then

σPS
R−A[u] =

∑

i

∫
dσ

(i)
PS(φn+1)df ×

θ(q(i)(φn+1)− µIR)
(
u(φn+1)− u(Φ(i)

n (φn+1))
)
, (50)

with the shorthand q(i)(φn+1) = q(R(i)(φn+1)). The NLO
matched cross section is

σmatched
NLO [u] = σNLO[u]− σPS

R−A[u] , (51)

such that σmatched
NLO [PSµIR

[u]] = σNLO[u] + h.o. This can
be conveniently combined with the dipole book keeping
already employed for the fixed-order NLO calculation to
yield two contributions to the NLO matched cross section:

σmatched
NLO [u] = σS [u] + σH [u] , (52)

with

σS [u] = σLO[u] + σV+I+P+K [u]

+
∑

i

∫ (
dσ

(i)
PS(φn+1)θ(q(i)(φn+1)− µIR)

− dσ
(i)
A (φn+1)

)
df u(Φ(i)

n (φn+1)) , (53)

which constitutes Born-type configurations, also referred
to as S events, as well as

σH [u] =

∫ (
dσR(φn+1) −

∑

i

dσ
(i)
PS(φn+1)θ(q(i)(φn+1)− µIR)

)
df u(φn+1) , (54)

to provide real-emission type configurations, also referred
to as H events. We stress that these contributions cannot
yet be used to generate events with finite weights owing to
the presence of the infrared cutoff, which allows for config-
urations with divergent weights, even if the parton-shower
approximated cross section would be able to reproduce the
full singularity structure of the real emission. Instead, an
additional auxiliary cross section

σX [u] =
∑

i

∫
dσ

(i)
X (φn+1)df ×

θ(µIR − q(i)(φn+1))
(
u(Φ(i)

n (φn+1))− u(φn+1)
)
, (55)

can be added to the matched cross section to eventually
yield modified versions of σS and σH , which can be em-
ployed to generate events. In practice, we use the dipole
subtraction terms themselves to facilitate this, i.e.
dσX = dσA. Note that, for infrared-safe observables u, σX
only adds power corrections below the infrared cutoff.

5.3 Matching Variants

Both the angular-ordered and the dipole showers fit
into the framework outlined above, which constitutes the
subtractive, or MC@NLO-type, matching in Herwig 7,
and the sole task is to determine the shower matching sub-
traction dσPS

R−A, which we have implemented in a process-
independent way in the Matchbox module. These sub-
tractions are indeed very similar to the dipole subtraction
terms, but averaged over azimuthal orientation and for
colour correlators evaluated in the large-Nc limit. With
the recent development of spin-correlation algorithms in
both shower modules [47], spin correlations can be re-
stored in these subtractions, and full colour correlations
can be justified when using colour matrix-element correc-
tions [43,48], at least for the dipole shower algorithm.

Another choice is a multiplicative, or Powheg-type,
matching for which we employ a hardest emission gen-
erator, which performs a shower emission using a mod-
ified splitting function, or matrix-element correction, de-
termined from the real-emission and Born matrix elements
as

P (i)(φn, r)→
w(i)(Φ

(i)
n+1(φn, r))

∑
j w

(j)(Φ
(j)
n+1(φn, r))

|MR(Φ
(i)
n+1(φn, r)|2

|MB(φn)|2 , (56)

for which no complications arise as the full divergent be-
haviour is reproduced by construction. An additional trun-
cated, vetoed shower needs to be included if the hardest
emission generated this way is not the first one to occur.
In practice, for the w(i) we use dipole-type partitioned
Eikonal factors to perform the weighting into the differ-
ent singular channels i and use the ExSample library [49]
to generate emissions according to the Sudakov form fac-
tor obtained from the matrix-element correction defined
above.

5.4 Profile Scale Choices

The parton shower hard scale needs to be limited from
above in order to avoid the summation of an unphysical
tower of logarithms in the Sudakov exponent. To this ex-
tent, we have not chosen a fixed starting scale, but a profile
scale function κ(Q(i)(φn), p⊥(r)). This function encodes
the possibility that not all of the emission phase space
should be available to the parton shower. From here on
we will generically denote Q(i)(φn) = Q⊥, i.e. we choose
the (upper) hard scale Q(i)(φn) manifest as a scale Q⊥
which defines an upper limit on the transverse momen-
tum available to shower emissions.

Several possible parametrizations of the profile scale
choices were investigated for leading-order plus parton-
shower predictions [20]. We first introduce a hard veto
scale Q⊥, which defines an upper limit on the transverse
momentum available to shower emissions. By default this
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is chosen to be the hard process scale, µH, which in turn
is typically set to the factorization and renormalization
scale, but may also be chosen independently in Herwig
7. The profile scale choice κ (Q⊥, p⊥) is a function of Q⊥
and the transverse momentum p⊥ of the splitting. For
convenience, we define the quantity x as the ratio of these
scales

x =
p⊥
Q⊥

. (57)

The default profile scale choice in Herwig 7 is the
resummation profile

κ (Q⊥, p⊥) =





1 , x ≤ 1− 2ρ ,

1− (1−2ρ−x)2

2ρ2 , x ∈ (1− 2ρ, 1− ρ] ,
(1−x)2

2ρ2 , x ∈ (1− ρ, 1] ,

0 , x > 1 ,

(58)
where ρ is a parameter which is set in Herwig 7.1.4 to
ρ = 0.3. The resummation profile is defined to be zero
above the veto scale, such that the shower does not popu-
late this region in which it is expected to perform poorly.
Conversely it is equal to one at low scales, where the
shower is expected to perform well.

We compare the resummation profile to the hfact pro-
file, which is the damping factor used in PowhegBox [50].
The hfact profile is defined as

κ (Q⊥, p⊥) =
1

1 + x2
. (59)

While this function tends to one in the hard emission re-
gion, it does not enforce a cutoff on the shower emission
scale as in the resummation profile. Similarly, the hfact
profile tends to zero in the infrared limit but, unlike the
resummation profile, never actually equals zero.

In this study we restrict ourselves to a simple inves-
tigation of the effects of the profile scale choice on the
simulation of tt̄ production using MC@NLO-type match-
ing. To do this we compare results obtained using the two
profile scale choices defined above (see Section 6.2). For a
detailed discussion of the exact properties of the various
profile scale choices available in Herwig 7 we refer the
reader to Ref. [20] 8.

8 As pointed out in Ref. [20] the choice of the profile scale,
i.e. how to approach the boundary of hard emissions, is non-
trivial and highly relevant in the context of NLO plus parton-
shower matching. The choice of the profile scale is essentially
constrained by consistency conditions on central predictions
(i.e. it should not modify the input distributions of the hard
process) and uncertainties (i.e. large uncertainties are expected
in unreliable regions or regions where hadronisation effects are
dominant, as well as stable results are expected in the Sudakov
region). It was found in Ref. [20] that the hfact profile does not
admit results compatible with these criteria. Instead, using the
resummation profile it was found that the angular-ordered and
dipole showers are compatible with each other, both in cen-

5.5 Hard Veto Scale Choices in MC@NLO-type
Matching

Both shower modules require an upper limit on the
transverse momentum of emissions, which is set by a hard
veto scale (see previous section). This hard veto scale co-
incides with the starting scale for the p⊥-ordered dipole
shower, and is explicitly implemented as an additional
veto for the angular-ordered shower. By default in Her-
wig 7, in leading-order events, i.e. Born-type events, we
use Q⊥ = µH.

For NLO matched predictions, the generated S and H
events (see previous section) separately undergo shower-
ing. While S events constitute Born-type events and are
treated as such, several complications arise for H events.

In MC@NLO-type matching there is no requirement
of exact cancellation between the real-emission matrix el-
ement and the subtraction term in any region of phase
space, as it is possible for the subtracted real-emission
cross section still to contain power corrections in the re-
gions where the real emission is soft or collinear. Corre-
spondingly we expect to see a fraction of H events with
a soft and/or collinear emission. In the case of such an
H event it is unnatural to choose the hard veto scale to
be of the order of the small transverse momentum of the
real emission. Consider for example our case of tt̄ pro-
duction, and say we have an H event in which the real
emission has a transverse momentum of ∼ 2 GeV. Given
the high energy scales involved in tt̄ production, it would
be unreasonable to veto all shower emissions with trans-
verse momentum greater than that of the real emission.
Instead we need to choose a hard veto scale which is more
representative of the scales involved in the process.

In general, as with most scale choices there is no ‘cor-
rect’ choice and we have some freedom in choosing the
hard veto scale. By default in Herwig 7 we choose Q⊥ =
µH, for which we typically choose µH = µF = µR with
µF and µR denoting the factorization and renormaliza-
tion scale respectively. The hard veto scale and the scale of
the hard process may also be chosen independently. Over-
all, given our previous discussion, we desire to choose Q⊥
to be representative of the scales of the objects outgoing
from the hard process. In the case of a hard real emission,
a hard veto scale that reflects the scale of the real emis-
sion should be used. Conversely in the case of a relatively
low-scale real emission, a larger scale should be chosen.

Assume for now that we use Q⊥ = µH and consider
an H event. Common choices for µH involve the trans-
verse masses of the top quark and antiquark, often in a
linear or quadratic sum. In the case of a very low-p⊥ real

tral predictions and uncertainties (despite their very different
nature). In addition to studying some of these effects here for
top-quark pair production, we would like to point out that
choosing a profile scale reminiscent of the resummation pro-
file rather than the hfact profile might also shed some more
light on the effects observed in Higgs-boson pair production in
Ref. [51].
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emission, the transverse masses of the top quarks will be
largely unaffected by the emission. Therefore we would
shower such an event from a scale similar to that had
there been no emission. Conversely a high-p⊥ real emis-
sion on-average increases the sum of the transverse masses
of the top quarks, and the presence of the hard real emis-
sion is reflected in the hard veto scale. There are choices
for µH that, while significantly affected by the scale of the
real emission, are relatively large over a wide range of real
emission scales. If µH is large enough, the actual maxi-
mum scale for showering will be the maximum physically
allowed scale, determined from the splitting kinematics,
for the first shower emission. In this case, while µH may
be directly affected by the scale of the real emission, the
scale of the real emission will have only a small impact on
the subsequent showering.

In the case described above one should consider using
an alternative choice for Q⊥. We have introduced such a
scale, which we denote as µa, in Herwig 7.1 for use in tt̄
production

µa =

√
1

nout

∑

i

m2
⊥,i , (60)

where nout is the number of particles outgoing from the
hard process prior to showering and the sum is over these
outgoing particles. This is simply the quadratic mean of
the transverse masses of the outgoing particles in the lab
frame. In an H event with a hard real emission, the scale
µa is sensitive to the scale of this real emission. In the
case of an H event with a low-p⊥ real emission, µa is
much larger than the scale of the real emission and bet-
ter reflects the scales in the process. We note that this
scale is not smooth in the limit of a soft/collinear emis-
sion, i.e. the transition from H to S events. In the case
of an H event with a low-p⊥ real emission this returns a
scale smaller than that in an S event by a factor

√
2/3

in the soft/collinear limit. We expect the effects of this
discontinuity on results to be very small.

In the following (see Section 6.3 and Section 8.2) we in-
vestigate some of the impacts of the choice of the hard veto
scale on the prediction of observables using MC@NLO-
type matching, and how the effects change depending on
the choice for the hard process scale. To do this we com-
pare, for each of three different choices for µH, results ob-
tained using Q⊥ = µH and Q⊥ = µa. The three choices
for µH that we compare are

µ1 =
m⊥,t +m⊥,t̄

2
, (61a)

µ2 =
m⊥,t +m⊥,t̄

4
, (61b)

µ3 = mtt̄, (61c)

where mtt̄ is the invariant mass of the tt̄-pair 9.

As always in discussions of scale choices there is no
right or wrong choice. The aim of this discussion is to

9 We refer the reader to Ref. [52] for a detailed discussion
on dynamical scale choices in top-quark pair production.

highlight that when we use MC@NLO-type matching we
have to make a choice for the hard veto scale. We will show
that, depending on the choice for µH, different choices
for Q⊥ can have differing and significant effects on our
predictions for observables.

6 Uncertainty Benchmarks

In order to estimate the uncertainty for the event gen-
erator predictions we pursue both, variations of the scales
involved in the hard production process as well as the
scales involved in the subsequent parton showering (see
Section 6.1). We also consider the impact of different pro-
file scale choices (see Section 6.2), and of different choices
for the hard veto scale, depending on the scale of the hard
process (see Section 6.3). We consider tt̄ pair production
in proton-proton (pp) collisions at a centre-of-mass en-
ergy of 13 GeV using parton-level predictions for stable
top quarks.

All parton-level simulations use the ‘benchmark’ set-
tings of Ref. [20]. Except for the variations of interest in
each section, we use identical input settings for the parton
showers and matching schemes in every run. Only QCD
radiation is included in the simulations and the same in-
frared cutoff of µIR = 1 GeV (implemented as minimum
transverse momentum cutoff on shower emissions) is used
in both showers. We use a mass parameter of mt = 174.2
GeV in the hard process as well as in the subsequent show-
ering algorithms and all other quarks are considered to be
massless.

The factorization and renormalization scales are set to
the same value µR = µF ≡ µH, where our default for the
central hard process scale choice (as used in Sections 6.1
and 6.2) is

µH =
m⊥,t +m⊥,t̄

4
, (62)

i.e. half of the average transverse masses of the top and
anti-top quarks, unless stated otherwise. This scale choice
is motivated by the results of Ref. [52]. We use the default
choice, Q⊥ = µH, for the hard veto scale in all runs apart
from those in which this is the scale of interest. Similarly,
the resummation profile scale is used in all runs unless
otherwise stated.

We use the MMHT2014nlo68cl parton distribution func-
tions (PDFs) along with a two-loop running of αS with
αS(MZ) = 0.12 both in the parton shower and the hard
process 10. All runs use a four-flavour scheme. All cross sec-
tions are rescaled to the NNLO cross section of 815.96 pb 11,

10 This refers to an input value which is not used in conjunc-
tion with a CMW correction and is only used for the parton-
level benchmark settings considered here. Typically a tuned
value will include the CMW correction numerically. Also, note
that in Herwig 7 we perform the running of αS ourselves
rather than using the running determined by the PDF set.
11 This is the reference cross section calculated by the CMS
and ATLAS collaborations.



K. Cormier et al.: Parton Showers and Matching for Top Quark Pair Production 17

calculated using Top++2.0 [53] assuming a top mass of
173.2 GeV and including soft-gluon resummation to next-
to-next-to-leading-log order, as are the variations we con-
sider and the envelopes resulting from these variations.

We use a purpose-built analysis written in Rivet [54]
to analyse the simulated events. Our analysis considers
objects with pseudo-rapidity |η| < 5, with transverse mo-
mentum ordered jets obtained from the anti-k⊥ jet algo-
rithm [46,55] with a jet radius of R = 0.4.

6.1 Scale Variations

In this section we discuss the parton shower and match-
ing scheme uncertainties that arise from scale variations.
We present results for chosen observables that probe var-
ious aspects of the simulation. We first compare results
generated with LO matrix elements plus parton shower
simulations, using both the angular-ordered (PS) and dipole
showers (DS). We use LO plus parton-shower results pri-
marily to compare and contrast the two showers in ad-
dition to discussing the uncertainties on the predictions.
This is followed by a discussion of results produced by
NLO matrix elements matched to a parton shower, i.e.
NLO matched simulations. In this discussion, in addition
to considering the uncertainties, we focus on the differ-
ences between the results obtained using the MC@NLO
and Powheg matching schemes.

Following the approach used in Ref. [20], we estimate
the uncertainty on the predictions by considering the vari-
ations of three scales:

– the factorization and renormalization scale in the hard
process, i.e. the hard process scale µH = µR = µF;

– the boundary on the hardness of emissions in the shower,
i.e. the hard veto scale Q⊥;

– the argument of αS and the PDFs in the parton shower,
i.e. the shower scale µS

12.

We apply multiplicative factors of 0.5, 1 and 2 to each of
the corresponding central scales such that the full set of
variations consists of 27 different scale combinations. The
complete uncertainty envelope corresponding to this set
of variations is shown in each plot. In addition, for each
result, we include ratio plots that breakdown the uncer-
tainties according to the individual scale variations. For
each of the three scales considered we separately plot the
envelope produced by the upward and downward varia-
tions of that scale about the central result, i.e. only two

12 In this study we are concerned only with variations of the
arguments of αS and the PDFs in the parton showers, there-
fore, even though they can differ, we use the common termi-
nology ‘shower scale’ for these scales. In the angular-ordered
shower the argument of the strong coupling is related to the
transverse momentum of the emitted parton and differs for
initial- and final-state evolution, while the argument of the
PDFs is simply the ordering variable for initial-state evolu-
tion [28]. In the dipole shower the transverse momentum of
the emitted parton is used for both scales.

variations are included for each envelope in addition to
the central result.

Fig. 6 shows the LO plus parton-shower predictions for
the transverse momentum distribution of the top quark,
p⊥(t), for both parton showers. We expect this observable
to be well described by the LO matrix element and that
the parton shower should have a limited impact. As we ex-
pect we see that the central lines for the two showers show
a good agreement, to within 10%, across the full range
of the distribution. Furthermore the total uncertainty en-
velopes are similar in size and shape in all bins. There is
no clear dominant source of uncertainty, with each of the
variations making a small contribution.

Fig. 6 also shows the LO plus parton-shower predic-
tions for the transverse momentum distribution of the tt̄-
pair, p⊥(tt̄), for both parton showers. The p⊥(tt̄) distribu-
tion is sensitive to the hardest jet in the event. We note
that using a pure LO ME, i.e. with no parton shower, this
observable is equal to zero. At low values of the trans-
verse momentum, p⊥(tt̄) < 50GeV, the central lines for
the two showers agree within roughly 15%. In this region,
where the hardest jet is relatively soft or collinear to the
beam direction we do indeed expect to see a good agree-
ment between the showers. This is because, disregarding
any differences in the small finite contributions, the di-
vergent behaviour of the two showers in the infrared limit
should be the same. At higher values of p⊥(tt̄) the showers
display a larger disagreement. We do not expect different
parton showers to behave similarly away from the infrared
region, therefore this difference is not concerning. We also
note that the central line of each shower lies within the un-
certainty envelope of the other across the full range of the
distribution. The dominant source of uncertainty in the
p⊥(tt̄) distribution is the variation of the hard veto scale,
Q⊥. As discussed above, the distribution of p⊥(tt̄) is sen-
sitive to the hardest jet in each event. Given that the hard
veto scale sets the maximum allowed scale of the shower
emissions, it is expected that variations of this scale should
give rise to significant differences in this distribution. The
reader should also note that there is significant statistical
error on the upper three bins in the results for some of the
individual variations.

Furthermore, Fig. 6 shows the LO plus parton-shower
predictions for the jet multiplicity, njets, distribution for
jets with p⊥ > 25GeV for both showers. In general we find
that the dipole shower predicts more events with high jet-
multiplicity than the angular-ordered shower. This can be
attributed to differences in the phase-space restrictions in
the two showers, in particular the dipole shower does not
have an explicit angular-ordering restriction on emissions.
Therefore, despite using like-for-like settings in the setups
for the two showers, we do not see good agreement in
the upper half of this distribution. We note that despite
the disagreement between the central lines, in all bins the
central line of each shower lies inside the uncertainty enve-
lope of the other. The largest source of uncertainty across
the majority of the bins is the variation of Q⊥. This is
because varying Q⊥ directly changes the available phase
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Fig. 6: Scale variations for the inclusive top p⊥-spectrum, the top pair transverse momentum spectrum, inclusive jet
multiplicities and R distance between the top pair and the hardest jet using LO plus (LO⊕) parton shower simulations
at 13 TeV. In each plot the upper ratio plot compares the envelopes of all variations for the angular-ordered (PS)
and dipole (DS) showers, with a ratio to the central prediction of the angular-ordered shower. The bottom two ratio
plots in each plot show, for the angular-ordered and dipole showers respectively, a breakdown of all variations into
variations of the (factorization and renormalization) scale in the hard process (µH), of the arguments of the running
coupling and PDFs in the shower (µS) and of the hard veto scale (Q⊥).

space for shower emissions. This distribution is very sensi-
tive to the parton shower, correspondingly the variation of
µS also gives rise to sizeable uncertainties in several bins.

Finally Fig. 6 shows the LO plus parton-shower pre-
dictions for the distribution of the separation between the
tt̄-pair and the hardest jet in the event for both showers.

The separation is defined as ∆R(tt̄, j1) =
√
∆φ2 +∆y2,

where ∆φ and ∆y denote the difference in the azimuthal
angle and rapidity respectively of the tt̄-pair and the hard-
est jet in the event. With a pure LO ME and no shower
there is no jet and this distribution does not exist, there-
fore the predictions are very sensitive to the behaviour of
the parton shower. In the case of an event with only one

jet, the distribution is non-zero only in the region ∆R > π.
The distribution in the region ∆R > π is sensitive to the
hardest and second hardest jets in the event while the dis-
tribution in the region ∆R < π is most sensitive to the
second hardest jet in the event. The central lines exhibit
very good agreement across much of the distribution. The
greatest discrepancy is in the uppermost bin in which we
still see agreement to within roughly 20%. The total uncer-
tainty envelopes are also of a similar shape and size across
the distribution. The largest uncertainties arise from vari-
ations in Q⊥ which reflects the fact that the distribution
is sensitive to the hardest couple of jets in the event. In
the region ∆R < π, where the distribution is sensitive to
the second hardest jet, the variation of µS also gives rise
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to significant uncertainties. We also see that a full eval-
uation of the scale variations is required to produce an
accurate estimate of the uncertainties in this region of the
distribution.

Fig. 7 shows the NLO-matched predictions for the p⊥(t)
distribution (upper row) obtained using the angular-ordered
(PS, left column) and dipole showers (DS, right column).
In a NLO-matched sample the top-p⊥ is formally pre-
dicted with NLO accuracy and any differences between the
MC@NLO-type (NLO⊕, aka subtractive) and Powheg-
type (NLO⊗, aka multiplicative) matching are due to higher-
order effects. Accordingly we see a good agreement be-
tween the MC@NLO-type and Powheg-type central lines,
for both showers. In the angular-ordered shower predic-
tions the central-lines predicted using MC@NLO-type and
Powheg-type matching agree to within roughly 15% in all
bins. The same is true in all but the highest-p⊥ bin in the
results for the dipole shower. In the highest-p⊥ bin the re-
sults agree to within 25%, however the reader should note
that, in this bin, such a difference is to be attributed to
the statistical uncertainty on the results used to construct
the uncertainty envelopes. As in the LO result, there is no
clear dominant source of uncertainty.

Fig. 7 also shows the NLO-matched predictions for the
p⊥(tt̄) distribution (lower row) using the angular-ordered
(PS, left column) and dipole showers (DS, right column).
In a NLO-matched sample the distribution is formally pre-
dicted with LO accuracy. The uncertainty envelope on the
NLO-matched predictions is much smaller than that on
the LO plus parton shower predictions. This is due to
the much smaller contribution to the total uncertainty
from the parton showers. The dominant contribution to
the total uncertainty is the variation of µH which reflects
that the predicted distribution is sensitive to the simu-
lation of the hard process. The results for both showers
show agreement between the central MC@NLO-type and
Powheg-type results to within 10% across the entire dis-
tribution.

Fig. 8 shows the NLO-matched predictions of the njets

distribution using the angular-ordered and dipole show-
ers, respectively. In a NLO-matched sample the 0-jet and
1-jet rate predictions are formally accurate to NLO and
LO respectively and higher-multiplicity contributions are
only due to the parton shower. In the results from both
showers the central predictions obtained using MC@NLO-
type and Powheg-type matching agree to within roughly
10% up to and including the 3-jet bin while in higher-
multiplicity bins the Powheg-type prediction rises above
the MC@NLO-type prediction. Note that there is an ex-
ception to this trend in the 10-jet bin of the angular-
ordered shower results, however this fluctuation is to be at-
tributed to the high statistical uncertainty in this bin. The
MC@NLO-type matching produces fewer high-multiplicity
events than the Powheg-type matching because of the
choice of the hard veto scale, discussed in detail in Sec-
tion 6.3. We see in the ratio plots that the variations
of Q⊥ make a significant contribution to the total un-
certainty envelopes in the MC@NLO-type predictions in

high-multiplicity bins. In general parton showers are not
expected to produce a good description of hard radiation
and therefore one should not expect a parton shower to ac-
curately predict the jet-multiplicity distribution for high
multiplicities. It follows that in Fig. 8 we see that the vari-
ations of each of the three scales, i.e. also of µS and µH,
contributes significantly to the total uncertainty envelope
and we see a steady increase in the total uncertainty with
increasing jet-multiplicity. In general high-multiplicity ob-
servables are better described by multi-jet merging algo-
rithms. However, this is beyond the scope of this paper.

In Fig. 8 we also consider the NLO-matched predic-
tions for the ∆R(tt̄, j1) distribution using the angular-
ordered and dipole showers, respectively. With a pure NLO
ME this distribution would exist only in the region ∆R >
π and would be zero in the region ∆R < π. Therefore in
a NLO-matched sample this observable probes both the
hard process and parton shower. For both showers, the
central lines of the MC@NLO-type and Powheg-type pre-
dictions display good agreement across much of the dis-
tribution. The largest discrepancies are around 20% and
are easily accounted for by the uncertainty envelopes. This
shows that the Powheg-type and MC@NLO-type match-
ing schemes produce a similar description of the hardest
few jets using both showers.

Comparing to the LO plus parton shower results we
see that in the region ∆R > π the uncertainty due to
variations of Q⊥ is much smaller in the NLO-matched
predictions, which reflects that the distribution predicted
in this region is now less sensitive to the parton shower.
The largest contribution to the uncertainty in the region
∆R < π, where the distribution is sensitive to the parton
shower, is from the variation of µS. The variations of µH

and Q⊥, which affect the starting conditions of the parton
shower, make smaller but comparable contributions to the
uncertainty in this region of the distribution.

In this section we have compared a selection of dis-
tributions predicted using both parton showers with a LO
matrix element and using two NLO-matching schemes. We
used the LO results to highlight differences between the
showers whereas in the NLO-matched results we focused
on the differences between the matching schemes. We have
also highlighted some areas where the limitations of par-
ton showers must be considered. In general one must con-
sider which parts of each distribution are well predicted by
the matrix element and which are filled largely or entirely
by the parton shower and one should not expect identical
predictions from different parton showers. In Monte Carlo
studies a thorough evaluation of shower and matching un-
certainties is required to account for these differences. In
Section 8.1 we investigate the uncertainties due to scale
variations in the prediction of distributions measured from
experiment.
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Fig. 7: Transverse momenta of the top quark (upper row) and the top quark pair (lower row), comparing variations for
NLO matched predictions at 13 TeV for the angular-ordered (PS, left column) and dipole showers (DS, right column).
The top panels in each plot compare the central prediction and overall variation between the MC@NLO-type (NLO⊕)
and Powheg-type (NLO⊗) matching. The first ratio plot in each plot allows to directly compare the overall variations
in both matching variants, in a ratio to the central MC@NLO-type prediction, while the lower two ratio plots in each
plot show a breakdown of the variations for both matching variants regarding the hard process scale(µH), the shower
scale (µS) as well as the hard veto scale (Q⊥).

6.2 Profile Scale Choices in MC@NLO-type Matching

In Fig. 9 we present results obtained with both show-
ers using the resummation and hfact profiles. For clarity
we include a separate ratio plot for each shower which, for
each bin, shows the ratio of the result obtained using the
hfact profile to the result obtained using the resummation
profile. This is not intended to be a complete discussion of
profile scales and the uncertainties that arise due to choos-
ing a specific one. We simply wish to highlight some of the
potential effects of the profile scale choice and present a
small selection of observables in which these effects are
important.

We first consider the distribution of the transverse mo-
mentum of the hardest jet, in the top left plot in Fig. 9. In
both showers we see an increase in the number of events
with a soft (p⊥ . 20 GeV) hardest jet, a decrease in the
number of events with a moderate-p⊥ (20 GeV . p⊥ .
80 GeV) hardest jet and an increase in the number of

events with a high-p⊥ (p⊥ & 80 GeV) hardest jet using
the hfact profile versus the resummation profile. While the
hfact profile suppresses hard shower emissions, it does not
apply a hard cut on such emissions as in the resummation
profile. We therefore expect to see an increase in the num-
ber of events with a high-p⊥ hardest emission. With the
hard process, pp → tt̄, correct to NLO, p⊥,j1 is predicted
accurate only to LO and we should expect the shower to
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Fig. 8: Same as Fig. 7, in this case showing the inclusive jet multiplicities and the R distance between the tt̄-pair pair
and the hardest jet. See the text for discussion.

have some moderate impact on this observable. For both
showers the differences due to the profile choice are mod-
erate, ∼ 20%.

Next, in the top right plot in Fig. 9, we consider the jet
multiplicity, njet, distribution with a minimum jet-p⊥ cut
of 25 GeV and 80 GeV respectively. In general the dipole
shower shows an increase in the number of jets with both
of the minimum jet-p⊥ cuts when using the hfact pro-
file. For the angular-ordered shower we see, in general,
a decrease in the number of low-p⊥ jets when using the
hfact profile. On the other hand, the bottom left plot in
Fig. 9 shows an increase in the number of high-p⊥ jets.
The difference in the number of jets with p⊥ > 80 GeV
due to the profile choice is bigger for the dipole shower
than for the angular-ordered shower. Successive emissions
in the dipole shower decrease in transverse momentum,
therefore an increase in the transverse momentum of the
first shower emission, as we expect with the hfact profile,

increases the phase space available to all emissions that
follow. The angular-ordering requirement in the angular-
ordered shower effectively puts a cut on the hardness of
shower emissions, and through this the hfact profile can
increase the emission phase space only up to a maximum
possible value, such that the effects of the change from
the resummation to hfact profile are expected to be some-
what more pronounced for the dipole than the angular-
ordered shower. The larger phase space available to suc-
cessive dipole shower emissions with the hfact profile rela-
tive to the resummation profile is evident in the increase in
the number of both soft and hard jets. In the case of the
angular-ordered shower we see an increase in the number
of hard jets, however the angular-ordering restriction and
the suppression of soft emissions by the hfact profile lead
to a reduction in the number of low-p⊥ jets.

Finally the bottom right plot in Fig. 9 shows the dis-
tribution of the azimuthal separation of the tt̄ pair and
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Fig. 9: The effect of different profile scale choices for the two shower algorithms, angular ordered (PS) and dipole (DS),
respectively when using MC@NLO-type (NLO⊕) matching. We compare predictions for the default resummation profile
versus the broader hfact profile. From left to right, top to bottom, we present the p⊥ spectrum of the hardest jet, the
inclusive jet multiplicity at a threshold of 25 GeV and 80 GeV, respectively, as well as the azimuthal angle distance
between the top pair and the hardest jet.

the hardest jet, ∆φ(tt̄, j1). At NLO, i.e. with one QCD
emission from the matrix element, ∆φ(tt̄, j1) is necessarily
equal to π, therefore the distribution is strongly depen-
dent on the parton shower, in particular on the hardest
few emissions other than the hardest emission. In the case
of the dipole shower, the hfact profile produces a signifi-
cant increase in the number of events with small ∆φtt̄,j1
compared to the resummation profile. In comparison the
angular-ordered shower displays a smaller increase in the
number of events with small ∆φtt̄,j1 using the hfact pro-
file versus using the resummation profile. This is consistent
with what we see in the njet distributions, where using
the hfact profile leads to a larger increase in the number
of high-p⊥ jets in the dipole shower than in the angular-
ordered shower.

6.3 The Hard Veto Scale in MC@NLO-type Matching

In Section 5.5 we discussed the role of the hard veto
scale, Q⊥, in MC@NLO-type matching. In the following
we discuss the predictions produced using each of the three

options (µ1, µ2, µ3) for µH separately. Given that the Q⊥
directly affects the showering of the production-level pro-
cess, we expect to see the largest effects due to the choice
of Q⊥ (which is either Q⊥ = µH or Q⊥ = µa) in distri-
butions that reflect the jet activity in each event. As such
these are the distributions that we present for discussion
in this section.

Fig. 10 shows the transverse momentum distributions
of the hardest jet, p⊥(j1), and second hardest jet, p⊥(j2),
in events showered using the angular-ordered (PS) and
dipole showers (DS). The scale choices are specified in the
format (µH, Q⊥). Similarly, the transverse momentum dis-
tributions of the third hardest jet and the jet multiplicity
distributions are shown in Fig. 11, where only jets with
transverse momentum greater than 25 GeV are counted
in the multiplicity distributions. Finally, Fig. 12 shows
the transverse momentum distributions of the top quark,
p⊥(t), and the tt̄-pair, p⊥(tt̄), in events showered using
the angular-ordered and dipole showers. In MC@NLO-
type events the hard process, pp→ tt̄, is formally accurate
to NLO in QCD, therefore the p⊥(t) distribution is for-
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Fig. 10: The effect of different choices of the hard veto scale Q⊥ for the two shower algorithms, angular ordered (PS)
and dipole (DS), respectively when using MC@NLO-type matching. We compare predictions for different choices of
the resummation and factorization scale choice µH, using two choices for the hard veto scale in each case. The scales
are specified in the format (µH, Q⊥) and each of the scale choices is defined in the text. From top to bottom, left to
right, we present the p⊥ spectra of the hardest and second hardest jets, produced with the angular-ordered and dipole
shower respectively.

mally accurate to NLO whereas the p⊥(tt̄) distribution
is accurate only to LO. Accordingly the dependence of
the p⊥(t) distribution on p⊥(j1) is expected to be mod-
est while the p⊥(tt̄) distribution should be closely related
to p⊥(j1). Indeed for a pure NLO cross section we would
have the simple one-to-one relationship, p⊥(tt̄) = p⊥(j1).

We first consider the choice µH = µ1, which in S-events
is identical to µa, and compare the results for Q⊥ = µ1 to
those for Q⊥ = µa.

InH-events with a low or moderate-p⊥ NLO real emis-
sion, µ1 is larger than µa, however the difference is small
enough that we do not see any corresponding effects at low
or moderate-p⊥ in the jet-p⊥ distributions in Fig. 10 and
Fig. 11. It is only in H-events with the very hardest NLO

emissions that µa is significantly larger than µ1. This is
evident from the increase in the p⊥(j2) and p⊥(j3) distri-
butions at high-p⊥ using Q⊥ = µa compared to Q⊥ = µ1.
The fact that we do not see any difference at high-p⊥ in the
p⊥(j1) distribution indicates that this region of the distri-
bution is filled by high-p⊥ NLO emissions in H-events.

As we would expect given the discussion above, look-
ing at Fig. 12, for µH = µ1 we see no significant differences
due to the choice of Q⊥ in the njets, p⊥(t) or p⊥(tt̄) dis-
tributions.

In summary, µ1 and µa are identical in S-events and
are similar in most H-events, which is why we see varying
differences in jet activity due to the choice of Q⊥.
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Fig. 11: Same as Fig. 10, in this case showing the p⊥ spectrum of the third hardest jet and the inclusive jet multiplicity
distribution in the upper and lower row respectively.

Next we consider µH = µ2 for which µa > µH in all
events. In S-events we have µa = 2µ2 and in H-events
with a low-p⊥ NLO first emission we have µa ∼

√
8/3 µ2.

The larger hard veto scale in such events explains the
increase that we see in the p⊥(j1) distributions in Fig. 10
at around 75 GeV < p⊥(j1) < 250 GeV. The fact that
this increase in the rate drops off at around 250 GeV,
above which the distributions using the two different op-
tions for Q⊥ become very similar, suggests that jets harder
than this are primarily produced as a high-p⊥ real emis-
sion in H-events. In Fig. 10 and Fig. 11 we observe a large
increase in the number of moderate and high-p⊥ second
and third jets for Q⊥ = µa compared to Q⊥ = µ2. The
simple fact that µa > µ2 in all events means we expect
to see such an increase at moderate values of the jet-p⊥.
In H-events the difference between µa and µ2 grows with
the transverse momentum of the NLO emission. This ex-
plains why using Q⊥ = µa, as opposed to Q⊥ = µ2, gives

rise to an increase in the p⊥(j2) and p⊥(j3) distributions
at high-p⊥ that grows with the jet-p⊥. In Fig. 11 we see
a large increase in the number of events with high jet-
multiplicities for Q⊥ = µa compared to Q⊥ = µ2. This
corresponds to the increase that we see in the p⊥(j2) and
p⊥(j3) distributions.

The moderate difference in the p⊥(j1) distribution is
not evident in the p⊥(t) distributions, in Fig. 12. How-
ever, it is evident in the p⊥(tt̄) distribution, which is very
sensitive to the hardest emission.

In summary, µa is larger than µ2 in all events therefore
we see an increase in jet activity using Q⊥ = µa compared
to Q⊥ = µH = µ2.

Finally, we consider the results for µH = µ3, the invari-
ant mass of the tt̄ pair, which is a large scale compared to
µ1 and µ2.
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Fig. 12: Same as Fig. 10, in this case showing the p⊥ spectra of the top quark and the tt̄-pair in the upper and lower
row respectively.

The p⊥(j1) distributions in Fig. 10 display a significant
decrease for p⊥(j1) > 100 GeV using Q⊥ = µa compared
to Q⊥ = µ3. This indicates that for the choice Q⊥ =
µH = µ3, the hardest jet is predominantly produced as
the first shower emission, as opposed to NLO emission in
H-events, up to a much higher scale p⊥(j1) than for either
Q⊥ = µH = µ1 or Q⊥ = µH = µ2. The p⊥(j2) and p⊥(j3)
distributions in Fig. 10 and Fig. 11 also display a decrease
in the rate for the choice Q⊥ = µa compared to using
Q⊥ = µ3. This is expected given that µa < µ3. In Fig. 11
the dipole shower with Q⊥ = µa displays a decrease in
the number of high-multiplicity events compared to using
Q⊥ = µ3. This is in straightforward agreement with the
decreases seen in the jet-p⊥ distributions. As we expect,
for the two choice of Q⊥, we also see a large difference
in the p⊥(tt̄) distribution, in Fig. 12, which matches the
difference in the p⊥(j1) distribution.

The jet-multiplicity distribution predicted using the
angular-ordered shower, displays a less consistent change
between the scale choices Q⊥ = µa and Q⊥ = µ3. In fact
for njets > 5 we actually see an increase in the distribu-
tion using Q⊥ = µa compared to Q⊥ = µ3. This is consis-
tent with the behaviour seen in the jet-p⊥ distributions,
in which we see the difference due to the choice of Q⊥
reduce considerably between the p⊥(j1) and p⊥(j3) distri-
butions. As in the dipole shower predictions, for the two
choices of Q⊥, we see a large and corresponding difference
in the p⊥(tt̄) and p⊥(j1) distributions.

We also see a small change, due to the choice of Q⊥,
in the p⊥(t) distribution, for both showers. As discussed
above, the impact of the hardest emission on this dis-
tribution is a NLO effect, however the difference in the
p⊥(j1) distribution due to the hard veto scale choice is
large enough to induce a sizeable difference in the p⊥(t)
distribution.
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In this discussion we have compared the effect of us-
ing Q⊥ = µH and Q⊥ = µa for three different choices of
µH. As there is no first principles choice for the scale Q⊥,
the aim of this discussion is to highlight that when we use
MC@NLO-type matching we have to make a choice for
this scale. We have shown that in general using a smaller
hard veto scale reduces the predicted jet activity in an
event, whereas using a larger hard veto scale generally in-
creases the predicted jet activity. We use µa to reflect the
transverse momenta of the objects outgoing from the hard
process. We leave further investigation of potential scale
choices to future work. We return to this topic in Sec-
tion 8.2 in which we investigate the effect of the choice for
Q⊥ on the prediction of distributions measured in exper-
iment. As far as the corrections to the decay, and similar
variations therein are considered we cannot find any sig-
nificant impact on the observables considered here, which
are mostly insensitive to changes in the decay system.

7 Boosted Topologies

The energy and luminosity provided at the LHC al-
low studies of top quarks with transverse momenta much
higher than the top mass. In such cases the decay prod-
ucts of the top quark are generally not well separated.
The b quark, and decay products from the W boson are
often collimated, forming a single large jet referred to as
a ‘boosted’ top jet. This topology has several distinct dif-
ficulties compared to the lower momentum cases.

Firstly, large-radius jets originating from top quarks
need to be discriminated from large-radius jets originating
from other coloured particles or from the decays of W and
Z bosons. This discrimination, referred to as tagging, typ-
ically makes use of the substructure of the large jet. The
three pronged nature of the top-quark decay leaves a char-
acteristically three-pronged structure within the large jet
which is not usually found in boson decays or pure QCD
jets. In practice many different techniques are used to tag
large jets as originating from a top quark. Whether it is
through machine learning applied directly to jet-algorithm
inputs or techniques based directly on high-level observ-
ables designed to provide substructure information these
taggers all ultimately make use of the distribution of en-
ergy within a jet to perform tagging. The performance of
taggers is often estimated from simulation and it is there-
fore important to understand the impact of the various
choices made in the Monte Carlo simulation on the de-
scription of the substructure of large jets originating from
boosted top quarks.

As a probe of the sensitivity of jet substructure to the
Monte Carlo approach we examined the N-subjettiness
[56] of boosted top quarks produced with Herwig 7. N-
subjettiness measures the degree to which the constituents
of a subjet are collimated along its N primary axes. Ratios
of N-subjettiness values for different values of N are often
used to tag large-radius jets. The ratios of 2-subjettiness
to 1-subjettiness (τ21) and 3-subjettiness to 2-subjettiness
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Fig. 13: The N-subjettiness ratios τ21 (top) and τ32

(middle and bottom) for the large-radius jet associated
with the highest momentum top-quark in boosted tt̄
events. The top and middle plots show comparisons of the
angular-ordered (PS) and dipole (DS) showers with both
the MC@NLO-type (NLO⊕) and Powheg-type (NLO⊗)
matching schemes. The bottom plot shows the effects of
scale variations on τ32 using the dipole shower with each
of the NLO matching schemes.
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(τ32) were compared using different Herwig 7 settings
as shown in Fig. 13. We expect radiation at intermedi-
ate scales to have the largest impact as hard emissions
are typically outside the radius of the jet, while very soft
emissions have little impact on the overall substructure.
Variation of the shower scale, µs, is found to have the
largest contribution to the uncertainty envelope, whereas
the contributions from the other scale variations are neg-
ligible. The choice of matching scheme is also found to
have very little impact, except for the lowest τ32 bin. On
the other hand, comparing the dipole shower and angular-
ordered shower algorithms shows more significant differ-
ences, comparable to the uncertainty envelopes produced
by scale variations.

A second difficulty for high momentum top quark sim-
ulation is that of CPU time required to populate the high-
p⊥ region of phase space targeted by these analyses. Given
the steeply falling tt̄ cross-section as a function of the
transverse momentum of the top quark, analyses target-
ing boosted topologies are typically targeting ∼ 1% of the
total phase space or less. Simulating the inclusive phase-
space can therefore be very inefficient, requiring orders
of magnitude more events to be fully simulated than are
actually of interest. In order to reduce the resources re-
quired for simulation a simple cut mechanism is available
in the Matchbox framework of Herwig 7. This mecha-
nism makes several options available to improve the effi-
ciency of producing high-p⊥ top quarks.

Example runs with cuts on the transverse momentum
of the leading top quark of 200, 300 and 600 GeV were
performed to test the efficiency. They showed no signifi-
cant change in the distributions of weights. For a centre-
of-mass energy of 13 TeV kinematic bins well beyond the
cut values increased their overall statistics by factors of
∼ 5, ∼ 20 and ∼ 500 respectively for the same total num-
ber of events, and relative errors were reduced accordingly.
No appreciable impact on the computing time per event
was found, allowing a significant reduction in computing
power to achieve the same or better statistical power. A
code snippet of an input card to produce similar cuts is
provided as an example in Appendix B.

8 Data Benchmarks

After investigating several aspects related to the pre-
dictions provided by our improved simulation we now turn
to an in-depth comparison to experimental data in or-
der to quantify how the different algorithms and their
intrinsic uncertainties compare to existing collider data.
We use existing and publicly available Rivet analyses, for
which the collision energy,

√
s, at which each experimen-

tal result was measured and the final-states included are
summarised in the following text. Specific details of the
experimental analyses are available in the references pro-
vided. All of the measurements presented in this section
are taken in the ‘combined channel’, i.e. including both
electron and muon final states. Unless otherwise stated,

the hard process scale used to generate events is

µH =
m⊥,t +m⊥,t̄

2
. (63)

This scale was chosen because it was found to give rise to
reasonable predictions of several observables sensitive to
jet activity using MC@NLO-type matching. In particular
we compared predictions of several observables included
in the publicly available Rivet analyses for Refs. [4, 57]
obtained using µH = µ1,2,3, i.e. the three scales defined in
Section 5.5. We use the default choice, Q⊥ = µH, for the
hard veto scale in all runs apart from those in which this
is the scale of interest. Similarly, the resummation profile
scale is used in all runs unless otherwise stated.

The default angular-ordered and dipole shower tunes
of Herwig 7.1.1 are used in all runs with the respective
showers. The PDF set used is again
MMHT2014nlo68cl while αS is defined separately by us-
ing the tuned value for each shower. We use a five-flavour
scheme in the runs using the angular-ordered shower, with
massless incoming bottom quarks, and the four-flavour
scheme in runs using the dipole shower, which treats par-
tons of a given flavour as having the same mass in both the
initial and final states. The masses of the bottom quark
and top quark are set to 4.2 GeV and 174.2 GeV, respec-
tively, while all other quarks are considered to be massless.

All distributions that are not normalised to their inte-
gral are scaled to the appropriate next-to-next-to-leading
order cross section, as described for the investigation of
the production-level process in Section 6. The NNLO cross
sections are 173.60 pb and 247.74 pb for 7 TeV and 8 TeV
collisions, respectively.

8.1 Scale Variations

In Section 6.1 we discussed the uncertainty on predic-
tions of distributions in the production-level process due
to scale variations in the simulation. In this section we
complete this discussion by looking at the uncertainty on
predictions of distributions in the full-process, including
top quark decays and hadronization. We perform the same
scale variations as in Section 6.1 and the reader is referred
to that discussion for details. We highlight that the veto
scale in the showering of decay processes is fixed at the
mass of the decayed particle and is not varied. We com-
pare predictions obtained using the angular-ordered and
dipole showers with several experimental measurements.

We first look at two observables for which we have
considered analogous results in the production-level dis-
cussion, namely the p⊥(t) and jet multiplicity distribu-
tions. In Fig. 14 we show predictions for the distribution
of the transverse momentum of the hadronically decaying
top quark as measured by the ATLAS collaboration [58] in
semileptonic pp→ tt̄ events at a centre-of-collision energy
of 8 TeV. The LO matrix element plus parton shower and
NLO-matched predictions for the angular-ordered and the
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Fig. 14: The transverse momentum of the reconstructed
hadronically decaying top quark measured by ATLAS in
semileptonic 8 TeV pp → tt̄ events [58]. The top plots
shows leading-order production with angular-ordered (PS)
and dipole (DS) parton showers, the middle plot NLO pro-
duction matched to the angular-ordered parton shower
while the bottom plot shows NLO production matched
to the dipole shower. Two NLO matching schemes,
MC@NLO-type (NLO⊕) and Powheg-type (NLO⊗), are
used.

dipole showers are included. The dominant source of un-
certainty on the LO predictions is the variation of Q⊥.
This is in contrast to the production-level result in which
there was no dominant source of uncertainty. We have con-
firmed that this difference is due to the different choice of
the central hard process scale, which in turn is used as
the central hard veto scale. This distribution is only mod-
erately sensitive to the parton shower. However, with a
larger central hard veto scale the upper variation allows
the production of jets that are hard enough to affect the
distribution and give rise to a larger uncertainty envelope.
The larger uncertainty on the dipole shower prediction re-
flects the less restricted emission phase space. The cen-
tral MC@NLO-type and Powheg-type predictions display
good agreement for both showers and there is no single
dominant source of uncertainty in the NLO-matched re-
sults.

In Fig. 15 we show predictions for the jet multiplicity
distribution for jets with p⊥ greater than 25 GeV mea-
sured by the ATLAS collaboration [57] in semileptonic
pp → tt̄ events at a centre-of-collision energy of 7 TeV.
Comparing the LO predictions we find that, in general,
the dipole shower predicts larger multiplicities than the
angular-ordered shower and, particularly at higher multi-
plicities, the uncertainty on the dipole shower prediction
is greater than that on the angular-ordered shower pre-
diction. Both of these observations again reflect the dif-
ferences in the phase-space restrictions of the two show-
ers, in particular that the dipole shower has no explicit
angular-ordering restriction on emissions. The variations
of the scales directly related to the shower, Q⊥ and µS,
both contribute to the total uncertainty which demon-
strates the dependence of this distribution on the parton
shower. The larger contribution is from the variations of
Q⊥ and reflects that this scale directly affects the phase
space available to shower emissions.

The MC@NLO-type and Powheg-type predictions dis-
play reasonable agreement with each other for both show-
ers. This was not the case in the production-level results
and reflects the different choice for the central hard pro-
cess scale for the production-level and full process pre-
dictions. In the angular-ordered shower predictions there
is no single dominant source of uncertainty using either
matching scheme. In the dipole shower predictions using
MC@NLO-type matching the uncertainty due to the vari-
ation of Q⊥ is significant and reflects the discussion in
Section 6.3 and Section 8.2 on the choice of the hard veto
scale in MC@NLO-type matching. We note that while we
do not expect parton showers to produce good predictions
of high jet multiplicities, evident in the increasing uncer-
tainty with increasing jet multiplicity, we do find that in
all bins the uncertainty envelopes on the LO and NLO-
matched predictions all overlap with the experimental er-
ror bars.

Fig. 16 shows predictions for the HT distribution mea-
sured by CMS [59] in semileptonic tt̄ events at a centre-
of-collision energy of 8 TeV. The observable HT is defined
as the scalar sum of the transverse momentum of all jets
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Fig. 15: The multiplicity distribution of jets with trans-
verse momentum greater than 25 GeV, measured in
semileptonic 7 TeV pp → tt̄ events by ATLAS [57]. The
theoretical predictions are the same as those described in
the caption of Fig.14.

in each event
HT =

∑

jets

p⊥,jet . (64)

Considering the LO plus parton shower results, the central
predictions of the angular-ordered shower and the dipole
shower display different shapes in the lower bins however
they come into good agreement in the upper bins. It is
clear that the uncertainty band on the dipole shower pre-
diction is larger than on the angular-ordered shower pre-
diction, and in both cases it is dominated by the variation
of Q⊥ which directly affects the predicted jet activity. The
larger uncertainty in the dipole shower prediction due to
variations in Q⊥ again reflects the differences in the phase
space of the two showers. For each shower, the uncertainty
on the prediction obtained using MC@NLO-type match-
ing is slightly larger than that on the prediction obtained
using Powheg-type matching. There is no clear single dom-
inant source of uncertainty on the angular-ordered shower
predictions. As in the njets distributions, the largest con-
tribution to the uncertainty envelope on the dipole shower
prediction using MC@NLO-type matching is due to the
variation of Q⊥.

Of the variations considered in this study, only the
variation of µS directly affects the simulation of a given
individual decay process. However, some decay-related ob-
servables, such as measures of the separation of the decay
products from different particle decays, are sensitive to
the hard process. It is therefore important to investigate
the size of the uncertainty on such observables due to the
variations of all three scales considered.

In Fig. 17 we show predictions of the separation of the
two hardest b-tagged jets in semi-leptonic pp→ tt̄ events
at a centre-of-collision energy of 8 TeV. The separation

is defined as ∆R(jb1, jb2) =
√
∆φ2 +∆η2, where ∆φ and

∆η denote the difference in the azimuthal angle and pseu-
dorapidity respectively of the hardest and second-hardest
bottom-tagged jets. This observable is sensitive to both
the simulation of the decay and to the direction of the
top quarks that decay to produce the bottom quarks. We
measure this distribution using a purpose-built analysis
in which we require at least one final-state dressed lep-
ton, electron or muon, with p⊥ > 30GeV and |η| < 4.2.
Dressed leptons are created by clustering each bare lepton
with any photons within a cone of ∆R = 0.1 around the
lepton. We also require at least two light-flavour jets and
two bottom-tagged jets with p⊥ > 30GeV and |η| < 4.2.
Additionally we implement a minimum missing transverse
energy cut of 30 GeV, where the transverse energy of each
visible outgoing particle is defined as E⊥ = E sin(θ) where
E and θ denote the energy and polar angle of the particle
respectively, measured in the lab frame.

As we do not use the benchmark settings to produce
predictions intended for comparison to experimental data,
it is not informative to compare the predictions of the par-
ton showers and matching schemes. The dominant source
of uncertainty on the LO predictions in the region ∆R <
π is the variation of Q⊥. This is because the relative
orientation of the top quarks, and hence the separation
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Fig. 16: The HT distribution measured in semileptonic
8 TeV pp → tt̄ events by CMS [59]. The theoretical pre-
dictions are the same as those described in the caption of
Fig.14.
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Fig. 17: The ∆R(b1, b2) =
√
∆φ2 +∆η2 distribution, de-

scribed in the text, simulated for semileptonic 8 TeV
pp→ tt̄ events.
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of the bottom-tagged jets, is sensitive to hard radiation
from the production process. The uncertainty envelopes
on the NLO-matched predictions are in general smaller
than those on the LO predictions, and there is no single
dominant source of uncertainty. This is because the the
hardest jet from the production process is simulated to
LO, rather than parton-shower, accuracy.

To summarise, following our detailed discussion of scale
variations in the production-level process in Section 6.1,
we have identified three observables measured in experi-
ments and compared predictions obtained using Herwig 7
including a full evaluation of the uncertainties due to scale
variations. In general, the total uncertainty envelope, from
the complete set of all 27 scale variation combinations, is
not accurately reproduced by the variation of any single
scale. Therefore a full evaluation of the scale variations is
required to produce a good estimate of the uncertainty
on predictions of experimental observables. In addition
we have also considered one observable, the separation of
the bottom-tagged jets, that is sensitive to the simulation
of both the production process and the decay processes.
The uncertainty on this prediction due to scale variations
is small and our findings suggest that most of the un-
certainty is due to the sensitivity to the production pro-
cess. With relatively few experimental analyses that mea-
sure decay-process sensitive observables currently avail-
able, the evaluation of the uncertainty on predictions of
such observables is an area for future investigation.

8.2 The Hard Veto Scale in Data Predictions Using
MC@NLO-type Matching

In order to investigate the effects of the choice of Q⊥
on the prediction of distributions measured in experiment
we perform the same comparison of scale choices as in Sec-
tion 6.3 for the full event simulation. We compare some
selected results from experimental analyses that demon-
strate the effects that the choice of Q⊥ can have on data
predictions.

We highlight that the hard veto scale is applied in the
showering of the production process only. The veto scale
applied in the showering of the decay process is simply
the mass of the decayed particle, i.e. the top quark, and
is not varied. One should therefore expect the predictions
that show the largest change due to the choice of Q⊥ to
be those for observables that have a direct dependence on
radiation from the production process. The four observ-
ables that we present in this section are such observables.
First we discuss the distribution of the transverse momen-
tum of the tt̄-pair, sensitive to the hardest jet emitted in
the production process, followed by three observables that
measure the jet activity in each event.

In Section 6.3 we show distributions of p⊥(tt̄) in the
production-level process, Fig. 12. In Fig. 18 we show pre-
dictions of the p⊥(tt̄)-distribution measured by
ATLAS [58] in semileptonic tt̄-events at

√
s = 8 TeV,

obtained using the angular-ordered and dipole showers.

Both of the showers display very similar behaviour as in
the production-level case, this is expected given that the
predictions for this distribution depend on the production
process and its showering. In order to avoid repetition we
refer the reader to our discussion in Section 6.3 for details.

In Section 6.3 we show distributions of the jet-
multiplicity with a jet-p⊥ cut of 25 GeV, Fig. 11. Pre-
dictions of the jet-multiplicity distribution measured by
ATLAS [57] in semileptonic tt̄ events at

√
s = 7 TeV,

obtained using the angular-ordered and dipole showers,
are shown in Fig. 18. As in our production-level analysis
this distribution also implements a minimum-p⊥ require-
ment of 25 GeV on the jets. We note that the full pro-
cess includes additional jets from the top-quark decays
and the hadronic W-boson decay which are not present
in the production-level process. Taking this in to account,
the behaviour of these predictions is consistent with the
production-level results and we refer the reader to the dis-
cussion in Section 6.3 for details.

Fig. 19 shows predictions of the gap fraction, f(Qsum),
measured by ATLAS [60] in dileptonic tt̄-events at√
s = 7 TeV, obtained using the angular-ordered and

dipole showers. The gap fraction is a measure of addi-
tional jet activity in tt̄-events, i.e. jets which originate
from quark and gluon radiation in the event as opposed
to the decay products themselves. The analysis used se-
lects only events in the dilepton decay channel so that
additional jets can be easily distinguished from the decay
products, i.e. two leptons and two bottom-tagged jets.
The gap fraction is defined as

f(Qsum) =
n(Qsum)

N
, (65)

where N is the number of tt̄ events that pass the analysis
cuts and n(Qsum) is the number of these events in which
the sum of the scalar transverse momenta of the additional
jets in a given rapidity range is less than the veto scale
Qsum. In particular we present results for additional jets
in the rapidity range |y| < 2.1.

As we found for most observables in the production-
level results, for the choice µH = µ1 we see very little
difference in the predictions due to the choice of Q⊥ for
both showers. For the scale choice µH = µ2 the predic-
tions for both showers using Q⊥ = µa display a decrease
in the gap fraction with decreasing Qsum compared to us-
ing Q⊥ = µH. Conversely for the scale choice µH = µ3

the predictions for both showers using Q⊥ = µa display
an increase in the gap fraction with decreasing Qsum com-
pared to using Q⊥ = µH. This corresponds to an increase
in jet activity for µH = µ2 and a decrease for µH = µ3,
using Q⊥ = µa compared to using Q⊥ = µH, as we would
expect following our discussions in Section 6.3.

Moreover, Fig. 19 shows predictions of the HT dis-
tribution, as defined in Eq. (64), measured by CMS [59]
in semileptonic tt̄-events at

√
s = 8 TeV obtained using

the angular-ordered and dipole showers. HT is another
probe of jet activity in an event. Given our previous dis-
cussion of the effects of the choice of Q⊥ the predictions
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Fig. 18: Top: tt̄-pair transverse momentum measured by ATLAS in semileptonic 8 TeV pp→ tt̄ events [58] and predicted
using the angular-ordered (PS) and dipole (DS) parton showers, respectively. Bottom: The multiplicity distribution
of jets with p⊥ > 25 GeV measured by ATLAS in semileptonic 7 TeV pp → tt̄ events [57] and predicted using the
angular-ordered and dipole parton showers, respectively.

obtained using both showers behave as we would expect.
Using µH = µ1 we see that the choice Q⊥ = µa has virtu-
ally no effect on the results compared to using Q⊥ = µH.
For the scale choice µH = µ1 we see an increase in the pre-
dicted distribution at high-HT using Q⊥ = µa compared
to using Q⊥ = µH, while for the scale choice µH = µ3

we see a decrease in the predicted distribution at high-HT

using Q⊥ = µa compared to using Q⊥ = µH.

To conclude we re-iterate that we are not suggesting
one choice for Q⊥ over another. Through the discussion
in this section we have demonstrated that the choice of
the hard veto scale used in MC@NLO-type matching can
have a significant effect on the prediction of observables
of interest in tt̄ production at the LHC. In particular we
have presented predictions using three choices for µH and
two choices for Q⊥, the default choice in Herwig and a new

option. The hard veto scale in MC@NLO-type matching
directly effects the showering of the production process,
accordingly the predictions most affected by the choice of
Q⊥ are those sensitive to jet activity in the production
process.

9 Summary and Outlook

In this work we have presented a detailed study of
NLO plus parton shower matched predictions for top pair
production at the LHC in the Herwig 7 event generator.
We have considered various sources of uncertainty, includ-
ing the matching algorithms themselves for which two op-
tions, a subtractive (MC@NLO-type) and multiplicative
(Powheg-type) paradigm can be used within Herwig 7, as
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Fig. 19: Top: The gap fraction measured by ATLAS in dileptonic 7 TeV pp → tt̄ events [60], in veto region |y| < 2.1,
and predicted using the angular-ordered (PS) and dipole (DS) parton showers, respectively. Bottom: Combined lepton
channel measurement of the HT distribution by CMS in semileptonic 8 TeV pp → tt̄ events [59] and predicted using
the angular-ordered and dipole parton showers, respectively.

well as all scale choices involved. We have not only consid-
ered NLO corrections to the production process, but also
in the decay process. Both shower modules in Herwig 7
are now able to handle radiation in both the production
and the decay of top quarks, and we have used this paper
as an opportunity to present a new treatment for radiation
from heavy quarks in the dipole shower.

We have found that no single scale variation encom-
passes the entire set of independent variations, therefore
all sources need to be considered to obtain a reliable esti-
mate of the uncertainty on predictions. We have explicitly
shown that NLO matching provides improvements over a
LO plus parton shower simulation where expected. Higher
jet multiplicities, however, do suffer from large uncertain-
ties, even using NLO matching, a fact which should be
considered when using tuned predictions. In the course

of this work we have also considered boosted topologies,
focusing on N-subjettiness ratios which highlight the in-
ternal structure of the jets.

Particular attention has been paid to the choice of the
hard veto scale. This is an ambiguity in matching algo-
rithms which has not been addressed extensively in the
literature but plays an important role in the handling of
real-emission corrections present in the NLO matching. In-
appropriate choices can lead to artificially suppressed or
enhanced radiation, and we have found that scales which
identify the hard objects in the process provide the most
reliable results.

The main purpose of this work was to highlight the un-
certainties and ambiguities associated with NLO match-
ing, which need to be compared between different shower
and matching algorithms. The Herwig 7 event generator
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provides unique capabilities to quantify the differences be-
tween predictions obtained using different setups and to
benchmark variations against each other. These sources of
uncertainty should be taken into account when compar-
ing predictions against data, also in view of an improved
simulation based on multi-jet merging, which can more
reliably predict higher jet multiplicities.
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A Dipole Shower Kinematics

A.1 Alternative Formulation for the Final-Final Dipole
Kinematics

The physical momenta of the partons following a split-
ting from a massive final-final dipole, written in terms of
the splitting variables zi and yij,k, are

qi = AiQ+ k⊥ +Biv‖, (66a)

qj = AjQ− k⊥ +Bjv‖, (66b)

qk = AkQ+Bkv‖, (66c)

where

Ai =
1

s

[
m2
i +

s̄

2
(yij,k + zi(1− yij,k))

]
, (67a)

Aj =
1

s

[
m2
j +

s̄

2
(1− zi(1− yij,k))

]
, (67b)

Ak =
1

s

[
m2
k +

s̄

2
(1− yij,k)

]
, (67c)

Bi =
1

Bk

(
sAiAk −

s̄

2
zi(1− yij,k)

)
, (67d)

Bj =
1

Bk

(
sAjAk −

s̄

2
(1− zi)(1− yij,k)

)
, (67e)

Bk =

√
1

s

(
m2
k +

s̄

2
(1− yij,k)

)2

−m2
k , (67f)

and the 4-vector

v‖ =

√
4s

λ
(
s,m2

k,m
2
ij

)
(
p̃k −

Q · p̃k
s

Q

)
, (68)

is expressed using the Kallen function

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (69)

Note that while it is trivial to write an expression p⊥ =
p⊥(zi, yij,k), this expression is cubic in yij,k which leads to
a complicated analytic equation for yij,k = yij,k(p⊥, zi).

A.2 Final-Final Dipole Kinematics

A.2.1 Completing the Formulation

In order to complete our formulation of the splitting
kinematics in Section 3.3.1 we require expressions for the
scaling parameters xk and xij in terms of the variables p⊥
and z. We first write an expression for the virtuality of
the emitter and emission produced in the splitting

Q2
ij = (qi + qj)

2

=
1

z(1− z)
[
p2
⊥ + (1− z)m2

i + zm2
j

]
. (70)

Defining the variables λij and λk as

λk = 1 +
m2
k

sij,k
, λij = 1 +

m2
ij

sij,k
, (71)

we derive the following expressions for the scaling param-
eters

xij = 1− m2
k

sij,k

(1− xk)

xk
, (72)

xk =
1

2λk



(
λijλk +

m2
k

sij,k
−
Q2
ij

sij,k

)
(73)

±

√√√√
(
λijλk +

m2
k

sij,k
−
Q2
ij

sij,k

)2

− 4λijλk
m2
k

sij,k


 .
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Finally we require expressions for the splitting vari-
ables zi and yij,k in terms of the variables p⊥ and z. We
write yij,k as

yij,k =
1

s̄z(1− z)
[
p2
⊥ + (1− z)2m2

i + z2m2
j

]
, (74)

where the invariant quantity s̄ is

s̄ = s−m2
i −m2

j −m2
k . (75)

In order to express zi in terms of p⊥ and z we write

zi =
2qi · qk

(1− yij,k)s̄
, (76)

where the denominator can be written as

(1− yij,k)s̄ = (77)
1

z(1− z)
[
z(1− z)− (1− z)2m2

i − z2m2
j − p2

⊥
]
,

and the numerator is given by the expression

2qi · qk = zxijxksij,k +
m2
k

zxijxksij,k

(
p2
⊥ +m2

i

)
. (78)

A.2.2 Phase-space Limits

In order to allow us to efficiently generate values for p⊥
and z according to the splitting kernels we need to express
the single-particle emission phase space and the limits on
it in terms of these variables.

The limits on the dipole splitting variables zi and yij,k
are given in Ref. [30] and we include them here to provide
a complete reference,

yij,k,− =
2mimj

s̄
, (79)

yij,k,+ = 1− 2mk(
√
s−mk)

s̄
, (80)

zi,±(yij,k) =
2m2

i + s̄yij,k

2
[
m2
i +m2

j + s̄yij,k
] (1± vij,ivij,k) ,(81)

where the relative velocities vij,k and vij,i are expressed
as functions of yij,k,

vij,k =

√
[2m2

k + s̄(1− yij,k)]
2 − 4m2

ks

s̄(1− yij,k)
, (82)

vij,i =

√
s̄2y2

ij,k − 4m2
im

2
j

s̄yij,k + 2m2
i

. (83)

The limits on p⊥ and z follow from the inequality
yij,k < yij,k,+,

p⊥,max =
1

2(
√
s−mk)

√
λ
(
m2
i ,m

2
j , (
√
s−mk)2

)
, (84)

z± =
1

2 (
√
s−mk)

2

[
m2
i −m2

j + (
√
s−mk)2 (85)

±
√
λ
(
m2
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2
j , (
√
s−mk)2

)
√

1− p2
⊥

p2
⊥,max

]
.(86)

A.2.3 The Single-Particle Emission Phase Space

The single-particle emission phase space required to
express the branching probability in Eq. (18) is written as

dqj =
1

16π2

s̄2

√
λ
(
s,m2

ij ,m
2
k

) (1− yij,k) dyij,kdzi
dφ

2π
.

(87)
As we consider only spin-averaged kernels the azimuthal
angle, φ, is averaged over in the phase-space integration
and we do not consider it explicitly in the following dis-
cussion.

Using the above expression for the single-particle phase
space we express the branching probability as

dPbranching =
1

16π2
〈Vij,k (zi, yij,k)〉 1(

1 +
m2

i +m2
j−m2

ij

s̄yij,k

)

× s̄√
λ
(
s,m2

ij ,m
2
k

) (1− yij,k)
dyij,k
yij,k

dzi ,

(88)

where we can express the phase-space integration in terms
of the generated variables using the result

dyij,k
yij,k

dzi = −
[

p2
⊥

p2
⊥ + (1− z)2m2

i + z2m2
j

]
(89)

×
[

1− 2
1

s̄(1− yij,k)

m2
kQ

2
ij

xijxksij,k

]
dp2
⊥

p2
⊥

dz .

A.3 Final-Initial Dipole Kinematics

A.3.1 Phase-space Limits

The upper limit on xij,b is,

xij,b,+ =
sij,b

sij,b −m2
ij + (mi +mj)2

. (90)

We can derive a lower limit on xij,b. We first write the
momentum of the incoming proton as P and the proton
momentum-fraction carried by the spectator prior to the
splitting as xs. We can write

qb =
1

xij,b
p̃b =

1

xij,b
(xsP ) < P , (91)



36 K. Cormier et al.: Parton Showers and Matching for Top Quark Pair Production

hence we require
xij,b > xs . (92)

From the inequality in Eq. (92) we derive the following
limits on the variables p⊥ and z

p2
⊥,max =

s′ij,b
4
λ

(
1,
m2
i

s′ij,b
,
m2
j

s′ij,b

)
, (93)

z± =
1

2

[
1 +

m2
i −m2

j

s′ij,b

±

√√√√λ

(
1,
m2
i

s′ij,b
,
m2
j

s′ij,b

)√
1− p2

⊥
p2
⊥,max


 , (94)

where λ is the standard Kallen function and for conve-
nience we have defined the modified invariant

s′ij,b = sij,b

(
1− xs
xs

)
+m2

ij . (95)

A.3.2 The Single-Particle Emission Phase Space

The single-particle emission phase space required to
express the branching probability in Eq. (28) is written as

dqj =
1

16π2
2p̃ij · qbdzidxij,b

dφ

2π
. (96)

As we consider only spin-averaged kernels the azimuthal
angle is averaged over in the phase space integration.

Using the above expression for the single-particle phase
space we express the branching probability as

dPbranching =
1

16π2

fb(xs/xij,b)

fb(xs)
〈V bij (zi, xij,b)〉

× 1

xij,b(1− xij,b)
dzidxij,b . (97)

Noting that zi = z we can express the phase-space integra-
tion in terms of the generated variables using the result,

1

xij,b(1− xij,b)
dzidxij,b = (98)

−
[

p2
⊥

p2
⊥ + (1− z)m2

i + zm2
j − z(1− z)m2

ij

]
dp2
⊥

p2
⊥

dz .

A.4 Initial-Final Dipole Kinematics

A.4.1 Phase-space Limits

The lower and upper limits on uj are

uj,+ = 0 (99)

uj,+ =
1− xjk,a

1− xjk,a(1−m2
k/saj,k)

, (100)

and the upper limit on xjk,a is

xjk,a,+ = 1 . (101)

Following an analogous argument to that used to derive
the inequality in Eq. (92) we derive a lower limit for xjk,a

xjk,a > xe , (102)

where xe is the proton momentum-fraction carried by the
emitter prior to the splitting.

From the inequality in Eq. (102) we derive the follow-
ing limits on the variables p⊥ and z

p2
⊥,max =

s′aj,k
2

4

[
1

m2
k + s′aj,k

]
, (103)

z± =
1

2

[
(1 + xe)± (1− xe)

√
1− p2

⊥
p2
⊥,max

]
, (104)

where for convenience we have defined the rescaled invari-
ant

s′aj,k = saj,k

(
1− xe
xe

)
. (105)

A.4.2 The Single-Particle Emission Phase Space

The single-particle emission phase space required to
express the branching probability in Eq. (36) is written as

dqj =
1

16π2
2qa · p̃kdujdxjk,a

dφ

2π
. (106)

As we consider only spin-averaged kernels the azimuthal
angle is averaged over in the phase-space integration.

Using the above expression for the single-particle phase
space we express the branching probability as

dPbranching =
1

16π2

fa(xe/xjk,a)

f̃aj(xe)
〈V ajk (uj , xjk,a)〉

× 1

uj

1

xjk,a
dujdxjk,a , (107)

where we can express the phase-space integration in terms
of the generated variables using the result

1

uj

1

xjk,a
dujdxjk,a = (108)

[
uj + xjk,a − ujxjk,a

(
1− m2

k

saj,k

)]−1
dp2
⊥

p2
⊥

dz .

B Generation Cut for Boosted Top Analyses

We can use the existing cut infrastructure in Herwig 7
to implement a generation cut to enhance the production
of events that include a boosted top quark or antiquark.
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We create a ‘MatchboxFactoryMatcher’ that identifies top
quarks and antiquarks and associate this with the exist-
ing ‘JetFinder’ and ‘JetCuts’ objects. Then we assign the
existing ‘FirstJet’ and ‘SecondJet’ objects to the ‘JetRe-
gions’ of the ‘JetCuts’ object. As we have assigned the
matcher of the ‘JetCuts’ object to be our new top quark
matcher, the ‘FirstJet’ and ‘SecondJet’ actually identify
top quarks. Therefore we can set transverse momentum
and rapidity cuts on the top quarks by setting the cuts on
the ‘FirstJet’ and ‘SecondJet’. The code snippet required
to do this is included below.

################################################
## Cut for boosted top analyses
################################################
cd /Herwig/MatrixElements/Matchbox

# Create a new particle group consisting of top
# quarks and antiquarks
do Factory:StartParticleGroup ttbar
insert Factory:ParticleGroup 0 /Herwig/
Particles/t
insert Factory:ParticleGroup 0 /Herwig/
Particles/tbar
do Factory:EndParticleGroup

# Create a new matcher and associate it with the
# top quark particle group
create Herwig::MatchboxFactoryMatcher
TopAntiTopMatcher
set TopAntiTopMatcher:Factory /Herwig/
MatrixElements/Matchbox/Factory
set TopAntiTopMatcher:Group ttbar

# Set the matcher of the JetFinder and JetCuts
# to the new top quark matcher
set /Herwig/Cuts/JetFinder:UnresolvedMatcher
TopAntiTopMatcher
set /Herwig/Cuts/JetCuts:UnresolvedMatcher
TopAntiTopMatcher

cd /Herwig/Cuts

# This snippet sets up JetFinder and JetCuts
read Matchbox/DefaultPPJets.in

# Set up the JetRegions and cuts
# Note: FirstJet and SecondJet are actually top
# quarks/antiquarks
insert JetCuts:JetRegions 0 FirstJet
insert JetCuts:JetRegions 1 SecondJet

set FirstJet:PtMin 0.*GeV
do FirstJet:YRange -5.0 5.0

set SecondJet:PtMin 0.*GeV
do SecondJet:YRange -5.0 5.0
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