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1 Introduction

The mass and stability of luminous matter in the Universe are largely a byproduct of

QCD. Around 99% of the mass of baryonic matter arises from the strong interaction

and its stability is a consequence of an accidental U(1)B baryon number symmetry in the

Standard Model (SM). Yet baryons represent only about one sixth of the total mass budget

of matter in the Universe. The remainder is dark matter (DM). Although unknown in

its properties, many different models and detection strategies have been proposed for DM,

often motivated by other issues associated with the SM (e.g., the stability of the weak scale

or the strong CP problem) [1, 2].
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On the other hand, dark and luminous matter may come from two separate particle

physics sectors, orthogonal to any problems of the SM [3]. DM may be the lightest stable

state within a dark sector that has its own gauge group and matter representations. If these

fields are singlets under the SM gauge group, the interactions between the two sectors only

arise through higher dimensional operators and may be very feeble. However, interactions

within the dark sector are generically much larger, especially for a non-abelian gauge theory

that is strongly coupled. Moreover, long-standing puzzles on the galactic-scale structure

of DM provide an astrophysical motivation for strong self-interactions between DM par-

ticles [4] (see ref. [5] for a review). Composite dark sectors are a natural framework for

self-interacting DM [6, 7].

It is an appealing hypothesis that the mass and stability of DM arise through strong

dynamics, similar to luminous baryons. Early realizations along these lines include tech-

nicolor baryons [8–10] and mirror baryons [11, 12]. For strongly coupled gauge theories,

lattice field theory is the main calculational tool in the nonperturbative regime. While

mainly used for QCD [13], recent studies of non-abelian dark sectors have turned to the

lattice to investigate the basic properties of these theories, such as the spectrum of states

and form factors for interactions with the SM [14–22]. We refer the reader to ref. [23] for

a recent survey of different models along these lines.

In this work, we propose a minimal model realizing these ideas and compute its basic

properties on the lattice. The DM candidate in our model will be the lightest baryon

in a strongly coupled Yang-Mills theory, which is stable due to an accidental symmetry.

By minimal, we mean the fewest number of colors Nc and flavors Nf , and the smallest

nontrivial representation for matter fields. Hence, we consider SU(2) gauge theory with

one Dirac fermion q (dark quark) in the fundamental representation. We do not consider

the case of a single Weyl fermion due to Witten’s anomaly [24]. Hambye and Tytgat

proposed a similar DM model based on SU(2) gauge theory with scalar quarks [25].

In the space of gauge theories, Nc = 2 theories have long been useful as a simplified

version of QCD [26–29]. However, an important distinction is the fact that the fundamental

representation of SU(2) is pseudo-real, unlike in SU(Nc) with Nc > 2. As a consequence,

two-color theories have an enlarged global symmetry that reflects transformations between

quarks and antiquarks. At the hadron level, there is a unification of baryons, antibaryons,

and mesons.

In our one-flavor theory, the quark q and antiquark q̄ fields form a doublet, written

schematically as Q ∼
( q
q̄

)
. As we show in section 2, the theory has an unbroken global

SU(2)B symmetry acting on Q.1 This symmetry is a non-abelian generalization of a U(1)B
baryon number symmetry for q; it is clear that U(1)B is the diagonal subgroup of SU(2)B.

Since the whole setup is analogous to isospin, we refer to this symmetry as baryonic isospin.

We argue below that SU(2)B is not violated by chiral symmetry breaking or a finite mass

for q. Hence, the hadronic spectrum of the theory will fall nicely into SU(2)B iso-multiplets.

1Henceforth, SU(2)B denotes the global symmetry, while SU(2) without the subscript refers to the local

gauge symmetry.
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We envision that the lightest baryon in our theory will be a suitable DM candidate.

The lightest qq state is part of a spin-1 iso-triplet

ρ =

 ρ+

ρ0

ρ−

 ∼
 qq

1√
2
(qq̄ + q̄q)

q̄q̄

 . (1.1)

Borrowing an analogy from QCD, this state is akin to the ρ meson. However, the su-

perscripts in eq. (1.1) refer not to electric charge, but to U(1)B charges: baryon (+),

antibaryon (−), and meson (0). All three components are stable DM candidates provided

SU(2)B remains unbroken.

Another peculiar feature of our Nf = 1 model is the absence of Goldstone bosons. Once

the axial U(1)A anomaly is considered, no chiral symmetries are present in the “chiral”

limit, where q becomes massless (see discussion in ref. [30]). The would-be Goldstone boson

from the U(1)A symmetry, which we denote η (analogous to the η′ in QCD), acquires a mass

through the anomaly. This stands in contrast to SU(2) gauge theory with Nf = 2, which

has an enlarged pion sector compared to QCD and the lightest baryons are themselves

Goldstone bosons [14].

In the early Universe, strong interactions in the dark sector populate a thermal plasma

of dark quarks and gluons, which later are confined into hadrons after a cosmological phase

transition, similar to QCD. The DM relic density may be frozen-out before or after the

transition, depending on the dark quark mass mq and the confinement scale ΛMS. In

the latter case (mq . ΛMS), an appealing feature of our model is that there is a built-

in annihilation channel ρρ → ηη for setting the relic density provided mρ > mη (with

the η subsequently decaying into SM particles). It is one of our key lattice results that

this inequality holds for any value of mq, unlike QCD where mρ < mη′ . Annihilation is

important for standard freeze-out [31] or asymmetric freeze-out where the dark sector has

a dark baryon asymmetry [32, 33]. The precise details depend on the relative temperature

of the dark sector [34], its coupling with the visible sector (see, e.g., [35]), and the possible

role of cannibalizing transitions [36, 38], such as ρρρ → ρρ. We defer an analysis of the

cosmology of our model to future study.

The remainder of this work is organized as follows. In section 2, we present our

dark sector model, including the leading non-renormalizable operators with SM fields. We

discuss the SU(2)B symmetry properties of the Lagrangian and other bilinear operators

that will be relevant for the lattice computations. We also discuss recent arguments that

SU(2) gauge theory does not provide a suitably stable DM candidate [20] and argue that the

ρ meson in our model avoids these pitfalls. Section 3 describes the lattice ensembles that

we use, how quark propagators are constructed, and provides a first look at the hadron

spectrum. We devote particular attention to defining the “chiral” mq = 0 limit in this

Goldstone boson-less theory. We also compute ΛMS as a convenient scale to normalize

dimensionless lattice quantities into physical units. Section 4 presents our main results:

the calculation of the dark hadron mass spectrum and decay constants. In section 5, we

discuss couplings between the dark sector and the SM and implications for DM detection.

In particular, we use the Feynman-Hellman theorem to provide a determination of the
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Higgs coupling to our dark matter candidate. Conclusions are provided in section 6. The

appendices describe two complementary methods to determine the “chiral” point, provide

an alternative and more precise approach to defining physical scales, and summarize our

lattice ensembles.

2 Dark sector model

2.1 Renormalizable Lagrangian and bilinear operators

The Lagrangian for SU(2) gauge theory with one Dirac fermion q, with mass m, is

L = −1
2Tr(FµνF

µν) + q̄(iD/−m)q + Lhigher dim . (2.1)

We assume that q is in the fundamental representation of SU(2) and is a singlet under

the SM gauge symmetries. The covariant derivative is Dµ = ∂µ + i
2gA

a
µσ

a, where g is

the gauge coupling and σa represents the Pauli matrices acting on SU(2) color indices.

Although there are no renormalizable interactions between the dark sector and the SM,

the two sectors may couple through higher dimensional operators, which we discuss below.

By analogy with QCD, eq. (2.1) has a U(1)L × U(1)R chiral symmetry for m = 0.

However, the two-color theory is different from QCD since the fundamental representation

of SU(2) is pseudo-real. Our theory possesses an enlarged U(2) global symmetry.2 To see

this, we can write the fermion part of eq. (2.1) in the following form

Lfermion = Q̄iD/Q− m
2

(
QT iσ2CEQ+ Q̄iσ2CEQ̄T

)
(2.2)

where C is the charge conjugation matrix acting on Dirac spinors and

Q =

(
qL

−iσ2Cq̄TR

)
, E =

(
0 1

−1 0

)
. (2.3)

The kinetic term in eq. (2.2) is manifestly invariant under U(2) transformations acting on

Q. For the mass term, let us decompose the global symmetry as U(2) = U(1)A × SU(2)B,

since rotating Q by an overall phase is equivalent to an axial U(1)A transformation on q.

As mentioned in the introduction, SU(2)B is a baryonic isospin symmetry, with U(1)B as

a subgroup, that plays a similar role as isospin in QCD. While U(1)A is broken for m 6= 0,

SU(2)B remains intact since E is an invariant tensor.

In lattice calculations, local operators constructed from q, q̄ create and annihilate states

in the hadronic spectrum with the same quantum numbers. In this work, we consider states

with JP = 0± and 1±. The relevant mesonic operators are

scalar (0+) OS = q̄q = 1
2

(
QT iσ2CEQ+ Q̄iσ2CEQ̄T

)
(2.4a)

pseudoscalar (0−) OP = q̄γ5q = −1
2

(
QT iσ2CEQ− Q̄iσ2CEQ̄T

)
(2.4b)

vector (1−) OµV = q̄γµq = Q̄γµτ3Q (2.4c)

axial vector (1+) OµA = q̄γµγ5q = Q̄γµQ . (2.4d)

2For completeness, we mention that for a general SU(2) gauge theory with Nf flavors, the usual U(Nf )L×
U(Nf )R chiral symmetry is enlarged to U(2Nf ) = U(1)A × SU(2Nf ). Chiral symmetry breaking reduces

SU(2Nf ) → Sp(2Nf ) (i.e., the compact symplectic group), yielding (2Nf + 1)(Nf − 1) Goldstone bosons.

For Nf = 1, no Goldstones appear since SU(2) = Sp(2).

– 4 –



J
H
E
P
1
2
(
2
0
1
8
)
1
1
8

On the right-hand side, we have expressed these operators in terms of Q to make clear

the SU(2)B isospin properties of these states. The scalar, pseudoscalar, and axial vector

operators are iso-singlets. To write the vector operator, we introduce Pauli matrices τa

acting on isospin indices. The vector operator is part of an iso-triplet

OaµV = Q̄γµτaQ (2.5)

that includes both meson and diquark operators. From eq. (2.5), we see that the lightest

baryon in the theory has JP = 1− and forms a triplet under SU(2)B, described in eq. (1.1).

We also write the tensor bilinear as

OµνT = q̄σµνq = QTEτ3Cσµν(iσ2)Q− Q̄Eτ3Cσµν(iσ2)Q̄T , (2.6)

where σµν = 1
2 [γµ, γν ]. Since a τ3 is required, it transforms under SU(2)B like OµV .

By analogy with QCD, we expect the chiral condensate 〈q̄q〉 to receive a nonzero value

through spontaneous symmetry breaking. However, since q̄q is an iso-singlet operator, its

vacuum expectation value does not violate baryonic isospin. On the other hand, the chiral

condensate breaks the global U(1)A symmetry, potentially leading to a pseudo-Goldstone

boson η that becomes massless for m = 0. However, just as in QCD, U(1)A is anomalous,

which gives an additional contribution to the η mass.

2.2 Nonrenormalizable interactions and CP violation

The dark sector and SM may be coupled through higher-dimensional operators. The leading

operators, arising at dimension five, are OS,P |H|2, where H is the SM Higgs field. When

the Higgs field gets its vev 〈H〉 = v/
√

2, there is an additional contribution to the dark

quark mass. In general, this term need not be aligned with the Dirac mass m and there

may be a relative CP-violating phase between them.3 If we start in a basis where only

OS |H|2 appears, we must allow m to be complex:

L ⊃ −m q̄RqL −m∗ q̄LqR −
1

M
q̄q|H|2 . (2.7)

Here, M is the mass scale parametrizing the coupling between the two sectors. Performing

a chiral rotation to make the total quark mass real and positive, we have

L ⊃ −mq q̄q −
1

M
(cosφOS + sinφOP )

(
vh+

1

2
h2

)
, (2.8)

where mq = |m + 1
2M v

2| and φ = arg(m + 1
2M v

2). CP violation manifests as a cou-

pling between both operators OS,P and the Higgs boson h. The pseudoscalar coupling is

particularly important since it causes the η meson to be cosmologically unstable. Phe-

nomenological consequences of eq. (2.8) are explored in section 5.

3Our model has another source of CP violation from the θ term. For simplicity, we have neglected this

term in the present work.
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2.3 Dark matter stability

Let us now discuss the question of whether the lightest baryon in our theory, the ρ meson,

provides a suitable DM candidate. Ref. [20] argued that if DM is stabilized by an accidental

symmetry, the symmetry must be preserved including operators of dimension five, not just

at the renormalizable level. Dimension-five operators, even if suppressed by the Planck

scale, may induce DM to decay much more rapidly than the age of the Universe. On the

other hand, dimension-six operators lead to a cosmologically acceptable DM lifetime if

the suppression scale M is large enough (but below the Planck scale). This is the same

situation as the proton in the SM: since the leading operators contributing to proton decay

arise at dimension six, protons are cosmologically stable for M & 1013 GeV. According to

ref. [20], this argument disfavors SU(2) dark sectors since the global U(1)B symmetry may

be violated by dimension-five operators of the form ∼ qq|H|2.

However, these arguments do not apply to our Nf = 1 model. The only dimension-five

operators are OS,P |H|2 and neither allow for ρ decay since they do not violate SU(2)B.

The leading operators that violate SU(2)B must involve OaµV and arise at dimension six

or higher by Lorentz symmetry. Therefore, we conclude that the ρ meson is a viable DM

candidate in terms of its stability, while iso-singlet states, such as the η meson, are not.

In fact, the scale of physics connecting the dark and visible sectors need not be ex-

tremely high (M � TeV) to preserve ρ stability. For example, if the two sectors are coupled

through a singlet scalar field, SU(2)B is still preserved since the scalar may only couple to

OS,P . Alternatively, if a Z ′ gauge boson mediates the coupling, it may couple to OaµV . This

will break the SU(2)B down to its U(1)B subgroup and, while the ρ0 will be destablized,

the ρ± remains a stable DM candidate. Hence, DM stability is robust in the face of these

simplest mediators between sectors.

3 Lattice setup

3.1 Lattice ensembles and propagators

For our lattice study, we discretize the one-flavour SU(2) theory of section 2 to arrive at

the familiar Wilson action,

SW =
β

2

∑
x,µ,ν

(
1− 1

2
ReTrUµ(x)Uν(x+ µ)U †µ(x+ ν)U †ν (x)

)
+ (4 +m0)

∑
x

ψ̄(x)ψ(x)

−1

2

∑
x,µ

(
ψ̄(x)(1− γµ)Uµ(x)ψ(x+ µ) + ψ̄(x+ µ)(1 + γµ)U †µ(x)ψ(x)

)
(3.1)

where Uµ(x) is the SU(2) gauge field and ψ(x) is the 4-component Dirac spinor for the

dark quark. The sum over x covers the entire lattice and in this work we primarily use

V = L3 × T = 123 × 32, but for certain topics we will use 123 × 48 lattices also. We

choose to use this arguably small volume for our exploratory study compared to those of

typical lattice QCD simulations as we want to cover a large range of bare input masses

m0 on reasonable resources. For the light quark spectrum, we have to compute costly

disconnected contributions requiring large numbers of propagator inversions to extract a
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signal. As the computational cost of these inversions scales like some power (V n, n > 1) of

the volume and require more iterations as the quark mass decreases, a small volume was

deemed a necessity to broadly and accurately map the spectrum for a large range of quark

masses. The investigation of the finite volume effects from our volume and the finite lattice

spacing effects will be left for a future study.

The bare gauge coupling β = 4/g2 is a function of the lattice spacing, which serves

as the ultraviolet cutoff. For this study we choose to work at fixed bare gauge coupling

of β = 2.2. The physical scale of our theory can be defined by matching to a known

phenomenological scale. The bare quark mass m0 (which is typically a negative number)

gets shifted by additive renormalization, so the massless limit can only be found from

the results of numerical simulations. We calculate with several different values of m0 as

listed in table 3. Also shown in table 3 are the number of configurations in each ensemble.

Ensembles were generated using the RHMC algorithm [39].

After these ensembles have been generated, the largest remaining expense is the cal-

culation of quark propagators, which requires inversion of a large-but-sparse matrix,

M(x, y) = (4 +m0)δx,y −
1

2

4∑
µ=1

(
(1− γµ)Uµ(x)δx+µ,y + (1 + γµ)U †µ(x)δx−µ,y

)
. (3.2)

For many applications only one row of the inverse is required and then it is sufficient to

solve the eigenvalue problem

M(x, y)S(y) = η(x) (3.3)

and we choose the source to be a time-diluted [40] Z2-stochastic wall (Z2SEMWall) [41]

source. Unfortunately, one row is not sufficient whenever two quarks within a single op-

erator can annihilate. For these disconnected diagrams, we use an unbiased stochastic

estimator, i.e. time and spin dilution [42, 43]. We find that 64 stochastic “hits” per config-

uration was beneficial for reducing noise at reasonable cost, which is a finding similar to [44].

From the configurations listed in table 3 for our lightest quark masses we do approximately

O(64, 000→ 330, 000) inversions for each ensemble’s spectrum measurement.

3.2 The lightest hadrons

To create a hadron on a lattice, we select the appropriate operator from eqs. (2.4). We

create the state at some initial Euclidean time and destroy it at some different time, so the

resulting correlation function is given by

CO1O2(t) =
1

L3

∑
x

〈O1(x, t)O†2(0, 0)〉,

=
∑
n

〈0|O1|n〉〈n|O2|0〉
2mn

(
e−mnt ± e−mn(T−t)

)
.

(3.4)

Hadron masses mn can be obtained by fitting the lattice data to this functional form. The

calculation for our dark matter candidate, the ρ± of eq. (1.1), is straightforward as we

can choose an operator where each quark propagator runs from source to sink, but other

hadrons are much more costly due to the ability of q̄q to annihilate within a single operator.

– 7 –
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We also compute the decay rates of dark sector states. Notice that eq. (3.4) contains

〈0|O1|n〉, which is proportional to the hadron’s decay constant and can be extracted from

the lattice data up to a multiplicative renormalization factor. For this project, we compute

ZA〈0|OtA(0)|η〉 = fηmη, ZV 〈0|OaiV (0)|ρa〉 = fρmρêi, ZP 〈0|OP (0)|η〉 = fP
m2
η

mq
, (3.5)

where i (t) is a spatial (temporal) Lorentz component and ê is a unit polarization vector.

We find it beneficial to simultaneously fit

COtAOP (t) =

N∑
n=1

AnBn

(
e−m

n
η t − e−mnη (T−t)

)
,

COPOP (t) =

N∑
n=1

B2
n

(
e−m

n
η t + e−m

n
η (T−t)

)
,

(3.6)

for the pseudoscalar to determine the ground state mass and amplitude, and

COtiTO
ti
T

(t) =
N∑
n=1

C2
n

(
e−m

n
ρ t + e−m

n
ρ (T−t)

)
,

COiV O
i
V

(t) =
N∑
n=1

D2
n

(
e−m

n
ρ t + e−m

n
ρ (T−t)

)
,

(3.7)

for the vector. We find that over the whole temporal range (excluding t/a = 0) a multi-

cosh/sinh fit with three states (N = 3) does a good job of describing our data. n = 1 is

our lightest state, and so we can use the fit parameters in the following way to define the

decay constants of eq. (3.5),

fη = ZAA1

√
2

m1
η

, fρ = ZVD1

√
2

m1
ρ

, fP = ZPB1

√
2mq

(m1
η)

2
(3.8)

For the renormalisation factors we take the results from [45] who determined them using

1-loop perturbation theory (see also [46]),

ZA/V/P = 1− g2
0

16π2

3

4
CA/V/P (3.9)

with coefficients CA = 15.7, CV = 20.62, and CP = −6.71.

In a theory with more than one quark flavour, there would be a pseudo-Goldstone

boson like the pion of QCD for which lattice calculations do not require disconnected

contributions and so can give a very precise determination of the mass. In our single

flavour theory, this state is absent. Nevertheless, we calculate this fictitious mass, which

we denote as mπ, by neglecting disconnected contributions to eq. (3.6). Even though mπ

is not a state in our theory, it provides a convenient alternative to the renormalized quark

mass and allows us to determine the “chiral” point at which the quark mass vanishes. The

extrapolation to m2
π = 0 defines a critical value of bare quark mass m0 that we will call

mc. Numerically, we find

mc = −0.9029(4). (3.10)

– 8 –
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Another way to determine mc uses a calculation of the topological susceptibility and leads to

a compatible result, as shown in appendix B. We define the quark mass to be mq = m0−mc.

3.3 String tension and confinement scale

In lattice calculations, dimensionful quantities are given in units of the lattice spacing a

and must be determined by fixing a physical scale. Since there are no known fixed scales

to normalize our dark sector model, we will use the dark confinement scale ΛMS to define

the overall scale of our theory. We will then report masses and decay constants in units of

ΛMS. As in QCD, ΛMS is the characteristic energy scale of strong interactions.

While ΛMS is purely defined in perturbation theory, we can perturbatively match it to

the string tension σ, which can be directly measured in simulations. Following eqs. (4.60)

and (4.61) of [47] and perturbative factors from [48], the result for our SU(2) theory with

one fundamental quark flavour is

ΛMS = 0.7712
√
σ . (3.11)

The string tension is the slope of the linear potential between two color charges at large

separation. The potential between a static quark and static anti-quark can be measured

by tracing over Wilson loops connecting points x and x+ r which have temporal length τ

(see [47] and references therein),

W (r, τ) =
τ�0

Ae−aV (r)τ . (3.12)

Since generating these Wilson loops for each possible separation r/a is somewhat expensive,

following [49], we fix the fields to Coulomb gauge and then need only compute open-ended

Polyakov line correlators because the gauge condition will connect the ends of the line

spatially. We start by measuring all matrix-valued Polyakov lines P , of length τ , from

timeslice T , over L3, as

P (x, τ) =
τ+T∏
t=T

Ut̂(x, t). (3.13)

We can then directly compute the quantity

W (r, τ) = Tr
[
P (x, τ)P †(x+ r, τ)

]
, (3.14)

for all separations r (and all of their translations over the L3 volume) cheaply by performing

the convolution with fast Fourier transforms,

W (r, t) =
1

L3

∑
q

e−iq·rTr
[
P (q, τ)P †(q, τ)

]
, P (q, τ) =

∑
x

eiq·xP (x, τ). (3.15)

We then repeat this operation over all possible timeslices to improve the statistics of this

still-quite-noisy quantity. An important feature of this definition is that it manifestly

incorporates the periodicity of the gauge fields and so will correctly average loops with one

line at x and the other at x + 1 or x + L − 1. The largest separation we can have in any
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Figure 1. Left panel: fit of the 123 × 32 static potential to eq. (3.18). Right panel: extrapolation

of the square root of the string tension.

one direction is therefore L/2. We will average over equivalent r2 values to further boost

statistical precision.

We can investigate where the static potential has saturated its ground state by looking

at an “effective mass”,

V (r) = − log

(
W (r, τ + 1)

W (r, τ)

)
. (3.16)

The signal degrades for large values of τ and suffers from excited state contamination at

very small τ , so an appropriate middle-ground must be taken. The static potential is often

fit to the Cornell-type model [50],

V (r) =
A

r
+B + σ r . (3.17)

The dimensionless quantity that is extracted from the lattice simulation is a2σ.

Based on our calculation of the massless limit in eq. (3.10), we fit simultaneously the

mass dependence of eq. (3.17) with

V (r) = B(1 + c1mq) + a2σ(1 + c2mq)r. (3.18)

For the string tension, we only need to fit the constant and linear terms of the Cornell

potential. The fit parameters B and a2σ then give the potential in the massless-quark

limit. We note that at small r there are significant discretisation effects, and at large r we

expect significant signal deterioration and finite volume effects. Hence, we have performed

our fits between these extremes, performing a fit-window analysis where we varied the

upper and lower ends of the window looking for both a minimum in χ2 and stability in the

fit parameter a2σ. We then used a representative fit window to obtain our quoted results.

Fits for our 123 × 32 lattices are displayed in the left panel of figure 1 and numerical

results for both volumes are listed in table 1. Our final result for the string tension is

a
√
σ = 0.323(10) , (3.19)

and that combines with eq. (3.11) to give

aΛMS = 0.249(8) . (3.20)
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T B c1 a2σ c2 χ2/dof

32 0.405(4) −2.5(3) 0.1255(12) 5.0(3) 2.6

48 0.429(7) −2.7(4) 0.1183(22) 5.9(6) 0.7

Table 1. Global fit results for the static potential with T = 32. We used τ = 2 in eq. (3.16) to

determine aV (r).

This auxilliary scale allows us to quote all of our results in terms of the physical confinement

scale that phenomenologists can choose, ΛMS, instead of the dimensionless quantities we

directly compute.

When high precision is required, lattice QCD studies typically set the scale with quan-

tities called t0 and w0 rather than using the string tension. Appendix C presents our

calculation of those quantities. However, for our exploratory study, ΛMS is convenient,

perhaps more phenomenologically relevant, and entirely sufficient.

4 Hadron masses and decay constants

Figure 2 shows the masses of some of our lightest hadrons from simulations with our lightest

bare quark masses: the pseudoscalar η, vector ρ and the axial vector hadron a1. The η

appears about a factor of 2 lighter than the ρ and a factor of 3 lighter than the a1 for our

lightest simulated quark mass. The a1 is noticeably heavier than the ρ but approaches it in

our massless-quark limit. Disconnected diagrams have been omitted from the axial vector

calculation because they were found to be too noisy to make any quantifiable contribution.

All three hadrons’ mass dependence for small quark masses can be described quite well

by a linear fit in mq, as is illustrated in figure 2. However, the mass-dependence of the η

appears to slightly prefer the form m2
η = a + bx, giving a χ2/d.o.f ≈ 1.5. This is in line

with the näıve expectation that the η receives a constant shift due to the anomaly even at

vanishing quark mass [30].

It is worth noting that the determination of mη for mq/ΛMS = 0.233 is particularly

low, and this is probably the reason for poor fits at larger quark mass. We have also noticed

that the disconnected contribution to the η becomes more difficult to measure at larger

quark masses.

The decay constants fη, fρ, and fP of eq. (3.5) are displayed in figure 3. fρ is approx-

imately 3
4ΛMS and fη is much smaller, ranging from 1

3 to 1
5 the size of the ρ decay constant

over the handful of masses in table 2. The decay constant fP is of importance to DM

phenomenology (c.f 5.2) and we find that its value is roughly twice the size of the η decay

constant over the quark mass range considered here, and shows little sign of curvature.

We found that a simple linear fit describes the data of fP /ΛMS very well over our

range of lightest quark masses and this is evident in the plot. However, some level of

curvature appears present in both fρ and fη. We believe this to be the onset of higher-

order corrections of mq or some other functional dependence affecting our extrapolation and

so find the data to be reasonably well described by the quadratic form fρ/η = a+bmq+cm2
q .
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mq/ΛMS mη/ΛMS mρ/ΛMS ma1/ΛMS fη/ΛMS fρ/ΛMS fP /ΛMS

0 0.500(94)/0.861(33) 1.889(9) 2.27(13) 0.078(18) 0.628(16) 0.364(5)

0.092 1.209(29) 2.110(11) 2.83(10) 0.157(4) 0.709(10) 0.385(4)

0.112 1.311(35) 2.130(8) 2.96(11) 0.177(6) 0.732(3) 0.393(5)

0.132 1.407(35) 2.169(9) 3.11(15) 0.199(8) 0.752(6) 0.401(7)

0.152 1.544(37) 2.204(9) 3.37(13) 0.205(7) 0.760(4) 0.405(6)

0.192 1.726(38) 2.290(8) 3.48(17) 0.216(7) 0.777(4) 0.425(5)

0.234 1.783(23) 2.385(5) 3.77(11) 0.226(4) 0.794(2) 0.417(4)

0.273 1.985(20) 2.473(5) 3.92(18) 0.241(4) 0.803(2) 0.436(3)

χ2/d.o.f 1.5/2.0 0.9 0.3 1.4 0.4 1.1

Table 2. Numerical values for some masses and decay constants from our lightest quark simulations.

Values at zero quark mass are obtained from various extrapolations as explained in the text.
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Figure 2. Masses of the η, ρ, and a1 hadrons for our five lightest quark masses and the fits used

to determine their values in the massless quark limit.

An overview of the broad mass spectrum in this minimal dark theory is given by

figure 4. It appears as though this theory is somewhat reminiscent of QCD in the hierarchy

of its spectrum; it has a light pseudoscalar meson, a heavier vector meson, and heavier still

axial and scalar mesons. The decay constant for the pseudoscalar is smaller than that of

the vector by about a factor 4, which in QCD is about a factor 2 different. Our dark

matter candidate sits at roughly 2ΛMS, which is in the same ballpark as the ρ-meson in

QCD. With dark matter phenomenology in mind, we note that mη < mρ appears true for

any value of the quark mass.

The extension of figure 4 to larger mq, however, should be viewed with caution. Lattice

artifacts can become large where amq > 1. Nevertheless, the right side of figure 4 shows

a phenomenon familiar from heavy quark physics: hyperfine splittings shrink to produce a

degeneracy of pseudoscalar with vector and also scalar with axial vector.
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Figure 3. The quantities fη, fρ, and fP for our lightest masses. With the fits used to determine

their results in the massless limit.
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Figure 4. Hadron masses for the simulation parameters listed in table 3.

5 Dark sector phenomenology

5.1 Direct detection and Higgs decay

The lightest vector meson is our DM candidate and is represented by an iso-triplet vector

field ρaµ, where a labels baryonic isospin. At lowest order, there are two operators, OS,P ,

that may couple to the Higgs field, as given in eq. (2.8). Since the CP phase φ is arbi-

trary, we may treat the corresponding mass scales MS = M/ cosφ and MP = M/ sinφ as

separate parameters.
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Including the scalar operator, the low-energy effective Lagrangian for DM is

Leff ⊃ −
1

4
ρaµνρ

aµν +
1

2
m2
ρ ρ

a
µρ

aµ − 1

2
λS ρ

a
µρ

aµ

(
|H|2 − 1

2
v2

)
(5.1)

where ρaµν is the field strength tensor and λS = 〈ρ|q̄q|ρ〉/MS is a coupling determined

below.4 We have omitted purely dark sector interactions, e.g., with the η meson, that are

beyond the scope of this work.

The low-energy theory of dark baryons in eq. (5.1) is reminiscent of models of hidden

vector DM coupled via the Higgs portal [51–55]. In these models, one typically assumes

that the Higgs interaction governs the DM relic abundance, implying a lower bound on

λS . This parameter space is strongly constrained by a combination of direct detection and

Higgs decay limits [53]. In our framework, however, this assumption is not necessary since

strong dynamics within the dark sector determine the relic density.

The spin-independent DM-nucleon cross section is [52]

σρN =
λ2
Sm

4
Nf

2
N

4πm4
h(mρ +mN )2

, (5.2)

where mh is the Higgs boson mass and fN ≈ 0.3 is the Higgs-nucleon coupling [56]. The

coupling λS depends on a matrix element determined by our lattice results. The Feynman-

Hellman theorem allows us to write

〈ρ|q̄q|ρ〉 =
∂m2

ρ

∂mq
= 2mρfS , (5.3)

where fS = ∂mρ/∂mq. We determine fS from our lattice results using two methods. We

found that an empirical fit of the form F(x) = (a1+a2 x+a3 x
2)e−a4 x+(a5+a6 x)(1−e−a7 x)

describes our data for the whole range of mρ, and we use this fit to take the derivative.

Second, we compute the derivative using the finite differences of the points. Both methods,

shown in figure 5, are in good agreement and yield values in the range fS ≈ 1−3. However,

lattice artifacts are present for mq/ΛMS & 1 (corresponding to mρ & a−1), likely leading

to an underestimate of fS . We expect fS ≈ 2 at large quark mass since mρ ≈ 2mq.

We additionally caution using the empirical fit results to extrapolate to mq = 0 as this

fit has little predictive power; likewise extrapolating the low-mass finite differences lacks

significance. If this point is of interest then we suggest using the slope of the light mass

extrapolation from table 2, which is 2.1.

Direct detection limits are most constraining for weak-scale DM mass. Recently,

XENON1T obtained the most stringent upper bound on the spin-independent cross sec-

tion, 4.1 × 10−47 cm2 for 30 GeV DM mass [57], implying MS > 28 TeV. For larger DM

mass, the XENON1T bound weakens while σρN is nearly constant.

Higgs studies at the LHC provide the most stringent constraints for low mass DM. In

our model, the Higgs boson may decay into dark sector states that are long-lived and escape

4We expect the pseudoscalar term in eq. (2.8) to induce a Higgs-DM interaction of the form

εαβµνρaαβρ
a
µν(|H|2 − 1

2
v2)/MP . However, this leads to a velocity-suppressed direct detection cross section

that is much less constrained compared to the scalar interaction.
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Figure 5. Scalar form factor fS entering into the Higgs-DM coupling, obtained from finite differ-

ences (points) and from an analytic fit (solid curve). The analytic fit is mρ/ΛMS = F(mq/ΛMS)

where F(x) = (2.12+0.87x+10.60x2)e−3.94 x+(4.10+1.00x)(1−e−1.42 x) and has a χ2/dof ≈ 1.1.

the detector. If we assume mq,ΛMS � mh/2 and that all dark states escape invisibly, it

is straightforward to compute the Higgs invisible width from a quark-level calculation.

We have

Γ(h→ inv) =
mhv

2

4πM2
, (5.4)

which is independent of mρ, the CP phase φ, or any other dark sector parameters. Present

limits constrain the Higgs invisible branching fraction to be below 23% [58, 59]. For our

model, this implies M > 40 TeV.

We note that the invisible Higgs constraints are very different compared to hidden

vector DM models where DM is a gauge boson, not a composite state. In that case, the

Higgs invisible width scales as Γ(h→ inv) ∝ m−4
DM [54] and becomes very constraining for

light DM (see, e.g., figure 9 of [58]).

5.2 Fate of the lightest dark hadron

The lightest state in the dark spectrum is the η meson. If it were stable, it would constitute

an O(1) fraction of the DM density. However, the η meson is not a worthy DM candidate

since it can mix with the Higgs boson through a dimension-five operator OP |H|2, inducing

it to decay to the SM. Even if this operator is suppressed by the Planck scale, the η lifetime

would be much shorter than the age of the Universe. Its decay products, moreover, are

fixed by the SM Higgs couplings.

The lifetimes of meta-stable dark states are strongly constrained if they decay into vis-

ible SM particles. Cosmic microwave background measurements exclude an O(1) fraction

of meta-stable DM unless it decays prior to recombination, before ∼ 1013 s [60]. Decays

occurring between ∼ 0.1 − 1012 s affect primodial abundances of light nuclei [61]. In par-

ticular, decays via Higgs mixing are largely constrained to occur before ∼ 0.1 s, otherwise
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Figure 6. Experimental and astrophysical constraints on our model, as a function of DM mass

mρ and the scale M governing interactions between DM and the Higgs field. Shaded regions are

excluded. This plot assumes φ = π/4 and mq/ΛMS = 0.1.

the injection of hadrons into the plasma alters the neutron/proton ratio after weak inter-

actions have frozen out [62]. However, the limits depend on the cosmological abundance of

η mesons before they decay, which we defer to future work. Here, to be conservative, we

require the lifetime to be τη < 1 s.

The total η width can be written as

Γη = τ−1
η = sin2 θhηΓh(mη) + Γ(η → hh) . (5.5)

The first term represents η decays through Higgs mixing, where the mixing angle θhη is

defined by

tan 2θhη =
2v〈0|OP |η〉

MP (m2
h −m2

η)
, (5.6)

and Γh is the total SM Higgs width (evaluated at mη, not mh). We have adapted results

from ref. [63] to get Γh as a function of mass below bottom threshold, while for larger mass

we take results from ref. [64]. The second term in eq. (5.5) is an additional decay channel

that opens for mη > 2mh.

The combination of τη < 1 s and invisible Higgs decay yields a lower limit mη >

228 MeV and mρ > 320 MeV for the range of mq in table 2. This conclusion is further

bolstered by astrophysical constraints on self-interactions, discussed below.

Figure 6 illustrates the complementarity between different constraints. For definite-

ness, we have taken mq/ΛMS = 0.1 and CP phase φ = π/4. The remaining parameters

of the model are the DM mass mρ and the interaction scale M . Other parameters of the

model are determined according to our lattice results: mη ≈ 0.57mρ, fP ≈ 0.39, and

fS ≈ 1. We have truncated the invisible Higgs limits at 10 GeV since the assumptions

leading to eq. (5.4) eventually breakdown. With the exception of tuning φ = 0, taking

other parameter choices does not greatly shift the shaded regions.
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5.3 Self-interactions

In our model, DM particles are not collisionless and elastically scatter with one another

through strong interactions. If the scattering rate is large enough, self-interactions can

leave an observable imprint on DM halos of galaxies and clusters. The relevant figure of

merit is σel/m, the cross section for DM elastic scattering per unit DM mass, which is

typically expressed in units of cm2/g ≈ 2 barn/GeV. While self-interacting DM is often

motivated in terms of explaining various small scale structure issues [5], here we simply

make a conservative constraint on the parameter space of our model. Actually calculating

σel/m is a challenging prospect for the lattice that we defer to future work.

By dimensional analysis, we expect σel ∼ 4πΛ−2
MS

since ΛMS sets the typical size of ρ.

Since mρ > 2ΛMS for any dark quark mass, we can therefore set a lower bound

σel/m & 16π/m3
ρ . (5.7)

Observations of relaxed massive clusters [65, 66] provide the strongest constraint on self-

interactions, favoring σel/m ≈ 0.1 cm2/g or less [67]. If we take σel/m < 0.5 cm2/g as a

conservative upper limit [68], we have

mρ > 280 MeV . (5.8)

Merging cluster constraints, such as the Bullet Cluster [69], are comparatively weaker. In

particular, recent simulations have found offsets for self-interacting DM halos to be much

smaller than previously thought [70].

Our dimensional analysis estimate breaks down if DM scattering has an s-wave reso-

nance, corresponding to a di-baryon (ρρ) that is a nearly zero energy bound state. In this

case, σel/m can be far larger than the lower bound implied by eq. (5.7), approaching the

s-wave unitarity limit when the mass gap and scattering energy go to zero [71]. This is

analogous to proton-neutron scattering, which is enhanced owing to the smallness of the

deuteron binding energy. Eq. (5.8) is still satisfied in this case. On the other hand, antires-

onances (the Ramsauer-Townsend effect) may act to suppress DM scattering for certain

choices of parameters [72, 73], evading our limit, but without a detailed calculation it is

not possible to say anything further.

6 Conclusions

Since strong dynamics explains the mass and stability of visible baryons, it is possible that

similar physics is realized for DM as well. In this work, we have studied the simplest model

of dark baryons: SU(2) gauge theory with one flavor of dark quark. Unlike QCD, the theory

has no spontaneously broken chiral symmetries and no pseudo-Goldstone bosons. Instead,

there is an unbroken global SU(2)B baryon symmetry resembling isospin, which unifies

baryons and mesons into degenerate iso-multiplets. The lightest baryon is one component

of a iso-triplet vector ρ, which is our DM candidate. Dark hadrons may couple to the SM

through non-renormalizable interactions and we have considered the leading dimension-five

operators involving the Higgs field.
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In this initial and exploratory study, we have used lattice simulations to compute the

spectrum of the lightest dark hadrons. The overall mass scale of the theory is unknown

a priori. Hence, with an eye towards phenomenology, we have presented all dimensionful

parameters normalized with respect to the confinement scale ΛMS (computed from the

string tension σ). The dark quark mass mq is a free parameter and our simulations focus

on the quark mass regime with mq/ΛMS ≈ 0.1→ 1. In this range, the lightest hadron is the

iso-singlet pseudoscalar meson η. We have included the effect of disconnected diagrams,

which causes the η to remain massive according to our extrapolation to mq = 0, as expected

from the U(1)A anomaly. The iso-triplet vector ρ is the next-to-lightest state. We have

also presented results for the lightest axial vector and scalar, which remain heavier still.

We note that several sources of systematic error have not been accounted for. As

our volume is quite small, we expect significant finite volume effects, particularly for light

quark masses. We also expect finite lattice-spacing artifacts to be present since our lattice

spacing is somewhat coarse and our action is correct only up to O(a) discretisation effects.

However, for a first study, the broad brush strokes of this theory are what is important and

we anticipate our results to be accurate at around the 10% level with these systematics in

mind. Now that we better understand the parameter space and the model’s feasibility as

a DM candidate, dedicated finite volume and continuum limit studies beyond fixed L and

β will be necessary to refine our numerical predictions.

In our opinion, there are three nice features of our model worth re-emphasizing, apart

from its minimality.

• DM stability: the accidental SU(2)B baryon number symmetry is preserved up

through operators of dimension-five. From an effective theory point of view, our

DM candidate is as stable as the proton (and a counterexample to arguments in

ref. [20]).

• CP violation and η decay: including dimension-five operators, the dark quark receives

a mass contribution from the Higgs field in addition to its bare mass. Since both

terms need not be aligned in general, there appears a CP phase that mixes the η

with the Higgs boson, allowing the η to decay rapidly in the early Universe before

nucleosynthesis.

• Annihilation channel: our model has a built-in mechanism for efficient annihilation

to set the DM relic density, ρρ → ηη, with the η mesons later decaying to the SM.

Since our lattice results show that mρ > mη for any quark mass, this process is always

kinematically allowed.

On the phenomenology side, we have arrived at the following conclusions. There is

a lower limit on mρ, mη of a few hundred MeV from combining Higgs invisible decay

constraints with bounds on the η lifetime from nucleosynthesis. A similar limit, mρ >

280 MeV, is required from constraints on DM self-interactions in clusters. For larger DM

masses, the parameter space is constrained by Higgs invisible decays and direct detection,

implying that the scale M connecting the dark sector with the Higgs field must be larger

than 1− 40 TeV depending on mρ. We have used our lattice results to extract the η decay
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Figure 7. The squared masses of the fictitious π hadron and its comparison to the physical η in

lattice units.

constant and DM scalar form factor needed for these calculations. At the same time, other

possibilities remain for coupling our SU(2) theory to the SM (e.g. through a Z ′), which

will change many of these conclusions.
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A Determining zero quark mass point mc

Relative to the unphysical π hadron, the physical pseudoscalar η acquires a noticeable

contribution to its mass from the U(1)A anomaly, which is clearly visible in figure 7. As

the π is the connected part of the η, it appears as though contributions from the anomaly

enter through the hairpin diagrams. Typically, we would use the non-singlet Axial Ward

Identity to define the quark mass, but our theory does not have one. Nevertheless, we

use the π to define the point of vanishing quark mass, defined as mc. For example, it is

important to know whether the η becomes massless or if it remains massive, as expected

from the anomaly.

Extrapolation of our meson masses to mc depends on the form of the extrapola-

tion function. However, we find that a simple linear fit in mq to m2
π gives reasonable

– 19 –

https://github.com/RJHudspith/GLU
https://github.com/RJHudspith/GLU


J
H
E
P
1
2
(
2
0
1
8
)
1
1
8

χ2/d.o.f = 1.8. We select where m2
π → 0 to be the point of our vanishing quark mass. This

is consistent with another method to define this point through the topological susceptibility,

described below.

Figure 7 illustrates that the physical η is approximately a constant shift above the π

in mass. Although this constant shift appears to be fairly small,
m2
η−m2

π

Λ2
MS

≈ 0.25, it does

indicate that the η remains massive in the “chiral” limit.

B Topological susceptibility

In lattice QFT, topological charge Q can be defined from the gauge fields

Q =
∑
x

q(x) , q(x) = − 1

32π2
εµνρσTr

[
Fµν(x)Fρσ(x)

]
, (B.1)

and the topological susceptibility χ can then be obtained from

χ =
〈Q2〉
L3T

. (B.2)

Our calculation of Fµν(x) is the average of all four plaquettes in the µ − ν plane that

touch the point x, the standard clover definition. An important issue to note with this

discretisation is that the lattice values for Q do not tend to be integers, due to short-

distance effects which must be reduced by some smoothing procedure. For this smoothing

we will use HYP smearing [75], monitoring the stability of Q2 as the number of smearing

iterations is increased.

We can expect for Nf light quark flavors that [76]

χ =
Σ∑Nf
f

1
mf

→
Nf=1

χ = Σm, (B.3)

where Σ is the chiral condensate. This implies that the limit χ→ 0 occurs when the quark

mass vanishes.

We will measure the topological susceptibility by the “slab method” [77, 78], computed

on sub-volumes V ′ = L3∆,

Q2(∆) =
∑
y∈V ′

∑
x∈V ′

〈
q(x+ y,∆)q(y,∆)

〉
(B.4)

≈ C + V χ

(
∆

T

)
. (B.5)

For 0 < ∆ < T , the translationally-invariant sum is best performed using convolutions

over the slab.

The left panel of figure 8 shows our numerical determination of the topological sus-

ceptibility. The right panel illustrates the improvement of the slab method relative to the

standard method, which is simply the slab method with ∆ = T . If we fit the slab method

determinations only up to L/2 we find good (' 1.5× reduction in error) statistical improve-

ment over using the full volume determination. This indicates that the full-volume sum is
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Figure 8. Data shown here are for m0 = −0.845. The left panel shows the determination of χ from

a linear fit to slabs along any lattice axis. The right panel compares the slab method determination

(black points) to the standard measurement (1 sigma red error band).

Figure 9. The left panels contain histograms of topological charge of all configurations for m0 =

−0.845 and m0 = −0.880 at gradient flow time t ≈ t0.

noisy, and a truncated sum over a sub-volume contains less noise but still captures the rel-

evant physics. We observe stable results after approximately 21 HYP smearing iterations.

Figure 9 confirms that our simulations are not getting stuck in a particular topological

sector. We find that the integrated autocorrelation time for the topological charge is less

than our chosen spacing for measurements in Monte-Carlo time.

The calculation of the topological susceptibility for a range of bare quark masses per-

mits an extrapolation to zero as shown in the left panel of figure 10, representing the limit

of a massless quark for that lattice volume. We have a few lighter quark masses here com-

pared to those listed in table 3. These however were very difficult to invert for the meson

spectrum and we suspect that they contribute large finite volume systematics to hadronic

measurements. However, for this noisy gauge-field quantity they seem to be acceptable to

use. Repeating this procedure on a second lattice size allows an extrapolation to the limit

T →∞ and our result is plotted in the right panel of figure 10.
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Figure 10. The left panel shows extrapolations to vanishing topological susceptibility on 123 × 32

and 123 × 48 lattices. The right plot illustrates the infinite volume limit of this quantity.

From this analysis, we determine the mass at which the susceptibility vanishes as

mc = −0.909(14) , (B.6)

which is in good agreement with eq. (3.10). This consistency from two different methods is

reassuring. We will use eq. (3.10) to define the massless limit since it has a slightly smaller

error bar.

C The lattice scales t0 and w0

Our results have primarily used
√
σ to set the physical scale of this dark matter theory,

due to its direct phenomenological interpretation. In lattice QCD calculations, however, it

has become common to invoke standardized parameters named t0 and w0 because they can

be determined much more precisely than the string tension. We report our calculations of

these quantities here to facilitate comparison with future lattice studies of this theory.

To begin, we generalize the gauge link Uµ(x) → Uµ(x, t) where t represents the flow

time. The original, un-flowed link value is obtained at t = 0. The flow time does not

have units of physical time, and the dimensionless quantity that emerges from a lattice

simulation is a2t.

Gradient flow is defined by
dU

dt
= Z(U)U . (C.1)

U is shorthand for the gauge field at a particular flow time and Z(U) is chosen to be the

“force term” which is essentially the factor within the lattice action that multiplies this

particular link. The equation is solved by performing an iterated flow with (small) step

size ε,

Ut+ε = eεZ(Ut)U
†
t Ut. (C.2)

We can use this technique to very accurately define a scale through [79, 80]

G(t) = t2〈FµνFµν〉, G(t0) = N/10. (C.3)

or through [81]

W (t) = t
d

dt
G(t), W (w2

0) = N/10. (C.4)
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Figure 11. Left panel: gradient flow scale setting for the m0 = −0.845 ensemble. Right panel:

results for
√
t0 and w0 obtained by fitting to a quadratic polynomial in m0−mc, with χ2/d.o.f = 2.7

and 2.5 respectively.

The lattice spacing derived from these two definitions should be consistent up to discreti-

sation effects. The factor of N originates from the correct identification of the t’Hooft limit

in comparison to the commonly used value of 0.3 for SU(3) [82, 83].

The left panel of figure 11 shows our numerical results for one ensemble, and the right

panel shows the fit to quark mass and the massless limit, leading to
√
t0
a

= 1.357(7),
w0

a
= 1.416(10). (C.5)

D Table of ensembles

m0
Nconf

T = 32 T = 48

−0.105 175

−0.305 244

−0.405 200

−0.505 170

−0.605 645

−0.705 660

−0.755 374

−0.805 248

−0.815 233

−0.835 1831

−0.845 2115 999

−0.855 1101 731

−0.865 1354 602

−0.870 1781

−0.875 2641 636

−0.880 5157 437

Table 3. The bare mass m0 and the number of configurations generated Nconf for the ensembles

used in this work.

– 23 –



J
H
E
P
1
2
(
2
0
1
8
)
1
1
8

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and

constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

[2] J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev.

Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].

[3] M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B

651 (2007) 374 [hep-ph/0604261] [INSPIRE].

[4] D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter,

Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].

[5] S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept.

730 (2018) 1 [arXiv:1705.02358] [INSPIRE].

[6] J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys.

Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].

[7] K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-interacting dark matter from a

non-abelian hidden sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].

[8] S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass

candidate?, Phys. Lett. B 165 (1985) 55.

[9] R.S. Chivukula and T.P. Walker, Technicolor cosmology, Nucl. Phys. B 329 (1990) 445

[INSPIRE].

[10] S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the

production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].

[11] Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from

mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].

[12] R. Foot, Mirror dark matter: cosmology, galaxy structure and direct detection, Int. J. Mod.

Phys. A 29 (2014) 1430013 [arXiv:1401.3965] [INSPIRE].

[13] K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].

[14] R. Lewis, C. Pica and F. Sannino, Light asymmetric dark matter on the lattice: SU(2)

technicolor with two fundamental flavors, Phys. Rev. D 85 (2012) 014504 [arXiv:1109.3513]

[INSPIRE].

[15] A. Hietanen, R. Lewis, C. Pica and F. Sannino, Composite Goldstone dark matter:

experimental predictions from the lattice, JHEP 12 (2014) 130 [arXiv:1308.4130] [INSPIRE].

[16] Lattice Strong Dynamics collaboration, T. Appelquist et al., Lattice calculation of

composite dark matter form factors, Phys. Rev. D 88 (2013) 014502 [arXiv:1301.1693]

[INSPIRE].

[17] W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei I: cosmology and indirect

detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].

– 24 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.physrep.2004.08.031
https://arxiv.org/abs/hep-ph/0404175
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0404175
https://doi.org/10.1146/annurev-astro-082708-101659
https://doi.org/10.1146/annurev-astro-082708-101659
https://arxiv.org/abs/1003.0904
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.0904
https://doi.org/10.1016/j.physletb.2007.06.055
https://doi.org/10.1016/j.physletb.2007.06.055
https://arxiv.org/abs/hep-ph/0604261
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0604261
https://doi.org/10.1103/PhysRevLett.84.3760
https://arxiv.org/abs/astro-ph/9909386
https://inspirehep.net/search?p=find+EPRINT+astro-ph/9909386
https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/10.1016/j.physrep.2017.11.004
https://arxiv.org/abs/1705.02358
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.02358
https://doi.org/10.1103/PhysRevD.90.015023
https://doi.org/10.1103/PhysRevD.90.015023
https://arxiv.org/abs/1312.3325
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3325
https://doi.org/10.1103/PhysRevD.89.115017
https://arxiv.org/abs/1402.3629
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.3629
https://doi.org/10.1016/0370-2693(85)90689-6
https://doi.org/10.1016/0550-3213(90)90151-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B329,445%22
https://doi.org/10.1016/0370-2693(90)91661-T
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B241,387%22
https://doi.org/10.1103/PhysRevLett.96.231802
https://arxiv.org/abs/hep-ph/0506256
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0506256
https://doi.org/10.1142/S0217751X14300130
https://doi.org/10.1142/S0217751X14300130
https://arxiv.org/abs/1401.3965
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.3965
https://doi.org/10.1103/PhysRevD.10.2445
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D10,2445%22
https://doi.org/10.1103/PhysRevD.85.014504
https://arxiv.org/abs/1109.3513
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.3513
https://doi.org/10.1007/JHEP12(2014)130
https://arxiv.org/abs/1308.4130
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4130
https://doi.org/10.1103/PhysRevD.88.014502
https://arxiv.org/abs/1301.1693
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1693
https://doi.org/10.1103/PhysRevD.90.115013
https://arxiv.org/abs/1406.2276
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2276


J
H
E
P
1
2
(
2
0
1
8
)
1
1
8

[18] W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei II: nuclear spectroscopy in

two-color QCD, Phys. Rev. D 90 (2014) 114506 [arXiv:1406.4116] [INSPIRE].

[19] Lattice Strong Dynamics (LSD) collaboration, T. Appelquist et al., Composite bosonic

baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction,

Phys. Rev. D 89 (2014) 094508 [arXiv:1402.6656] [INSPIRE].

[20] T. Appelquist et al., Stealth dark matter: dark scalar baryons through the Higgs portal, Phys.

Rev. D 92 (2015) 075030 [arXiv:1503.04203] [INSPIRE].

[21] T. Appelquist et al., Detecting stealth dark matter directly through electromagnetic

polarizability, Phys. Rev. Lett. 115 (2015) 171803 [arXiv:1503.04205] [INSPIRE].

[22] A. Francis, R.J. Hudspith, R. Lewis and S. Tulin, Dark matter from one-flavor SU(2) gauge

theory, PoS(LATTICE 2016)227 [arXiv:1610.10068] [INSPIRE].

[23] G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and

lattice simulations, Int. J. Mod. Phys. A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].

[24] E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324.

[25] T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683

(2010) 39 [arXiv:0907.1007] [INSPIRE].

[26] E. Marinari, G. Parisi and C. Rebbi, Computer estimates of meson masses in SU(2) lattice

gauge theory, Phys. Rev. Lett. 47 (1981) 1795 [INSPIRE].

[27] J.B. Kogut et al., Chiral symmetry restoration in baryon rich environments, Nucl. Phys. B

225 (1983) 93 [INSPIRE].

[28] A. Nakamura, Quarks and gluons at finite temperature and density, Phys. Lett. B 149 (1984)

391.

[29] L. von Smekal, Universal aspects of QCD-like theories, Nucl. Phys. Proc. Suppl. 228 (2012)

179 [arXiv:1205.4205] [INSPIRE].

[30] M. Creutz, One flavor QCD, Annals Phys. 322 (2007) 1518 [hep-th/0609187] [INSPIRE].

[31] R.J. Scherrer and M.S. Turner, On the relic, cosmic abundance of stable weakly interacting

massive particles, Phys. Rev. D 33 (1986) 1585 [Erratum ibid. D 34 (1986) 3263] [INSPIRE].

[32] K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28

(2013) 1330028 [arXiv:1305.4939] [INSPIRE].

[33] K.M. Zurek, Asymmetric dark matter: theories, signatures and constraints, Phys. Rept. 537

(2014) 91 [arXiv:1308.0338] [INSPIRE].

[34] Z.G. Berezhiani, A.D. Dolgov and R.N. Mohapatra, Asymmetric inflationary reheating and

the nature of mirror universe, Phys. Lett. B 375 (1996) 26 [hep-ph/9511221] [INSPIRE].

[35] E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Elastically decoupling dark matter,

Phys. Rev. Lett. 116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].

[36] E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398

(1992) 43 [INSPIRE].

[37] N. Bernal et al., Production regimes for self-interacting dark matter, JCAP 03 (2016) 018

[arXiv:1510.08063] [INSPIRE].

[38] S.-M. Choi et al., Vector SIMP dark matter, JHEP 10 (2017) 162 [arXiv:1707.01434]

[INSPIRE].

– 25 –

https://doi.org/10.1103/PhysRevD.90.114506
https://arxiv.org/abs/1406.4116
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4116
https://doi.org/10.1103/PhysRevD.89.094508
https://arxiv.org/abs/1402.6656
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.6656
https://doi.org/10.1103/PhysRevD.92.075030
https://doi.org/10.1103/PhysRevD.92.075030
https://arxiv.org/abs/1503.04203
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04203
https://doi.org/10.1103/PhysRevLett.115.171803
https://arxiv.org/abs/1503.04205
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04205
https://pos.sissa.it/contribution?id=PoS(LATTICE 2016)227
https://arxiv.org/abs/1610.10068
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.10068
https://doi.org/10.1142/S0217751X16430041
https://arxiv.org/abs/1604.04627
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.04627
https://doi.org/10.1016/0370-2693(82)90728-6
https://doi.org/10.1016/j.physletb.2009.11.050
https://doi.org/10.1016/j.physletb.2009.11.050
https://arxiv.org/abs/0907.1007
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1007
https://doi.org/10.1103/PhysRevLett.47.1795
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,47,1795%22
https://doi.org/10.1016/0550-3213(83)90014-7
https://doi.org/10.1016/0550-3213(83)90014-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B225,93%22
https://doi.org/10.1016/0370-2693(84)90430-1
https://doi.org/10.1016/0370-2693(84)90430-1
https://doi.org/10.1016/j.nuclphysBPS.2012.06.006
https://doi.org/10.1016/j.nuclphysBPS.2012.06.006
https://arxiv.org/abs/1205.4205
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4205
https://doi.org/10.1016/j.aop.2007.01.002
https://arxiv.org/abs/hep-th/0609187
https://inspirehep.net/search?p=find+EPRINT+hep-th/0609187
https://doi.org/10.1103/PhysRevD.33.1585
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D33,1585%22
https://doi.org/10.1142/S0217751X13300287
https://doi.org/10.1142/S0217751X13300287
https://arxiv.org/abs/1305.4939
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4939
https://doi.org/10.1016/j.physrep.2013.12.001
https://doi.org/10.1016/j.physrep.2013.12.001
https://arxiv.org/abs/1308.0338
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.0338
https://doi.org/10.1016/0370-2693(96)00219-5
https://arxiv.org/abs/hep-ph/9511221
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9511221
https://doi.org/10.1103/PhysRevLett.116.221302
https://arxiv.org/abs/1512.04545
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04545
https://doi.org/10.1086/171833
https://doi.org/10.1086/171833
https://inspirehep.net/search?p=find+J+%22Astrophys.J.,398,43%22
https://doi.org/10.1088/1475-7516/2016/03/018
https://arxiv.org/abs/1510.08063
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.08063
https://doi.org/10.1007/JHEP10(2017)162
https://arxiv.org/abs/1707.01434
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.01434


J
H
E
P
1
2
(
2
0
1
8
)
1
1
8

[39] M.A. Clark and A.D. Kennedy, Accelerating dynamical fermion computations using the

Rational Hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys.

Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [INSPIRE].

[40] S. Bernardson, P. McCarty and C. Thron, Monte Carlo methods for estimating linear

combinations of inverse matrix entries in lattice QCD, Comput. Phys. Commun. 78 (1993)

256 [INSPIRE].

[41] P.A. Boyle, A. Juttner, C. Kelly and R.D. Kenway, Use of stochastic sources for the lattice

determination of light quark physics, JHEP 08 (2008) 086 [arXiv:0804.1501] [INSPIRE].

[42] K. Bitar et al., The QCD finite temperature transition and hybrid monte carlo, Nucl. Phys. B

313 (1989) 348 [INSPIRE].

[43] G.S. Bali, S. Collins and A. Schafer, Effective noise reduction techniques for disconnected

loops in Lattice QCD, Comput. Phys. Commun. 181 (2010) 1570 [arXiv:0910.3970]

[INSPIRE].

[44] R. Arthur et al., SU(2) gauge theory with two fundamental flavours: scalar and pseudoscalar

spectrum, arXiv:1607.06654 [INSPIRE].

[45] L. Del Debbio, M.T. Frandsen, H. Panagopoulos and F. Sannino, Higher representations on

the lattice: Perturbative studies, JHEP 06 (2008) 007 [arXiv:0802.0891] [INSPIRE].

[46] A. Hietanen, R. Lewis, C. Pica and F. Sannino, Fundamental composite higgs dynamics on

the lattice: SU(2) with two flavors, JHEP 07 (2014) 116 [arXiv:1404.2794] [INSPIRE].

[47] G.S. Bali, QCD forces and heavy quark bound states, Phys. Rept. 343 (2001) 1

[hep-ph/0001312] [INSPIRE].
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[80] M. Lüscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun. Math.

Phys. 293 (2010) 899 [arXiv:0907.5491] [INSPIRE].
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