ATLAS & CMS UPGRADES ON TRACKING & TDAQ

ANNA SFYRLA UNIV. OF GENEVA JUNE 2018

CONTENTS

General landscape of the ATLAS and CMS upgrades A CMS upgrade A CMS upgrades A CMS upgrade A CMS upgrade

Tracking and TDAQ

Status of current upgrades for Run3

Prospects for the HL-LHC: the focus of this talk!

THE LHC LIFETIME

PHYSICS PROGRAM AT THE (HL-)LHC

Extended sensitivity for Beyond the Standard Model Physics:

New TeV-scale physics could be discovered or very strongly disfavored

Higgs Boson Program a major component, main measurements:

- Higgs couplings
- Higgs self-coupling
- Higgs differential distributions
- Rare Higgs decays
- Heavy Higgs searches

Support a rich program in Standard Model and Flavor Physics.

HL-LHC tī event in ATLAS ITK at <µ>=200

12 000 tracks in the tracker acceptance!

THE CHALLENGES: TRACKING

HL-LHC tt event in ATLAS ITK at <µ>=200

- Radiation hardness (sensors and electronics)
- Large readout bandwidth
- Low detector occupancy
- Fast readout and deep buffers

12 000 tracks in the tracker acceptance!

THE CHALLENGES: TRIGGER / DAQ

- Unprecedented instantaneous luminosity leads to large rates.
- High pile-up leads to non-linear scaling of rates with luminosity.
- High detector occupancy leads to limitations in detector read-out.

UPGRADES SO FAR (FOR OR DURING RUN2)

UPGRADES FOR RUN3

	Tracking	Trigger / DAQ			
CMS	X	 No major upgrades. Muon and calorimeter detector upgrades will improve trigger performance. 			
ATLAS EXPERIMENT	X	 Major system upgrade Read-out changes to follow detector upgrades (FELIX). Upgrade all components of HW trigger and introduce new functionality (& physics potential). New hardware fast tracker (FTK) to become operational. Status Good progress despite some delays. Hardware is now in final production, testing ongoing. Full system under commissioning. 			

: Only maintenance and operational tasks foreseen.

UPGRADES FOR HL-LHC

	Tracking	Trigger / DAQ		
CMS	 Si-strip and pixels replaced to increase granularity & functionality. Design for tracking in HW trigger. 	 Tracks in HW trigger at 40 MHz for 750 kHz pflow-like selection rate. SW selection output 7.5 kHz. 		
	 Covering up to η=3.8. 	Aim: trigger on selections as close as possible to offline.		
ATLAS EXPERIMENT	 Complete replacement of Inner Detector with all- silicon tracker of high granularity. Covering up to η=4.0. 	 Full granularity detector data into HW trigger for 1 MHz selection rate. HW tracking for trigger available for SW selections. SW selection output 10 kHz. 		
Status	 TDRs produced by both experiments. 	 TDR produced by ATLAS, interim reports by CMS. 		

TRACKING AT HL-LHC

CMS Tracker TDR: CERN-LHCC-2017-009

ATLAS Tracker TDRs: CERN-LHCC-2017-005, CERN-LHCC-2017-021

FLUENCES AND MATERIAL

• All design choices aimed at reducing the material budget in both the acceptance region and the forward region.

Ľ

Radiation Lengths

• Thin sensors and electronics, CO₂ evaporative cooling, serial powering

Comparison between Run2 and Phase II of radiation length vs η

Stub drawing: A. Dierlamm 13

SILICON MODULES

	Pixels	Strips		
CMS	 Planar n-in-p 3D also possible. 	 Two sensors back to back. Combination of strip-only and pixel & strip modules. Self-contained readout, provide pT measurement at HW trigger. 		
ATLAS EXPERIMENT	 Planar n-in-p in outer layers; 3D in inner. CMOS considered for outermost barrel layer. 	 Stereo-angle between sensors, on double-sided structure. Description 		
Front-end electronics	 Synergic development (RD53). Radiation hard, 65nm. 	 ASICs custom made per experiment. 		

TRACKING ALGORITHMS AND PERFORMANCE

given here. 15

Large

variety of studies

done.

Examples

PROTOTYPES & DEMONSTRATORS

- Both ATLAS and CMS are producing prototypes of modules prior to • finalisation of design and production.
 - Tests primarily for long-term operation & radiation hardness.
- Longer scale demonstrators put in place to test full concept, including challenging mechanics and read-out. THE DESCRIPTION OF THE REPORT OF THE REPORT
 - E.g. ATLAS Pixel outer barrel demonstrator.

Aims at evaluating and validating the mechanics concept: longeron with 2 cooling lines with flat and inclined modules.

7 guad modules on carbon local support structure

Thermal prototype

Longeron

Tilted cell

Barrel cell

Required thermal figures of merit achieved

services not shown

TRIGGER AT HL-LHC

CMS interim reports: CERN-LHCC-2017-013, CERN-LHCC-2017-014

ATLAS TDAQ TDR: CERN-LHCC-2017-020

<u>Upgrade highlights</u>

- Increased latency.
- Higher data granularity.
- Enhanced processing capability with:
 - time-multiplexed architectures processing event information from multiple systems.
 - tracking information integrated into the detector and system design.
- Technologies:
 - Latest class FPGAs; ATCA crates; GPUs; ML.
 - Trend away from custom boards and ASICs towards firmware and software on commodity hardware (PCs, FPGAs, etc).
- Major challenges:
 - Power delivery and thermal management.
 - System integration and management.

- Stubs are formed from hit pairs compatible with track pT > 2GeV.
 - At 40 MHz! They provide factor 10 data reduction.
- FPGA-based tracking algorithm reduces rate further.
 - Two approaches: (1) Tracklets; (2) Hough-transform plus Kalman-Filter
- Tracks combined with calo & muon signatures to provide HW trigger accept.
 - Gives capability to perform sophisticated selections (e.g. particle-flow) at HW-trigger level.

— @40 MHz rate / LHC bunch crossing — @750kHz / CMS L1 average rate

See also parallel talk of M. Trovato.

Drawings: A. Dierlamm, S. Mersi 22

G

NG

Hardware Tracker for the Trigger (HTT)

 Regional ("rHTT", pT > 2 GeV, full η coverage) and global ("gHTT", planned for 100kHz input rate, pT > 1 GeV, full η coverage) functionality in the default TDAQ architecture.

Systems based on the same hardware, implemented according to needs.

Ĝ ACKING

Objective of HL-LHC menus: ensure thresholds as low or lower than what we currently have, **to allow for EW scale physics**.

• Achievable thanks to the upgraded systems!

Trigger Selection offline threshold (GeV)	Run1	Run2	HL-LHC	HL-LHC
isolated single e	25	27	22	27
Isolated single µ	25	27	20	18
di-γ	25,25	25,25	25,25	22,16
di-т	40,30	40,30	40,30	56,56
four-jet w/ b-jets	45	45	65	72
HT	700	700	375	350
MET	150	200	200	TBD

Just indicative comparison using ATLAS menus. Similar between the two experiments. Work in progress towards the TDR (late 2019).

KEY ASPECTS OF TRIGGER PERFORMANCE

Major improvements targeting the very important single lepton triggers.

E.g. for electrons at CMS (similar for ATLAS):

- Rate rejection in electron triggers improved by factor > 2 by increasing Calo granularity.
- Significant extra rate reduction for small (<5%) efficiency loss by adding tracking.

Offline-like techniques used for pile-up-prone hadronic triggers, crucial in searches.

 Impact of Missing Transverse Momentum reconstruction with pile-up subtraction and trackbased soft-term: Orders of magnitude reduction in rate for high trigger efficiency.

IMPACT TO PHYSICS POTENTIAL

- Impact of muon trigger upgrade to unconventional signatures (e.g. long-lived particles, displaced vertices, lepton-jets, etc): New possibilities open up!
 - E.g. Heavy stable charged particle trigger exploits intrinsic resolution of RPC timing to provide good coverage down to β=0.3.

OUTLOOK

The ATLAS and CMS detectors will be upgraded with requirements driven by the physics program priorities and ensure that the experiments will be running with maximal physics potential.

Tracking and trigger upgrades have been presented in this talk.

Ongoing upgrades for Run3 are well underway.

Tracking and trigger are among the most challenging aspects of the HL-LHC upgrades due to the unprecedented data-taking conditions.

Plans have been outlined in Technical Design Reports / Interim documents by both collaborations.

- Details are still being established in many aspects of both tracking and trigger upgrades.
- Demonstrator projects are underway to give confidence on the planned systems.
- Production will follow in early 2020's.
- Lots of exciting work for the ATLAS and CMS tracking & trigger communities!

EXTRAS

TRIGGER UPGRADE HIGHLIGHTS

Increased latency	Allowing for more complex objects, conditions and algorithms (including ML-based algorithms in FPGAs).			
Higher data granularity	 Full granularity for Calo (over noise) and Muons. Significant increase over current calorimeters and new tracking information. 			
Processing capability	 New "Global" trigger improves calo & muon triggers and provides offline-like calorimeter reco. In the evolved architecture, it includes tracking info. New "Correlator Trigger" system matches tracking information with fine grain calo and fits muon and track data together. 			
	 More tracking information integrated into the systems. Key feature for pile-up mitigation and offline-like object reconstruction. 			
Key technologies	Latest class FPGAs with High-Bandwidth Memory and large DSP capability. ATCA crates, multi-gigabit transceivers / optics. GPUs considered and evaluated for the software trigger farm.			
Key challenges	Power delivery and thermal management. System integration.			

EXAMPLE PHYSICS CASES

PROJECTED TRIGGER PERFORMANCE

Large variety of studies done Examples given here

SINGLE ELECTRON TRIGGER COMPARISON

EVOLVED ATLAS MENU

Table 14.12: Prospective additional triggers for an evolved system. The gains for example physics channels are described in the last column.

					EF before analysis	
	Baseline	Evolved	Level-0	Level-1	specific	
Signature	Threshold	Threshold	(kHz)	(kHz)	cuts (kHz)	Gain
$E_{ m T}^{ m miss}$	210 GeV	160 GeV	800	80	3	2× acceptance for compressed SUSY model and 2.4× for $ZH \rightarrow \nu\nu bb$
di- $ au$	40, 30 GeV	30, 20 GeV	800	80	2.2	increased acceptance from 30% to 55% for VBF $H \rightarrow \tau \tau$ and 32% to 54% for $HH \rightarrow bb\tau \tau$
4 jet w/ 2- btags	65 GeV	55 GeV	800	100	0.4	improved limit in $HH \rightarrow 4b$ from 1.85 to 1.65 $\sigma/\sigma_{\rm SM}$
VBF Higgs	75 GeV + topologi- cal	60 GeV + topologi- cal	280	40	40	increased acceptance from 6.6% to 10% for inclusive VBF Higgs production
Total			2680	300	-	