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An extension of the Standard Model with three right-handed neutrinos and a simple invisible axion
model can account for all experimentally confirmed signals of new physics (neutrino oscillations, dark
matter, and baryon asymmetry) in addition to solving the strong CP problem, stabilizing the electroweak
vacuum, and satisfying all current observational bounds. We show that this model can also implement
critical Higgs inflation, which corresponds to the frontier between stability and metastability of the
electroweak vacuum. This leads to a value of the nonminimal coupling between the Higgs and the Ricci
scalar that is much lower than the one usually quoted in Higgs inflation away from criticality. Then, an
advantage is that the scale of perturbative unitarity breaking on flat spacetime can be very close to the
Planck mass, where in any case new physics is required. The higher dimensional operators are under
control in this inflationary setup. The dependence of the cutoff on the Higgs background is also taken into
account as appropriate when the Higgs is identified with the inflaton. Furthermore, critical Higgs inflation
enjoys a robust inflationary attractor that makes it an appealing setup for the early universe. In the proposed
model, unlike in the Standard Model, critical Higgs inflation can be realized without any tension with the
observed quantities, such as the top mass and the strong coupling.
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I. INTRODUCTION

It has been shown that extending the Standard Model
(SM) with three right-handed neutrinos (with a generic
flavor structure) and with the extra fields required by a
simple invisible axion model can solve the observational
problems of the SM [neutrino oscillations, dark matter
(DM), and baryon asymmetry] and eliminate a number of
unsatisfactory aspects of the SM [1–3]. These include the
strong CP problem and the metastability1 of the electro-
weak (EW) vacuum.
The invisible axion model considered in [1] and later

further studied in [2,3] is perhaps the simplest model of
this sort [originally proposed by Kim, Shifman, Vainshtein,
and Zakharov (KSVZ) [4] ], in which one introduces the
following extra fields:

(i) An extra Dirac fermion. This Dirac fermion Q
consists of a pair of two-component Weyl fermions
q1 and q2 in the following representation of the SM
gauge group GSM ≡ SUð3Þc × SUð2ÞL × Uð1ÞY :

q1 ∼ ð3; 1Þ0; q2 ∼ ð3̄; 1Þ0: ð1Þ

The qi are charged under a spontaneously broken
and anomalous axial U(1) symmetry present in any
axion model, the Peccei-Quinn (PQ) symmetry [5].

(ii) An extra complex scalar. This scalar A is charged
under the PQ symmetry and is neutral under GSM.
The PQ charge of A is twice as large as that of the qi,
such that a Yukawa coupling between A and Q can
be nonzero.

Given that a single quark flavor carrying a nonvanishing
PQ charge is present, the model avoids the domain wall
problem [6], as discussed in Ref. [7].
The above-mentioned extra fields can render the EW

vacuum absolutely stable, and, therefore, one can identify
the inflaton with the Higgs [1]. Indeed, the condition to
have successful Higgs inflation (HI) [8,9] turns out to be
very similar to that of vacuum stability [10–12]. However,
it was pointed out that the original implementation of HI
proposed in [9] leads to the breaking of perturbative
unitarity well below the Planck scale when a perturbative
expansion around the flat spacetime is performed [13]. This
is due to the fact that the HI of [9] requires a large
nonminimal coupling ξH between the Higgs and the Ricci
scalar and, consequently, a new scale M̄Pl=ξH is generated
[13], where M̄Pl is the reduced Planck mass. Although this
does not necessarily invalidate the HI of [9] as the SM can
enter strong coupling when collisions occur at energies
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1The electroweak vacuum is metastable when unstable, but
with a lifetime larger than the age of the universe.
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M̄Pl=ξH and on flat spacetime,2 another possible interpre-
tation of the breaking of perturbative unitarity is the onset
of new physics, which could change the inflationary
predictions. For this reason the authors of Refs. [2,3]
proposed to identify the inflaton with jAj or a combination
of jAj and the Higgs. Furthermore, in [14] it was shown3 that,
unless some parameters are strongly fine-tuned, a large ξH
can generate higher order operators in the quantum effective
action, which can change the inflationary predictions.
However, the large value of ξH used in [9] can be

drastically reduced by taking quantum corrections into
account [11,12,16]. The minimal value of ξH is achieved by
living very close to the frontier between metastability and
stability of the EW vacuum, implementing the so-called
critical Higgs inflation (CHI) [17–19]. In this case, the scale
of perturbative unitarity breaking can essentially be iden-
tified with the scale at which Einstein’s theory of gravity
breaks down. Of course, at those Planckian energies, some
new physics is in any case required for UV-complete
gravity. Moreover, in CHI higher dimensional operators
do not significantly change the predictions and the infla-
tionary dynamics enjoys a robust attractor [20]. The latter
property is very important: if it were not satisfied one would
have to fine-tune the initial conditions of the inflaton,
and this would make the whole idea of inflation less
attractive. The way inflation takes place in CHI is sub-
stantially different from the original HI of [9] as the
potential in the critical case features a quasi-inflection
point.4 Reheating can also be successfully implemented in
HI [22] (in both the critical and the noncritical versions)
because the Higgs has sizable couplings to other SM
particles; this leads to a high reheating temperature,
TRH ≳ 1013 GeV. Another reason for considering CHI in
this model is the fact that, after a careful analysis, the
authors of Refs. [2,3] found that the pure jAj inflation is not
viable, and they eventually proposed a multifield inflation
in which both the Higgs and jAj vary along the inflationary
path; (critical) Higgs inflation, on the other hand, can offer
the possibility to achieve the simpler single-field option.
Given these advantages of CHI we here explore whether

this version of HI can be implemented in the well-motivated
SM extension that includes the KSVZ axion model and
three right-handed neutrinos [1]. Moreover, we investigate
whether the cutoff of the theory is always bigger than the
typical energies taking into account the background Higgs
field, as appropriate when the Higgs is identified with
the inflaton and, therefore, has a large field value during
inflation. We here focus on the original model of [1]

because the action of [1] is simpler than that of [2,3] thanks
to a different choice of symmetries (see the next section).
The article is organized as follows. In the next section we

give further details of the model, which will give us the
opportunity to introduce the notation. In Sec. III we discuss
the current observational bounds updating the analysis of
[1] with new experimental and observational results. The
renormalization group equations needed to compute the
effective potential are presented in Sec. IV, including those
of the nonminimal couplings between the scalars and
gravity and two-loop extensions. Section V is instead
devoted to the analysis of the stability of the EW vacuum,
which is more involved than in the SM due to the presence
of an extra scalar, A. The actual analysis of inflation is only
performed in Sec. VI because the new insight provided by
the previous sections is necessary for a detailed inflationary
analysis. Finally, in Sec. VII the cutoff of the theory is
investigated, taking into account the Higgs background in
CHI. Our conclusions are presented in Sec. VIII.

II. THE MODEL

Let us now give a detailed description of the model. Here
we consider the SM plus three right-handed neutrinos Ni
and the extra fields of the first viable invisible axion model
(the KSVZ model [4]) [1]. The gauge group of the model is
the SM group GSM.
The Lagrangian is given by

L ¼ LSM þ LN þ Laxion þ Lgravity: ð2Þ
We define in turn the various terms in L above. LSM
corresponds to the SM Lagrangian, while LN represents the
part of the Lagrangian that depends on the Ni:

iN̄i∂Ni þ
�
1

2
NiMijNj þ YijLiHNj þ H:c:

�
: ð3Þ

Mij is the Majorana mass matrix of Ni, and Yij is the
neutrino Yukawa coupling matrix governing the interaction
with the SM Higgs doublet H and the standard lepton
doublets Li. Notice that the matrix M can be taken
symmetric without loss of generality, but generically it
has complex elements. However, we assume it to be
diagonal and real without loss of generality thanks to
the complex Autonne-Takagi factorization. So

M ¼ diagðM1;M2;M3Þ;
where the Mi (i ¼ 1, 2, 3) are the Majorana masses of the
three right-handed neutrinos.
Laxion gives the additional terms in the Lagrangian due to

the KSVZ model:

Laxion¼ i
X2
j¼1

q̄jDqjþj∂Aj2−ðyq2Aq1þH:c:Þ−ΔVðH;AÞ:

The full classical potential is

2Indeed, the spacetime is not flat during inflation and, there-
fore, it is still possible that during this phase of the early universe
perturbation theory is reliable.

3See also [15] for a subsequent discussion.
4See Refs. [17,18,21] for a previous study of inflection points

in the SM and in the KSVZ model.
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VðH;AÞ ¼ λHðjHj2 − v2Þ2 þ ΔVðH;AÞ; ð4Þ

where

ΔVðH;AÞ≡ λAðjAj2 − f2aÞ2 þ λHAðjHj2 − v2ÞðjAj2 − f2aÞ;
and v and fa are real and positive parameters, which can be
interpreted as the EWand PQ breaking scales, respectively.
The Yukawa coupling y of Q is chosen real without loss of
generality. The quartic couplings λH, λA, and λHA have to
satisfy some bounds to ensure the stability of the EW
vacuum, as we will see in Sec. V.
The PQ symmetry acts on q1, q2, and A as follows:

q1 → eiα=2q1; q2 → eiα=2q2; A → e−iαA; ð5Þ
where α is an arbitrary real parameter. This symmetry
forbids a tree level mass term Mqq1q2 þ H:c: The SM
fields and the right-handed neutrinos are not charged under
Uð1ÞPQ. The model has the accidental symmetry

q1 → −q1; q2 → q2; A → −A: ð6Þ
Finally, Lgravity are the terms in the Lagrangian that

include the pure gravitational part and the possible non-
minimal couplings between gravity and the other fields:

Lgravity¼−
�
M̄2

Pl

2
þξHðjHj2−v2ÞþξAðjAj2−f2aÞ

�
R−Λ;

ð7Þ

where M̄Pl ≃ 2.4 × 1018 GeV is the reduced Planck mass,
R is the Ricci scalar, ξH and ξA are the nonminimal
couplings of the Higgs and the new scalar to gravity, and
Λ is the cosmological constant, which is introduced to
account for dark energy.
The EW symmetry breaking is triggered by the vacuum

expectation value (VEV) v ≃ 174 GeV of the neutral
component H0 of H (while all the other components of
H have a vanishing VEV). After that the neutrinos acquire a
Dirac mass matrix mD ¼ vY, which can be parametrized in
terms of column vectors mDi (i ¼ 1, 2, 3):

mD ¼ ðmD1; mD2; mD3 Þ: ð8Þ

Integrating out the heavy neutrinos Ni, one then obtains the
following light neutrino Majorana mass matrix:

mν ¼
mD1mT

D1

M1

þmD2mT
D2

M2

þmD3mT
D3

M3

: ð9Þ

By means of a unitary (Autonne-Takagi) redefinition of
the left-handed neutrinos we can diagonalize mν obtaining
the mass eigenvalues m1, m2, and m3 (the left-handed
neutrino Majorana masses). Calling Uν the unitary matrix
that implements such transformation [also known as the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix], i.e.,
UT

νmνUν ¼ diagðm1; m2; m3Þ, we can parametrize Uν ¼
VνP12, where

Vν ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

1
CA;

with sij ≡ sinðθijÞ, cij ≡ cosðθijÞ; θij are the neutrino
mixing angles, and P12 is a diagonal matrix that contains
two extra phases:

P12 ¼

0
B@

eiβ1 0 0

0 eiβ2 0

0 0 1

1
CA: ð10Þ

Even in the most general case of three right-handed
neutrinos, it is possible to express Y in terms of low-
energy observables, the heavy massesM1,M2, andM3, and
extra parameters [23]:

Y ¼ U�
νD ffiffiffi

m
p RD ffiffiffiffi

M
p

v
; ð11Þ

where
D ffiffiffi

m
p ≡ diagð ffiffiffiffiffiffi

m1

p
;
ffiffiffiffiffiffi
m2

p
;
ffiffiffiffiffiffi
m3

p Þ;
D ffiffiffiffi

M
p ≡ diagð

ffiffiffiffiffiffiffi
M1

p
;
ffiffiffiffiffiffiffi
M2

p
;
ffiffiffiffiffiffiffi
M3

p
Þ

and R is a generic complex orthogonal matrix (that contains
the extra parameters). This is useful for us because the

observational constraints are not directly on Y, but they
are rather on the low-energy quantities mi, Uν and on Mi
(see Sec. III). One can show that the simplest and realistic
case of two right-handed neutrinos [24] below MPl can be
recovered by setting m1 ¼ 0 and

R ¼

0
B@

0 0 1

cos z − sin z 0

ξ sin z ξ cos z 0

1
CA;

where z is a complex parameter and ξ ¼ �1.
The PQ symmetry is spontaneously broken by fa ≡ hAi,

leading to the following squared mass of Q:

M2
q ¼ y2f2a:

Moreover, A contains a (classically) massless particle, the
axion, and a massive particle with squared mass

M2
A ¼ f2a

�
4λA þO

�
v2

f2a

��
: ð12Þ
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Given the lower bound on fa that will be reviewed in
Sec. III, the corrections Oðv2=f2aÞ are very small and will
be neglected in the following.
When the scalars are set to their VEV, Lgravity reduces to

the standard pure Einstein-Hilbert action (with a cosmo-
logical constant), which is why we added the extra terms
proportional to v2 and f2a in Eq. (7).

III. OBSERVATIONAL BOUNDS

A. Neutrino masses and oscillations

As far as the neutrino masses mi (i ¼ 1, 2, 3) are
concerned, we have several data from oscillation and
nonoscillation experiments. For example, Refs. [25,26]
presented some of the most recent determinations of
Δm2

21, Δm2
3l (where Δm2

ij ≡m2
i −m2

j and Δm2
3l ≡ Δm2

31

for normal ordering and Δm2
3l ≡ −Δm2

32 for inverted
ordering), and the mixing angles θij and δ.
Here we take the central values reported in [26] for

normal ordering. Indeed, normal ordering is currently
favored over inverted ordering. Currently no significant
constraints are known for β1 and β2; thus we will set these
parameters to zero for simplicity from now on.

B. Baryon asymmetry

Successful leptogenesis5 [28] occurs if neutrinos are
lighter than 0.15 eV and the lightest right-handed neutrino
mass Ml fulfills [29]

Ml ≳ 1.7 × 107 GeV: ð13Þ
In order to be conservative we have reported the weakest
bound, but depending on assumptions one can have
stronger bounds.6

C. Constraints on the axion sector

In order not to overproduce DM through the misalign-
ment mechanism [30] and to elude axion detection one
obtains, respectively, an upper and a lower bound (see, e.g.,
[31,32], respectively) on the order of magnitude of the scale
of PQ symmetry breaking fa:

108 GeV≲ fa ≲ 1012 GeV: ð14Þ
The upper bound is obtained by requiring that the axion
field takes a value of order fa at early times, which is what
we expect but is not necessarily the case; also the precise
value of the lower bound is model dependent. Therefore,
(14) should not be interpreted as sharp bounds, but it
certainly gives a plausible range of fa. The window in (14)

also allows us to neglect PQ symmetry breaking effects due
to gravity: nonperturbative gravitational effects can violate
PQ invariance, but lead to a sizable correction only for
fa ≳ 1016 GeV (see Ref. [33] for a recent review).
In addition to contributing to DM, the axion also neces-

sarily leads to dark radiation because it is also thermally
produced [34–36]. This population of hot axions contributes
to the effective number of relativistic species, but the size of
this contribution is currently well within the observational
bounds although, interestingly enough, within the reach of
future observations in some models [36,37].
In the case of the KSVZ-based model considered here a

more precise version of the lower bound in (14) is fa ≳ 4 ×
108 GeV [32]. In any case bounds on fa can only constrain
the ratioMA=

ffiffiffiffiffi
λA

p
as it is clear from (12).WhenMq ≫ v and

MA ≫ v the EWconstraints are fulfilled. The size of y is also
verymildly constrained:wehave a lower bound from the lack
of observation,which is notmore stringent thanMq ≳ 1 TeV
(indeed, one has to take into account that the extra quarkQ is
not charged under the electroweak part of the SM gauge
group). Moreover, in this model the bounds on fa, which
allows the axion to account for the whole DM, is [2]

2 × 1010 GeV≲ fa ≲ 0.9 × 1011 GeV: ð15Þ

D. Constraints on SM parameters

Finally, in order to have “initial conditions” for the
renormalization group equations (RGEs),7 we also have to
fix the values of the relevant SM couplings at the EW scale,
say at the top mass Mt ≃ 172.5 GeV [38,39]. We take the
values computed in [40], which expresses these quantities in
terms of Mt, the Higgs mass Mh ≃ 125.09 GeV [41], the
strong fine-structure constant renormalized at the Z mass,
αsðMZÞ ≃ 0.1184 [42], andMW ≃ 80.379 GeV [43] (see the
quoted literature for the uncertainties on these quantities).

E. Inflation

In 2018 Planck released new results for inflationary
observables [44], which are relevant for our purposes.
For example, for the scalar spectral index ns and the

tensor-to-scalar ratio r one has now

ns ¼ 0.9649� 0.0042ð68% C:L:Þ;
r < 0.064ð95% C:L:Þ; ð16Þ

while for the curvature power spectrum PRðqÞ (at horizon
exit8 q ¼ aH)

PR ¼ ð2.10� 0.03Þ10−9: ð17Þ
5Neutrino oscillations offer another mechanism to generate the

baryon asymmetry through a different version of leptogenesis
[27]. We do not consider this possibility in the numerical
examples below, but it can easily be implemented in this model.

6For example, if the initial abundance of right-handed neu-
trinos at T ≫ Mi is zero, then Ml ≳ 2.4 × 109 GeV [29].

7The RGEs of the model will be discussed in Sec. IV.
8We use a standard notation: a is the cosmological scale factor,

H ≡ _a=a, and a dot denotes the derivative with respect to
(cosmic) time t.
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These constraints are particularly important for us as the
main goal of the article is to study whether CHI is viable.

IV. RENORMALIZATION GROUP EQUATIONS

Given that we want to obtain the predictions of this
model at energies much above the EW scale, we need the
complete set of RGEs. We adopt the MS renormalization
scheme to define the renormalized couplings. Moreover, for
a generic coupling g we write the RGEs as

dg
dτ

¼ βg; ð18Þ

where d=dτ≡ μ̄2d=dμ̄2 and μ̄ is the MS renormalization
energy scale. The β functions βg can also be expanded in
loops:

βg ¼
βð1Þg

ð4πÞ2 þ
βð2Þg

ð4πÞ4 þ � � � ; ð19Þ

where βðnÞg =ð4πÞ2n is the n-loop contribution.
We start from energies much above MA, Mq, andMij. In

this case, the one-loop RGEs are (see [1,45–48] for previous
determinations of some terms in some of these RGEs)

βð1Þ
g2
1

¼ 41g41
10

;

βð1Þg2
2

¼ −
19g42
6

;

βð1Þ
g2
3

¼ −
19g43
3

;

βð1Þ
y2t

¼ y2t

�
9

2
y2t − 8g23 −

9g22
4

−
17g21
20

þ TrðY†YÞ
�
;

βð1ÞλH
¼
�
12λH þ 6y2t −

9g21
10

−
9g22
2

þ 2TrðY†YÞ
�
λH − 3y4t þ

9g42
16

þ 27g41
400

þ 9g22g
2
1

40
þ λ2HA

2
− TrððY†YÞ2Þ;

βð1ÞλHA
¼
�
3y2t −

9g21
20

−
9g22
4

þ 6λH

�
λHA þ ð4λA þ TrðY†YÞ þ 3y2ÞλHA þ 2λ2HA;

βð1ÞλA
¼ λ2HA þ 10λ2A þ 6y2λA − 3y4;

βð1ÞY ¼ Y

�
3

2
y2t −

9

40
g21 −

9

8
g22 þ

3

4
Y†Y þ 1

2
TrðY†YÞ

�
;

βð1Þ
y2

¼ y2ð4y2 − 8g23Þ;

βð1ÞξH
¼ ð1þ 6ξHÞ

�
y2t
2
þ TrðY†YÞ

6
−
3g22
8

−
3g21
40

þ λH

�
−
λHA

6
ð1þ 6ξAÞ;

βð1ÞξA
¼ ð1þ 6ξAÞ

�
y2

2
þ 2

3
λA

�
−
λHA

3
ð1þ 6ξHÞ;

where g3, g2, and g1 ¼
ffiffiffiffiffiffiffiffi
5=3

p
gY are the gauge couplings of SUð3Þc, SUð2ÞL, and Uð1ÞY , respectively, and yt is the top

Yukawa coupling. In addition to the β functions presented in [1], we have added here the RGEs for the nonminimal
couplings ξH and ξA, which, as we will see, play some role in inflation.
Since the SM couplings evolve in the full range from the EW to the Planck scale, it is appropriate to use for them the

two-loop RGEs,9 which we present explicitly here for the first time to our knowledge including the new physics
contribution,

9In the absence of gravity the RGEs for a generic quantum field theory were computed up to two-loop order in [49].
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βð2Þ
g2
1

¼ g41

�
199g21
50

þ 27g22
10

þ 44g23
5

−
17y2t
10

−
3

10
TrðY†YÞ

�
;

βð2Þ
g2
2

¼ g42

�
9g21
10

þ 35g22
6

þ 12g23 −
3y2t
2

−
1

2
TrðY†YÞ

�
;

βð2Þ
g2
3

¼ g43

�
11g21
10

þ 9g22
2

−
40g23
3

− 2y2t − y2
�
;

βð2Þ
y2t

¼ þy2t

�
6λ2H −

23g42
4

þ y2t

�
−12y2t − 12λH þ 36g23 þ

225g22
16

þ 393g21
80

−
9

4
TrðY†YÞ

�

þ 1187g41
600

þ 9g23g
2
2 þ

19

15
g23g

2
1 −

9

20
g22g

2
1 −

932g43
9

þ
�
3g21
8

þ 15g22
8

�
TrðY†YÞ − 9

4
TrððY†YÞ2Þ þ λ2HA

2

�
;

βð2ÞλH
¼ λ2H

�
54

�
g22 þ

g21
5

�
− 156λH − 72y2t − 24TrðY†YÞ

�
þ λHy2t

�
40g23 þ

45g22
4

þ 17g21
4

−
3

2
y2t

�

þ λH

�
1887g41
400

−
73g42
16

þ 117g22g
2
1

40
þ
�
3g21
4

þ 15g22
4

�
TrðY†YÞ − TrððY†YÞ2

2

�
þ 20g23y

2 −
9y4

2
− 5λ2HA

�

þ y4t

�
15y2t − 16g23 −

4g21
5

�
þ y2t

�
63g22g

2
1

20
−
9g42
8

−
171g41
200

�
þ 305g62

32
−
3411g61
4000

−
289g42g

2
1

160
−
1677g22g

4
1

800

−
�
9g41
200

þ 3g21g
2
2

20
þ 3g42

8

�
TrðY†YÞ þ 5TrððY†YÞ3Þ − 3y2λ2HA − 2λ3HA:

The RGEs in the MS scheme are gauge invariant as proved
in [40].
Next, we consider what happens in crossing the thresh-

old MA: as discussed in [1,47,50] one has to take into
account a scalar threshold effect; in the low energy
effective theory below MA one has the effective Higgs
quartic coupling

λ ¼ λH −
λ2HA

4λA
: ð20Þ

In practice one should do the following: below MA the
RGEs are the ones given above with βλHA

and βλA removed,
λA and λHA set to zero, and λH replaced by λ. Above MA
one should include λA, λHA, βλA , and βλHA

and find λH
using the full RGEs and the boundary condition in (20) at
μ̄ ¼ MA.
As far as the new fermions are concerned, following [51]

we adopt the approximation in which the new Yukawa
couplings run only above the corresponding mass thresh-
olds; this can be technically implemented by substituting
Yij → Yijθðμ̄ −MjÞ and y → yθðμ̄ −MqÞ on the right-
hand side of the RGEs.

V. STABILITY ANALYSIS

Since we use the one-loop RGEs of the non-SM
parameters, we approximate the effective potential Veff
of the model with its RG-improved tree-level potential: we

substitute to the bare couplings in the classical potential the
corresponding running parameters.
Let us find the conditions that ensure the absolute

stability of the vacuum hH0i ¼ v and hAi ¼ fa. We offer
a more detailed treatment than the one in [47] although we
will agree with their conclusions. For v ≪ fa, which is
amply fulfilled thanks to (14), the conditions are

(I) λH > 0 and λA > 0.
(II) 4λHλA − λ2HA > 0.

The origin of Condition I is obvious. Notice, however, that
once λH > 0 and λ2HA < 4λHλA are fulfilled, then λA > 0 is
fulfilled too. The origin of Condition II is provided in
Appendix A.
An important remark is in order now. Suppose that,

taking into account the dependence of the couplings on μ̄,
one finds that Conditions I and II are violated at some
energy μ̄ ¼ μ�. Can we really conclude that there is an
instability? The answer to this question is “yes” only if μ�
is close enough to the field configurations at which the
potential is lower than its value at the EW vacuum
(henceforth the instability configurations); indeed, if this
is not the case, this instability would be outside the range
of validity of the RG-improved tree-level potential. For
this reason it is interesting to find the instability configu-
rations. This is done in Appendix B.
In Fig. 1 an example of the running of the SM

parameters close to criticality (and compatible with
absolute stability) is provided (the example is specified
in the caption). In that plot the threshold effect in (20) has
been taken into account, but the jump of λH cannot be
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appreciated in the plot because a λHA ≪ λA has been
chosen there. In the inset on the left the corresponding
running of λH in the pure SM is shown; note that in the
pure SM one does not achieve absolute stability for the
SM parameters used (which involve the current central
value forMt). Indeed, one of the main testable differences
between the model discussed here and the pure SM is the
possibility to realize CHI with the central value of Mt.
In Fig. 2 the corresponding running of the couplings in the
axion sector is shown. No pathologies (such as Landau
poles) appear below the Planck scale and Condition I for
stability is satisfied. In Fig. 3 the corresponding instability
configurations for Condition II [the configuration space
defined in (B3) and (B4)] are shown: this space opens up
only at μ̄ ≫ jH�j meaning that we do not encounter any
instability of the EW vacuum (see the discussion in the
previous paragraph). This is not in contradiction with
Figs. 1 and 2 of [1] because the region marked as
“λ2HAðμ̄Þ < 4λHðμ̄ÞλAðμ̄Þ” there corresponds to having that
condition satisfied for all μ̄ up to the Planck scale; as
explained in the paragraph above this is only a sufficient
condition for absolute stability (not a necessary one). Note
that for those parameter values neutrino data are repro-
duced, the axion accounts for the full DM abundance
[see (15)], and leptogenesis can provide the observed
matter-antimatter asymmetry.

It is interesting to note that the criticality condition is not
only achieved by a single point in the parameter space but
rather by living on a critical higher-dimensional surface.
As a side comment, this opens up the intriguing possibility
of lowering the masses of the new states close to a scale
compatible with the Higgs naturalness and reachable at the
LHC and/or future colliders.

FIG. 1. RG evolution of the relevant SM parameters close to
criticality (λH is nearly zero at the Planck scale). The values of
the parameters are the following: M1 ¼ 1011 GeV, M2 ¼ 6.5×
1013 GeV, M3 > M̄Pl, z ¼ 0, ξ ¼ 1, fa ≃ 2.5 × 1010 GeV,
λHAðMAÞ ≃ 0.016, λAðMAÞ ≃ 0.1, and yðMAÞ ≃ 0.09. The inset
on the left shows the running of λH in the pure SM for the same
values of the SM parameters.

FIG. 2. RG evolution of the couplings of the axion sector close
to criticality (λH is nearly zero at the Planck scale). The values of
the parameters are as in Fig. 1.

FIG. 3. Configuration space in (B3) and (B4) for the parameters
set in Fig. 1. This space opens up only at μ̄ ≫ jH�j so no
instability configurations are found.
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In the next section it will be shown that a successful
inflation can also be achieved with the Higgs close to
criticality.

VI. HIGGS INFLATION AND CRITICALITY

The possibility that we study in this article is that
inflation is triggered by the Higgs and in particular when
one is very close to criticality. During inflation the field
values are very high (around the Planck scale); therefore,
the VEVs can be neglected as done in [3]. Indeed, even the
highest VEV, fa, is always many orders of magnitude
below the Planck scale thanks to (15). In this high-field
regime, HI occurs when the quantities

κH ≡ 1

2
λHAξH − λHξA; κA ≡ 1

2
λHAξA − λAξH ð21Þ

satisfy

fκH > 0; κA < 0g: ð22Þ

Indeed, it turns out that the Higgs direction is a valley, while
jAj is a ridge of the tree-level potential when (22) holds [3].
Such a situation occurs because of an interplay between the
dimensionless parameters: the nonminimal couplings and
the quartic couplings [as is clear from (21) and (22)].
Therefore, in case (22) the inflation along the jAj direction
and the multifield inflation (in which both jAj and jHj are
active) does not occur.
In HI, the action that involves the field A can be

neglected (because of the argument in the previous para-
graph) and the term in the action that depends on the metric
and the Higgs field only (the scalar-tensor part) is

Sst ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
j∂Hj2 − VH −

�
M̄2

Pl

2
þ ξHjHj2

�
R
�
;

ð23Þ

where VH ¼ λHjHj4 is the classical Higgs potential and
we have ignored the EW scale v, which is completely
negligible compared to the inflationary scales (that will be
discussed in this section and the next one). We assume a
sizable nonminimal coupling, ξH > 1, because this is what
inflation leads to as we will see.
We start by using the classical approximation, and later

we will also include quantum corrections. The ξHjHj2R
term can be removed through a conformal transformation
(also known as the Weyl transformation),

gμν → Ω−2
H gμν; Ω2

H ¼ 1þ 2ξHjHj2
M̄2

Pl

; ð24Þ

which, as we will see below, redefines the kinetic term and
the potential of the Higgs field. The original frame, where

the Lagrangian has the form in Eq. (23), is known as the
Jordan frame, while the one where gravity is canonically
normalized (after the transformation above) is called the
Einstein frame. In the unitary gauge, where the only scalar
field is ϕ≡ ffiffiffiffiffiffiffiffiffiffiffi

2jHj2
p

, we have (after having performed the
conformal transformation)

Sst ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
KH

ð∂ϕÞ2
2

−
VH

Ω4
H
−
M̄2

Pl

2
R
�

ð25Þ

and

KH ¼ Ω−4
H

�
Ω2

H þ 3M̄2
Pl

2

�
dΩ2

H

dϕ

�
2
�
: ð26Þ

The noncanonical Higgs kinetic term can be made
canonical through the field redefinition ϕ ¼ ϕðϕ0Þ given by

dϕ0

dϕ
¼ Ω−2

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

H þ 3M̄2
Pl

2

�
dΩ2

H

dϕ

�
2

s
; ð27Þ

with the conventional condition ϕðϕ0 ¼ 0Þ ¼ 0. Note that
ϕðϕ0Þ is invertible because Eq. (27) tells us dϕ0=dϕ > 0.
Thus, one can extract the function ϕðϕ0Þ by inverting the
function ϕ0ðϕÞ defined above. We will refer to ϕ0 as the
canonically normalized Higgs field. Note that ϕ0 feels a
potential

UH ≡ VH

Ω4
H
¼ λHϕðϕ0Þ4

4ð1þ ξHϕðϕ0Þ2=M̄2
PlÞ2

: ð28Þ

Let us now recall how inflation emerges in this context in
the slow-roll approximation. From Eqs. (27) and (28) it
follows that UH is exponentially flat when ϕ0 ≫ M̄Pl [9],
which is a key property to have inflation. Indeed, for such
high field values the slow-roll parameters

ϵH ≡ M̄2
Pl

2

�
1

UH

dUH

dϕ0

�
2

; ηH ≡ M̄2
Pl

UH

d2UH

dϕ02 ð29Þ

are guaranteed to be small. Therefore, the region in
field configurations where ϕ0 ≳ M̄Pl (or equivalently [9]
ϕ≳ M̄Pl=

ffiffiffiffiffiffi
ξH

p
) corresponds to inflation.

The parameter ξH can be fixed by requiring that the
predicted curvature power spectrum equals the observed
value, Eq. (17), for a field value ϕ0 ¼ ϕ0

b corresponding to
an appropriate number of e-folds [22]:

N ¼
Z

ϕ0
b

ϕ0
e

UH

M̄2
Pl

�
dUH

dϕ0

�
−1
dϕ0; ð30Þ

where ϕ0
e is the field value at the end of inflation, computed

by requiring

ALBERTO SALVIO PHYS. REV. D 99, 015037 (2019)

015037-8



ϵHðϕ0
eÞ ≃ 1: ð31Þ

In the slow-roll approximation (used here) such a constraint
can be imposed by using the standard formula

PRðkÞ ¼
UH=ϵH
24π2M̄4

Pl

: ð32Þ

For N ∼ 60, this procedure leads to a very large ξH at the
classical level. However, the need of a very large ξH can be
avoided when quantum corrections are included [17–19], as
we will see below.
We can also compute the scalar spectral index ns and the

tensor-to-scalar ratio r: in the slow-roll approximation the
formulas are r ¼ 16ϵH and ns ¼ 1–6ϵH þ 2ηH. These
parameters are important as they are constrained by
observations (as we have seen in Sec. III).
We now discuss the quantum corrections to the Higgs

potential. We want to include both the large-ξH inflationary
scenario of [9] and the CHI proposed in [17–19]. The latter
case permits a drastic decrease of the value of ξH with
respect to the classical result. This indicates that we cannot
rely on large-ξH approximations to analyze this case. Thus,
we do not use such approximations here. However, we do
assume in the following that ξH > 1 as this is present both
in the original formulation of HI and in CHI.
Note that Eqs. (23), (24), (26), and (27) also hold if ξH is

field dependent, as dictated by quantum corrections [52].
A second step we should do now is the computation of the
effective potential. In defining the quantum theory there are
well-known ambiguities [10,11,18,53,54]. We follow here
Ref. [18] and choose to compute the loop corrections to the
effective potential—also known as the Coleman-Weinberg
potential—in the Einstein frame [after having performed
the conformal transformation (24)]. This choice is conven-
ient because we can then use the standard formulas to
compute the primordial quantum fluctuations, which
assume minimal couplings to gravity. The effective poten-
tial is also RG-improved by using the RGEs.
Such a prescription to compute the quantum effects is

known as Prescription I, and it leads to the following
renormalization group scale:

μ̄ðϕÞ ¼ ϕ=κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξHϕ

2=M̄2
Pl

p ; ð33Þ

where κ is an order one factor.
In a previous work [53] “threshold corrections” at the

scale M̄Pl=ξH for the RG flow have been considered. We
regard such corrections as different ways of quantizing the
theory, which are nonminimal as they require further
parameters. Furthermore, in some UV modifications of
general relativity the above-mentioned corrections vanish
[48,55,56]. For these reasons we will not consider them in
this article.

Furthermore, we will use the RG-improved potential
neglecting the loop corrections: this means that we will take
as effective potential the one in Eq. (28)with the constants λH
and ξH replaced by the corresponding running parameters.
There are good reasons to use this approximation. Indeed,
taking into account the loop corrections to the potential
would be more precise only if supplemented by the loop
corrections to the kinetic term of the inflaton; such correc-
tions have not been included in HI and are expected to be
comparable to the loop corrections to the potential for
moderate values of ξH, unlike what happens for large ξH
[11]: the largevalue of ξH allowed the authors of [11] to show
that the corrections to the kinetic term are negligible, but the
smaller value of ξH of critical HI does not permit one to trust
this approximation anymore. Another reason to employ the
RG-improved potential is its gauge independence, which is
not shared by the Coleman-Weinberg effective potential.
Therefore, the use of the RG-improved potential allows us to
obtain a more transparent physical interpretation.
Given that we use this approximation we can also

compute the RGEs in the Jordan frame. Let us see why.
In an exact computation we should also compute the RGEs
in the Einstein frame (just like the Coleman-Weinberg
potential) but the approximation in which the RGEs are
computed in the Jordan frame is a good approximation
because the error one is doing is of order of the Weyl
anomaly, which is suppressed by 1=ð4πÞ2 [57], and we are
not including anyway the Coleman-Weinberg corrections
to the potential which are of the same order.
Moreover, in computing the inflationary potential a

further approximation can be done. One can approximate
the running couplings λH and ξH by expanding them
around the minimum of λH (henceforth λ0), which typically
occurs around the Planck scale, as follows:

λHðμ̄Þ ≃ λ0 þ bλln2ðμ̄=μ0Þ; ξHðμ̄Þ ≃ ξ0 þ bξ lnðμ̄=μ0Þ;
ð34Þ

where μ0 is the value of μ̄ where this minimum occurs
and ξ0 ≡ ξHðμ0Þ. The parameters bλ and bξ are related to
the β functions as follows:

bλ ¼ μ̄
dβλH
dμ̄

����
μ̄¼μ0

; bξ ¼ 2βξH jμ̄¼μ0
; ð35Þ

and can be computed once the RGEs are solved. Then, one
can approximate the potential by inserting these expansions
inside (28). Such an approximation (which we will call the
“log approximation”) works very well (see Fig. 4), and we
will therefore use it from now on.
Now, Eqs. (29), (30), and (32) are still valid as long as one

is in the slow-roll regime, but one should now interpretU as
the effective potential, not just as the classical potential.
The inflationary observables predicted by the model

analyzed here are in agreement with the most recent
observational bounds [44] [see, for instance, Eqs. (16)
and (17)]: e.g., for the parameters used in Fig. 1 we have
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ns ≃ 0.965; r¼ 0.0472; PR ¼ 2.12× 10−9; ð36Þ

and a number of e-folds equal to about 55.
Note that for the values of the parameters used in Fig. 1

one has fκH > 0; κA < 0g (see also Fig. 2) and, therefore,
as discussed at the beginning of this section, in that setup
the inflation along the jAj direction and the multifield
inflation (in which both jAj and jHj are active) does not
occur.
Furthermore, in Ref. [14] it was shown that CHI features

a robust inflationary attractor in the SM. The same
conclusion holds here because the results of the analysis
in Ref. [14] were based only on the qualitative features of
the inflationary potential, which are the same in the model
studied here. Moreover, for fκH > 0; κA < 0g, which has
been realized in this paper, the other directions in the scalar
field space are not inflationary attractors [3].

VII. VALIDITY OF THE EFFECTIVE THEORY

We have already commented that CHI leads to an
increasing of the cutoff of the effective theory on
flat spacetime compared to the ordinary HI case.
Let us generalize the discussion now to include the
nontrivial background fields characteristics of inflation.
Reference [58] showed that the cutoff of the theory can be
studied by dividing the range of the background Higgs
field ϕ̄ into three regimes.10 We use the results of Ref. [58]
in the following and further extend them:

(i) ϕ̄ ≪ M̄Pl=ξH. In this small field regime the cutoff of
the theory is identified as the coefficients of the

dimension-n operators δϕ0n (for n > 4), where δϕ0 is
the fluctuation of ϕ0 around its background value ϕ̄0.
The cutoff obtained in this way reads

ΛðnÞ ¼
M̄Pl

ξH
λ−1=ðn−4ÞH ; ð37Þ

where n acquires even values. This is the flat space-
time result. Given that in CHI λH is very small, the
smallest value of the cutoff is reached in the limit
n → ∞. However, for moderate values of n the cutoff
ΛðnÞ is much bigger in CHI than in the ordinary HI
case thanks to the smallness of λH. In Fig. 5 we show
this tower of cutoffs (varying n) as a function of the
canonically renormalized Higgs field ϕ0 and compare
them with the inflationary scale, defined as U1=4

H . In
the plot we also take into account the running of the
couplings. One finds that the inflationary scale is
always much smaller than the cutoff.

(ii) M̄Pl=ξH ≪ ϕ̄ ≪ M̄Pl=
ffiffiffiffiffiffi
ξH

p
. By following a pro-

cedure similar to the one used in the small field
regime, the cutoff in this intermediate range is instead

ΛðnÞ ¼
ϕ̄2ξH
M̄Pl

�
ξ6Hϕ̄

6

λHM̄6
Pl

�
1=ðn−4Þ

; ð38Þ

again in CHI the smallest value of the cutoff is
obtained in the limit n → ∞, and for moderate
n > 4 the CHI features a much larger cutoff than

FIG. 4. RG-improved potential and its approximation (log-
approximation) based on the expansions in Eq. (34) for the
parameters set in Fig. 1 and for κ ≃ 1.8. FIG. 5. The cutoff of the theory obtained by reading the

coefficients of the dimension-n operators δϕ0n (for n > 4 and
varying n) is compared to the inflationary scale. The parameters
are chosen as in Fig. 4. In this plot the small field regime
(ϕ̄ ≪ M̄Pl=ξH) is shown.

10Note that ϕ̄ is the background value of ϕ not of ϕ0.
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the large-ξH HI. In this field range the tower of cutoffs
is shown in Fig. 6, taking into account the running of
the couplings, and compared again with the infla-
tionary scale. That plot shows that the inflationary
scale is always much smaller than the cutoff.

(iii) Finally, in the inflationary regime, ϕ̄ ≫ M̄Pl=
ffiffiffiffiffiffi
ξH

p
,

the cutoff is simply Λ ∼ M̄Pl, which coincides with
the scale at which sizable quantum gravity effects
are expected to emerge. Figure 4 shows that the
inflationary scale is much smaller than the cutoff in
this last regime, too.

VIII. CONCLUSIONS

In this article it was found that CHI can be implemented
in a well-motivated extension of the SM, which explains
with a few extra degrees of freedom neutrino oscillations
(through three right-handed neutrinos), DM (identified with
the axion), baryon asymmetry (through leptogenesis), and
the strong CP problem (thanks to the PQ symmetry).
Furthermore, all the above-mentioned features can be there
together with a stable EW vacuum. The fact that CHI can
be implemented in this context is nontrivial: indeed, to
establish this result one needs to carefully take into account
the stability conditions in the presence of RG-improved
parameters.
CHI inflation has the advantage of (1) being free from a

large nonminimal coupling ξH and from a consequent scale
of violation of perturbative unitarity much below the Planck
scale, (2) enjoying a robust inflationary attractor. and
(3) allowing for an efficient reheating thanks to the sizable
couplings between the Higgs and other SM particles.

Moreover, in the proposed model, unlike in the SM
[18,59], CHI can be realized without any tension with the
observed quantities, such as the top mass or the strong fine-
structure constant.
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APPENDIX A: DERIVATION OF THE
STABILITY CONDITIONS

As already stated in the main text, the only stability
condition that requires explanation is Condition II (see
Sec. V). This condition can be derived as follows.
Assume λH > 0 and λA > 0, which is in any case

required by the stability, and then define

u≡ ffiffiffiffiffiffi
λH

p
ðjHj2 − v2Þ; w≡ ffiffiffiffiffi

λA
p

ðjAj2 − f2aÞ; ðA1Þ
to write the potential in a more compact form:

V ¼ u2 þ w2 þ λHAffiffiffiffiffiffiffiffiffiffi
λHλA

p uw: ðA2Þ

Note that

u ∈ ½−λHv2;∞�; w ∈ ½−λAf2a;∞�: ðA3Þ
Next use polar coordinates, u ¼ r cos θ, w ¼ r sin θ, which
give

V ¼ r2
�
1þ λHAffiffiffiffiffiffiffiffiffiffi

λHλA
p sin θ cos θ

�
: ðA4Þ

The stability condition is that V should not become
negative for any field value; thus,

1þ λHAffiffiffiffiffiffiffiffiffiffi
λHλA

p sin θ cos θ > 0: ðA5Þ

When sin θ cos θ acquires its minimum (sin θ cos θ ¼
−1=2), inequality (A5) becomes

λHA < þ2
ffiffiffiffiffiffiffiffiffiffi
λHλA

p
ðA6Þ

and ensures that V is non-negative for positive λHA.
When sin θ cos θ acquires instead its maximum
(sin θ cos θ ¼ þ1=2) this inequality becomes

λHA > −2
ffiffiffiffiffiffiffiffiffiffi
λHλA

p
ðA7Þ

and ensures that V is non-negative for negative λHA. Putting
together (A7) and (A6) gives

λ2HA < 4λHλA: ðA8Þ

FIG. 6. The same as in Fig. 5 but here the intermediate field
regime (M̄Pl=ξH ≪ ϕ̄ ≪ M̄Pl=

ffiffiffiffiffiffi
ξH

p
) is shown.
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APPENDIX B: INSTABILITY CONFIGURATIONS

In this Appendix we find the field configurations at
which the potential is lower than its value at the EW
vacuum if Condition II (see Sec. V) is violated. We called
these configurations the “instability configurations.”
Let us focus on the case λHA > 0, since this case is the one

that imposes the weaker constraint from stability [47]. From
the discussion provided in Appendix A the most unstable
direction is θ ¼ θ0 ≡ −π=4 (at which sin θ cos θ ¼ −1=2)
and the most unstable value of r (henceforth r0) is the
maximal one compatiblewith the ranges in (A3). To compute
r0 note that the most unstable configuration has w ¼ w0 ≡
−
ffiffiffiffiffi
λA

p
f2a (we assume λH > 0 and λA > 0 as required by

Condition I), which corresponds to

A ¼ A0 ≡ 0: ðB1Þ

From r0 sin θ0 ¼ w0 one then determines r0 ¼
ffiffiffiffiffiffiffi
2λA

p
f2a.

Therefore, the most unstable configuration has u ¼ u0 ≡

r0 cos θ0 ¼
ffiffiffiffiffi
λA

p
f2a, or, in terms of jH0j, defined byffiffiffiffiffiffi

λH
p ðjH0j2 − v2Þ ¼ u0,

jH0j2 ¼ v2 þ
ffiffiffiffiffiffi
λA
λH

s
f2a: ðB2Þ

Moreover, the full instability configurations with A ¼ 0 are
given by

jH−j < jHj < jHþj; ðB3Þ

where

jH�j2 ¼ v2 þ f2aλHA

2λH

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4λHλA
λ2HA

s !
; ðB4Þ

which confirms the result in Ref. [47].
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