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Abstract 9 

The Linac3 ion source at CERN produces lead ion beams by the vaporization of solid samples 10 
inside the internal ovens and the consequent ionization of the evaporated material in the 11 
plasma. The geometry, materials and surface state of the oven elements are critical parameters 12 
influencing the oven temperature characteristics and consequently the evaporation properties 13 
and the ion source performance. A dedicated test stand was assembled and a finite element 14 
approach is proposed to evaluate the thermal response of the system at increasing heating 15 
powers. Comparisons between the simulation results and experimental measurements are 16 
given in order to validate the numerical model. Radiation was found to be the main heat 17 
transfer mechanism governing the system. Based on the obtained results, improvements to the 18 
existing setup are analysed. 19 
 20 
Keywords: Linear accelerator; accelerator equipment design; CERN; finite elements method; 21 
numerical thermal analysis; heat transfer. 22 
 23 

1. Introduction 24 

In the framework of the High Luminosity project of the Large Hadron Collider 25 
(HL-LHC), all the LHC injectors are undergoing an extensive upgrade program, named LHC 26 
Injector Upgrade (LIU) [1]. The first link of the heavy ion accelerator chain is represented by 27 
the Linac3 linear accelerator, Fig. 1, operating since 1994 [2]. As a part of the Linac3 28 
upgrades, several activities involve the GTS-LHC Electron Cyclotron Resonance ion source 29 
(ECR), which produces the primary heavy ion beams [3]. The major efforts focus on the 30 
GTS-LHC extraction region, the double frequency plasma heating combined with afterglow 31 
operation [4] and the oven studies for metal ion beam production [5]. Concerning the oven 32 
studies, the lead ion beams delivered by the Linac3 are produced with the ECRIS using 33 
resistively-heated miniature ovens. Since the oven performance is related to the temperature 34 
distribution, a dedicated off-line test stand was built with the capability of measuring the oven 35 
temperatures and a numerical thermal model was developed to complement the measurements 36 
and evaluate the criticality of the several parameters involved. The application of the finite 37 
element method in the study of an ion source is a novelty in the accelerator community. In the 38 
following chapters the features of the advanced numerical method developed using the 39 
ANSYS Workbench finite element code [6] are described in detail, focusing the attention on 40 
the loading conditions, the material data and the assumptions adopted. The theoretical 41 
principles of the heat exchange are recalled to justify the assumptions taken. A benchmarking 42 
is performed between the numerical results and the experimental data in order to validate the 43 
numerical model. Finally, some recommendations are given for future and similar 44 
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micro-hardness. Considering the system under study, most of the bodies in contact have a 142 
very low contact pressure, comparable to that generated by their deadweight, and the 143 
contribution of thermal conduction in the heat exchange between bodies in contact is expected 144 
to be negligible with respect to the heat exchanged by radiation (see section 6.3). 145 

4.2 Convection 146 

Convection is the thermal exchange between a body and a surrounding fluid in motion. 147 
The basic relationship for the convection heat transfer is defined by the Newton’s law of 148 
cooling: 149 

ݍ ൌ ൫ܣ݄ ௦ܶ െ ܶ൯ (5) 150 

where q is the heat flow between the body surface and the fluid, A the body surface in 151 
contact with the fluid, h the thermal convection coefficient and Ts and Tf are the absolute body 152 
surface and fluid temperatures, respectively. On the basis of the fluid motion, the convection 153 
may be classified as free (or natural) or forced. In the forced case, an artificially-induced 154 
convection current is created when a fluid is forced to flow around the body surface by means 155 
of an external source, such as a pump. In the case of natural convection, an increase of the 156 
temperature produces a reduction in the fluid density, which in turn causes the fluid motion. 157 

In the system under study, the oven operates in vacuum and the convection contribution 158 
to the heat transfer is negligible. 159 

4.3 Radiation 160 

The thermal energy between two bodies is also exchanged through electromagnetic 161 
radiation. This mechanism is known as thermal radiation, because the random movement of 162 
atoms and molecules in a body, composed of charged particles, results in the emission of 163 
electromagnetic waves, which carry energy away from the body surface. Unlike convection, 164 
thermal radiation occurs also under vacuum. The transfer of radiant energy is described by the 165 
Stefan-Boltzmann’s equation, which for two grey-body surfaces can be written as follows: 166 

ܳ ൌ
ఙ∙൫ భ்

రି మ்
ర൯

భషചభ
ಲభ∙ചభ

ା భ
ಲభ∙ಷభ→మ

ାభషചమ
ಲమ∙ചమ

 (6) 167 

where: 168 

Q is the heat flux; 169 

σ is the Stefan-Boltzmann constant; 170 

߳ଵ,ଶ are the emissivities of the surfaces 1 and 2 (equal to 1 for a black body); 171 

A1,2 are the surface areas 1 and 2; 172 

F1→2 is the shape factor; 173 

T1,2 are the absolute temperatures in Kelvin of surfaces 1 and 2. 174 

In (6), only the emissivity depends on the material, while the other parameters are 175 
constant or depend on the geometry. The emissivity represents the material effectiveness in 176 
emitting thermal radiation and is generally measured as the ratio of the thermal radiation from 177 
a surface to the radiation from an ideal black body surface at the same temperature. The ratio 178 
varies from 0 to 1. Kirchhoff’s law equates the emissivity of an opaque surface with its 179 
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absorption of incident radiation. The largest absorptivity corresponds to complete absorption 180 
of all incident light by a truly black object, explaining why mirror-like and polished metallic 181 
surfaces that reflect light will thus have low emissivity. For several applications, when 182 
conduction and convection are present, radiation becomes relevant only at high temperatures. 183 
In the case under examination, radiation actually is the most relevant mechanism of heat 184 
exchange also at low temperatures, given the absence of the convection contribution and the 185 
low contact pressure between most of the components in contact, which minimizes the 186 
thermal exchange by conduction (see section 6.3). 187 

5. Materials 188 

As seen in section 4, the heat flow and the temperature gradient in steady-state conditions 189 
of the problem under study depend on the thermal conductivity and the emissivity of the 190 
materials. These properties are temperature-dependent, and available in literature for all the 191 
materials adopted in the analysis [9-11]. The emissivity, on the other hand, is strictly related to 192 
the surface state of the radiating bodies [10]. Fig. 8 shows the emissivity values for alumina, 193 
copper, stainless steel and tantalum as a function of temperature and surface state. It is 194 
important to underline that in the numerical analysis the data is linearly extrapolated for the 195 
higher temperatures. It is evident that, in general, the surface state consistently influences the 196 
emissivity. Nevertheless, the surface state can be challenging to assess accurately considering 197 
that it usually changes with time. The metal parts of the oven are machined without applying a 198 
finishing polishing and are then operated at high temperatures in a residual gas atmosphere with 199 
always some low level oxygen residue. Therefore, the surface conditions of the materials are 200 
expected to be between the polished and oxidized limits. 201 
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surface temperatures used in the computation must be uniform over each element surface facet 310 
to satisfy the conditions of the radiation model. 311 

7. Results 312 

In order to benchmark the experimental data, different simulations were run at increasing 313 
heating powers. While the thermal conductivity of the components as a function of temperature 314 
is well known from literature, the emissivity is the main variable affecting the thermal 315 
distribution. The range of values for the emissivity of each component was narrowed through 316 
bibliographic research, however, the emissivity strongly depends on the material surface state, 317 
which is unknown a priori. Parametric simulations were thus performed as a function of the 318 
different emissivities, to investigate the thermal response of the system. 319 

7.1 Case 1 320 

In the first case study (Case 1), the surface state was considered polished and cleaned for 321 
all the components. The emissivities used, extracted from Fig. 8, are reported in Table 3. 322 

In Fig. 13, the temperatures obtained experimentally and numerically at the probe 323 
positions are compared. It is possible to observe that the numerical results overestimate the 324 
temperature distribution inside and outside the oven. 325 

Table 3: Material emissivities for Case 1 [10,11]. 326 
Alumina 

 

Tantalum Stainless Steel Copper 

T (°C) ࣕ T (°C) ࣕ T (°C) ࣕ T (°C) ࣕ 

-167 0.700 -212 0.020 -18 0.140 25 0.040 

121 0.750 149 0.030 65 0.150 120 0.045 

260 0.700 204 0.035 154 0.160 260 0.060 

538 0.600 427 0.050 204 0.170 330 0.075 

815 0.500 593 0.060 260 0.180 400 0.100 

1093 0.400 871 0.075 316 0.190 470 0.140 

1371 0.380 1204 0.090 427 0.210 540 0.180 
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Table 4: Material emissivities for Case 2 [10,11]. 337 
Alumina 

 

Tantalum Stainless Steel Copper 

T (°C) ࣕ T (°C) ࣕ T (°C) ࣕ T (°C) ࣕ 

-167 0.700 -212 0.185 -18 0.850 315 0.475 

121 0.750 93 0.410 65 0.820 400 0.500 

260 0.700 871 0.420 154 0.825 470 0.540 

538 0.600   204 0.835 540 0.575 

815 0.500   260 0.850 610 0.625 

1093 0.400   316 0.860 675 0.700 

1371 0.380   427 0.875 745 0.800 

The real scenario lays between the two extremes, Case 1 and Case 2. In fact, even if the 338 
initial surface state of the components is measurable, the level of oxidation changes with time 339 
and heating cycles. Several simulations were performed with different emissivity values for the 340 
materials, depending on the different oxidation levels assumed. Sensitivity analyses showed 341 
that the results were mostly sensitive to the variation of the emissivity of tantalum. Out of the 342 
tens of different combinations simulated, two additional cases to Case 1 and Case 2 are 343 
reported in this work. 344 

7.3 Case 3 and 4 345 

Section 7.2, and in particular Case 2, shows that the assumption of oxidized materials 346 
well represents the behaviour of the oven in operation. While the exact grade of oxidation of 347 
the components is uncertain, one can deduce, looking at Fig. 14, that it is lower than what 348 
assumed in Case 2. A fine-tuning of Case 2 was therefore performed in terms of emissivity of 349 
the tantalum, which resulted, out of the sensitivity study performed, the most influent parameter 350 
in the determination of the results. Two additional cases, with intermediate tantalum oxidation, 351 
Case 3 and Case 4, were run. For the new cases, a simple linear relationship between emissivity 352 
and temperature was assumed. The tantalum emissivities used in the four cases are reported in 353 
Table 5 and, for the sake of clarity, their difference is graphically shown in Fig. 15. 354 

Table 5: Tantalum emissivities for different cases simulated. 355 
Case 1 

 

Case 2 Case 3 Case 4 

T (°C) ࣕ T (°C) ࣕ T (°C) ࣕ T (°C) ࣕ 

-212 0.020 -212 0.185 -212 0.080 -212 0.150 

149 0.030 93 0.410 1204 0.200 1204 0.300 

204 0.035 871 0.420     

427 0.050       

593 0.060       

871 0.075       

1204 0.090       

 356 
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perimental ccomparison for cases 1 to 4. 
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9. Conclusions 429 

An advanced numerical study was performed with the finite-elements method to evaluate 430 
the temperature distribution in the miniature ovens installed in the Linac3 GTS-LHC ECR ion 431 
source and assess the thermal behaviour of the system, which strongly influences the 432 
operational performance of the component. The thermal radiation was determined to be the 433 
main contribution to the heat exchange between the oven parts. The numerical model was 434 
benchmarked with measurements taken in an offline test stand which reproduces the same 435 
environment and thermal system of the ion source. The numerical simulations provided good 436 
agreement with the experimental data and, analysing the results, the tantalum emissivity turned 437 
out to be the crucial parameter influencing the behaviour of the system. Since the emissivity 438 
depends on the surface state, a satisfactory numerical-experimental benchmarking was obtained 439 
assuming intermediate conditions in terms of tantalum oxidation. Proposals to improve the 440 
thermal performance of the system were discussed considering the experimental observations 441 
and numerical outcome. Numerical simulations shown that introducing the thermal conduction 442 
between bodies allows to improve the temperature distribution of the system and, consequently, 443 
the service life of the source. Finally, the results obtained allowed to pinpoint general 444 
guidelines which could be beneficial also for similar systems and technologies. First of all, it is 445 
fundamental to assess and control the surface state of the components at the beginning of their 446 
life, and evaluate the evolution of the oxidation of the equipment during operation. Moreover, 447 
the emissivity of the adopted materials has to be carefully measured as a function of the surface 448 
state and oxidation on material samples. Finally, in order to obtain a more accurate model 449 
validation and monitor the temperature gradients along the structure components, the data 450 
acquisition system in dedicated test benches should feature an increased number of measuring 451 
points. 452 
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