Control and Monitoring for a serially powered pixel demonstrator for the ATLAS Phase-II upgrade

Niklaus Lehmann on behalf of the ATLAS ITk Community

University of Wuppertal

niklaus.lehmann@cern.ch

Content

- ATLAS Phase-II Upgrade for the HL-LHC
- Serial Powering
- Outer Barrel Demonstrator
- Detector Control System (DCS)
 - Interlock and Monitoring
- Usage of the DCS
- Lessons learned and next steps

2

High Luminosity LHC

- Upgrade to High Luminosity LHC
 - 5 times higher instantaneous luminosity
 - Pile-up of >200 proton-proton interactions per bunch crossing
 - 4000fb⁻¹ integrated luminosity over 10 years
- ► ATLAS detector requires new inner tracker

Inner Tracker (ITk)

BERGISCHE UNIVERSITÄT

NUPPERTAL

4

• New full silicon inner tracker

R [mm]

- 4 double sided strips and 5 pixel layers
- Serial powering for pixels

Serial Powering

•

- Reduced number of supply lines
- No DC/DC converter needed
- Each module on different potential \rightarrow AC Coupling on data lines
- Protection against chain failure \rightarrow Redundancy and bypass

Several HV lines per chain possible

6-14 modules per chain

→ A. Luengo

Detector Control System (DCS)

DCS for ITk Pixel Demonstrator Niklaus Lehmann

Outer Barrel Demonstrator Program

- Several prototypes to test different system aspects
 - Integration of modules
 - Thermal performance
 - Full electrical system
- Different test structures built

- Full Demonstrator
 - 6 serial power chains with electrical modules
 - Inclined section:
 4 x 8 dual-modules (2 FE)
 - Barrel section:
 2 x 7 quad-modules (4 FE)
 - 120 FE-I4 chips in total

7-Module Electrical Prototype

Quad Module

- 2A current for SP chain
- 2V per module

Controlle

5

Interlock Matrix Crate

- Combinational logic with no configuration required
- Purely hardware based system
- Monitoring of sensors
- Acts on power supplies

BERGISCHE UNIVERSITÄT WUPPERTAL

Control and Monitoring path

- Independent of readout and interlock
- Monitoring of each module in the serial power chain with the PSPP
 - Reduction of sensor cables
 - Temperature and Voltage
- Bypass to deactivate modules

PSPPv3 mounted on flex

FPGA as Controller and interface to DCS Computer

19.09.2018

User Interface and Operation

- User Interface with WinCC
- Control and operation of SP chain
 - Status and history

ATLITPDEMO1:DcsC1/SCB1/Chip5.Actual.ModuleVoltage 265.03125		т	1_L3_A_XP_SC1_N	15_LV: T1_L3_A_XP	_SC1_M5_LV			-	+ ×
0 1 1 1 1 1 1 1 1 1 1 1 1 1	ATLITPDEM01:DcsC1/SC	CB1/Chip5.Actual.Mo	dule∨oltage	265.03125				Þ	<u>\$ 11</u>
	0 1 1 1 1 1 1 1 1 1 1 1 1 1	14-08-2018 15:25:00	14-08-2018 15:30:00	14-08-2018 15:35:00	14-08-2018 15:40:00	14+	08-2018 -45:00	14-08-201 15:50:00	

DCS for ITk Pixel Demonstrator Niklaus Lehmann

19.09.2018

Operation of 7-Module structure

Setup box dew point

- Monitoring of temperature and voltage on module level
 - useful for debugging and commissioning
- Overvoltage protection used
 - Tests with noisy module
- User interface allows simple control of test system
 - Data archiving, remote access, ...

DCS for ITk Pixel Demonstrator Niklaus Lehmann

12

Readout Systems

- Different readout systems used
 - pyBAR, RCE, YARR, FELIX
- → Talk G. Unel, Poster E. Buschmann, C. Dülsen
- Diagnostic path not yet integrated
- Movable radioactive source
- Readout with SP chain working
 Source scan with pyBAR

Source Scan with YARR

DCS Noise measurements

- The PSPP communicates with a slow control bus (SCB)
 - Single ended AC coupled lines
 - Constant clock at 200kHz and Manchester encoded data at 100kBit/s
- Threshold scan performed with
 - 1. busy SCB, 2. normal operation, and 3. disconnected (no SCB, reference)
- No difference observed in the three cases

Lessons learned

- Complex system with many elements
- Full qualification of system with all components necessary
 - Found bugs in PSPP \rightarrow solved in new version
 - Behavior of HV and LV supplies in a serial power chain
 - Monitoring of as many values as possible for debugging and commissioning
 - Interference of individual components leads to effects not visible in testing of single components
 - Organization and schedule of work
- Successful collaboration work

Next steps

- Finalization of full prototype
 - Mechanical integration of modules
 - Integrate all chains in DCS
- Further tests
 - Test chain with 16 modules
 - Bypass test with PSPP
 - Current source prototype
 - Readout of all 120 FE in parallel

System test setups with RD53 modules planned

Thank you for your attention

Thanks to all peoples involved in the Demonstrator program

Backup

DCS for ITk Pixel Demonstrator Niklaus Lehmann

Voltage fluctuation caused by GBT

- GBT sends random data and clock when not configured
- FE doesn't check data integrity of commands

- FE behaves like a resistor I
 plus offset voltage
 → Voltage variation
 Not wanted in SP
- Normally constant consumption → constant voltage
- Voltage drops when shunt regulator is in overload
- Overload can be caused by wrong configuration in FE-I4

System Setup Overview

DCS for ITk Pixel Demonstrator Niklaus Lehmann

BERGISCHE UNIVERSITÄT WUPPERTAL

Type 0 Services

- Flex for power and data
- Power flex includes PSPPv3
- Flexes assembled and tested
- Bent and then integrated in Longeron structure

DCS for ITk Pixel Demonstrator Niklaus Lehmann

PSPPv3 Block Diagram

DCS Controller FPGA

- DCS Controller in ARTIX FPGA
- Up to 4 SCB busses
 - Intended to use 2 Controllers with 3 busses each
- Communication over Ethernet
 - Modbus on TCP protocol implemented
- Modbus driver existing for WinCC
- Update with full controller logic in FPGA when available

Current Source Prototype

- Current source prototype
- Improved stabilization of supplied current
- Still room for improvement

DCS for ITk Pixel Demonstrator Niklaus Lehmann

BERGISCHE UNIVERSITÄT WUPPERTAL

Readout systems

- pyBAR: Bonn ATLAS Readout in Python
 - FPGA based desktop readout system
 - For module testing
- YARR: Yet Another Rapid Readout
 - FPGA PCIe based readout system
 - SW baseline for ITk
- RCE: Reconfigurable Cluster Element
 - GBT based with optical link
 - FPGA high speed readout cards for crate
 - Used in other ATLAS subdetectors, For system test
- FELIX: Front-End Link Exchange
 - GBT based with optical link
 - ATLAS wide readout interface
 - PCIe based

ATLAS Experiment

DCS for ITk Pixel Demonstrator Niklaus Lehmann

BERGISCHE UNIVERSITÄT WUPPERTAL