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We discuss the properties of the gas of primordial ‘stringy’ black holes possibly formed in the high-
curvature phase preceding the bouncing transition to the phase of standard cosmological evolution.
We show that the regime dominated by such a string-hole gas can be consistently described by
explicit solutions of the string effective action including first-order o’ corrections. We present a
phase space analysis of the stability of such solutions comparing the results obtained from different
actions and including the possibility of O(d, d)-symmetric configurations.

I. INTRODUCTION

Since the rise of string theory as an effort to unify
quantum field theory and general relativity, there has
been a number of attempts to construct very early Uni-
verse cosmological scenarios embedded in string theory.
Notable string cosmologies include string gas cosmology
[1, 2], pre-Big Bang cosmology [3-7] (see also the review
[8]), and Ekpyrotic cosmology [9, 10]. There has also
been a lot of effort put into trying to build a stringy
realization of inflationary cosmology (see, e.g., Refs. [11-
13]), though with limited success, given the difficulty of
finding (quasi-)de Sitter solutions in the string landscape
(see, e.g., Refs. [14, 15] and also [16] and [17]). Overall,
current string cosmologies have led to interesting pre-
dictions, but the theories often remain incomplete, or
conceptual issues persist. Nevertheless, studying string
cosmology might be one of the best approaches to test
the validity of string theory.

A common feature of many string cosmologies is that
they do not start with an initial Big Bang singularity. In
string gas cosmology and pre-Big Bang cosmology, it is
the T-duality of string theory that protects the models
from reaching a singularity. T-duality roughly states that
a small value of the ‘radius of the Universe’ (R) is equiv-
alent to a large value of the radius. More precisely, the
symmetry goes as R — o/ /R, where o/ ~ (2 is the string
theory dimensionful parameter related to the fundamen-
tal string length ¢s. Thus, one expects R ~ {5 to define a
minimal length scale at which point the Universe experi-
ences a curvature bounce, i.e., a transition from growing
to decreasing spacetime curvature. Details of how this is
realized dynamically remains a challenge, but there has
been recent progress in the context of string gas cosmol-
ogy [18]. In pre-Big Bang cosmology, the duality is called
the scale factor duality [19-21], and the symmetry goes as
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a — 1/a, where a is the scale factor. Again, resolving the
singularity dynamically in this context is nontrivial but
can be realized, for instance, with a nonlocal potential
[3, 22], with quantum loop corrections [23-25], or with
limiting curvature [26] (see also the reviews [6, 27, 28]),
though the latter might be unstable to cosmological per-
turbations [29]. A key difference between the T-duality of
string gas cosmology and the scale factor duality of pre-
Big Bang cosmology is that the former requires space
to be initially compact, while the latter does not need
compactification as the Universe can be infinitely large.

The approach of this paper is to consider a generic
universe before the Big Bang, so generally a contracting
universe in the Einstein frame. The goal is to describe
the state of matter and the corresponding cosmological
evolution at very high densities, when the energy scale
is of the order of the string mass, My = ¢!, from the
point of view of string theory. As the universe contracts,
one expects matter that satisfies the usual energy con-
ditions of general relativity to clump and become inho-
mogeneous. In fact, the overdensities can be such that
matter undergoes collapse and forms black holes. More
precisely, it was shown in Ref. [30] (see also Ref. [31])
with the theory of cosmological perturbations that in a
contracting universe hydrodynamical matter with small
sound speed suffers from the Jeans instability and col-
lapses into Hubble-size black holes well before a bounce
is reached. This instability in a generic contracting uni-
verse was first studied in Ref. [32], an analysis that was
extended by Ref. [33] to argue that the final state of a
contracting universe is a dense gas of black holes with a
stiff equation of state (in which the pressure equates the
energy density). In the context of string theory, it was
shown in Ref. [34] that the past-trivial string vacuum of
the tree-level low-energy effective gravidilaton action is
also generically prone to gravitational instability, leading
to the formation of black holes. All these studies thus
indicate that the state of a contracting universe at high
densities is composed of many black holes.

When the universe reaches the string scale, the black
holes are then expected to become more stringy in na-
ture. In fact, the state of a ‘black-hole gas’ is argued in
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Ref. [35] to become a ‘string-hole gas’. String holes repre-
sent marginal black holes with mass equal to Mg 2 (see
Refs. [36, 37] as well as [35, 38, 39]), where g5 is the string
coupling. This represents a correspondence curve along
which the physical properties of black holes and strings
match spectacularly well (see, e.g., Refs. [38, 40]). In
particular, the Schwarzschild radius and Hawking tem-
perature of a string hole are given by the string length
and mass, respectively. Therefore, string holes naturally
describe the state of collapsed matter at the string scale.
Correspondingly, a string-hole gas is the logical outcome
of a contracting universe in the Einstein frame at high
curvature. The challenge that is tackled in this paper is
to find a string-motivated action that can describe the
dynamics of a string-hole gas in agreement with its prop-
erties. In the string frame, Ref. [35] argued that a string-
hole gas should have vanishing pressure and be described
by a constant Hubble parameter and constant dilaton
velocity, though it was not shown explicitly how these
properties can arise from a string theory action.

The outline of this paper is as follows. We first re-
view in Sec. IT A the concept of string holes and carefully
derive in Sec. IIB the properties of a string-hole gas,
both in the Einstein frame and string frame. We then
show in Sec. ITT A that with tree-level dilaton gravity as
a low-energy effective action of string theory dynamics
that matches the properties of a string-hole gas is only
obtained in finely tuned situations. It is only when o
corrections are included that we find more appropriate
solutions. We study two different first-order o/-corrected
actions. First, we extend the work of Ref. [4] in Sec. III B
to include the contribution from matter in the dynamical
equations. Second, in Sec. III C, we study the O(d, d)-
invariant action of Ref. [41]. In Sec. IV, we perform a
phase space analysis to judge the stability of the string-
hole gas solutions for both a’-corrected actions, and we
comment on the overall evolutionary scheme. In partic-
ular, we address the issue of connectivity to the string
perturbative vacuum. We summarize the main conclu-
sions in Sec. V. The section is also devoted to a discus-
sion about the possible subsequent fate of a string-hole
gas and its role in leading to a nonsingular bouncing cos-
mology, and we mention future research directions.

Throughout this paper, we work with i = ¢ = kg =
1, and the reduced Planck mass and length are defined,
respectively, by Mng = 87G and fp) = Ml§ll, where G
(also denoted G p) is Newton’s gravitational constant in
D = d + 1 spacetime dimensions. The number of spatial
dimensions is denoted by d, and we assume that it is an
integer greater than or equal to 3 throughout.

II. STRING HOLES
A. Black hole/string correspondence

One defines a string hole (SH) as an object that has the
mass of a Schwarzschild black hole (BH) confined within

a radius given by the string length, i.e. Mgy = Mgy ~
RLL?/G and Rsy = Rpy = {5, so Mgy ~ (P=3/G. (For
areview of D-dimensional black holes, see, e.g., Ref. [42]).
Introducing the string mass given by the inverse of the
string length, My = ¢!, the string coupling g5, and the
dilaton ¢, we recall the following relation that holds in
the weak-coupling regime of the closed string sector (see,
e.g., Ref. [27]):

éPl D—2 Ms D—2 ) .
—_ = = = 1 . 1
( . ) o R=d<l. (1)

From this relation, one can say that a string hole lies
along the correspondence curve [35-39]

Mgy ~ Myg; 2 . (2)

It follows that the properties of strings and black holes
match impressively well along this correspondence curve

[38, 40]. For instance, the black hole’s Bekenstein-
Hawking temperature,
D -3
Tsu = 3
PR 4rRen (3)

and the string’s Hagedorn temperature (see, e.g.,
Ref. [43] or [44] for an introduction),
Tig = — 1 | ()
Aol
both scale as ¢! for string holes, where 27’ = ¢2. Sim-

ilarly, the black hole’s Bekenstein-Hawking entropy for a
string hole,

QD_QRD_2 fSD_Q _
="y gm0
Pl

where Qp_s is the area of a unit (D — 2)-sphere, is of the
same order as the entropy of a string,

Sstr = 4W\/&E ~ KSMSH ~ g;2 ; (6)

where we make use of Eq. (2) in the last proportionality
for a string hole.

From the above correspondence, it is natural to expect
a black hole that reaches the size of a fundamental string
to become a string hole. Furthermore, if a contracting
universe is populated with a dense gas of black holes,
then the appropriate description of the gas at the string
scale must be a string-hole gas. Hence, the main subject
of this paper is the study of a string-hole gas as the state
of matter at the string scale at the end of an Einstein-
frame contracting cosmology. The main thermodynamic
properties of a string-hole gas are derived in the next
subsection.

B. String-hole gas

Let us consider a gas composed of N string holes. Con-
sidering a dense gas, the string holes have negligible mo-
mentum, and the energy of one string hole can be ex-
pressed as Esg = Mgy ~ (1972 = E;le_¢ by use of



Egs. (1) and (2). The gas with N string holes thus has
total energy

Egs = E = NEsy ~ NOJle 0. (7)

In the same way, the entropy of one string hole is Ssg ~
952 = e %, so for a gas of N string holes, one finds

Sgas =S = NS ~ Ne % . (8)

Let the physical volume of the gas be given by Vgas =
V = fNVsy, where one string hole has volume Vgy ~
¢P=1 and where f is a function that quantifies the sepa-
ration of the string holes (e.g., f = 1 for a densely packed
string-hole gas, while f > 1 for a dilute gas). Here, we
consider a dense gas, so we take f to be of order unity
and nearly constant. Thus, N ~ V/1~P and the energy
and entropy of the string-hole gas are, respectively, given
by

E~Vi;Pe ? ~vi2g! (9)
and
S~VIiPem? L v tGTY (10)

where one uses Eq. (1) to express e? ~ G¢2~P. Accord-
ingly, the energy and entropy densities are given by

~lTPem 2G| (11)

e}
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~ Pt gt (12)
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respectively.

1. FEinstein-frame properties

At this point, there are several ways in which one can
relate the energy and entropy together. Let us consider
the Einstein frame in which the fundamental constant is
Newton’s constant, i.e., G = constant, while the string
length can vary as a function of time. From this point
of view, one can eliminate 45 from Egs. (9) and (10) and
relate the energy and entropy through the expression

EV
~ = 1
S~y = (13)

or equivalently, from Egs. (11) and (12), the densities
are related by s ~ y/p/G. We note that these equations
correspond to the entropy and entropy density equations
of a black-hole gas (see Refs. [45-47] as well as [33, 48]).
This makes sense; when viewed in the Einstein frame, the
string-hole gas is dominated by its gravitational nature,
i.e., the strings behave more like black holes, at least
thermodynamically.

We note that the entropy equation (13) has been shown
[45] to be the only formula that is manifestly invariant

under the S- and T-dualities of string theory, at the same
time as approaching the standard Bekenstein-Hawking
black-hole entropy at small densities. This entropy ex-
pression also appears in different high-energy physics
contexts (see Refs. [45-47] and references therein).

Using the thermodynamic identity 7! = (8S/0F)y,
keeping G constant since we are in the Einstein frame,
and using Eq. (11), one finds

E
T~ 7G = /pG ~ (71 (14)

and one notes that the temperature is proportional to
the Hagedorn temperature (4). Furthermore, using the
identity p = T(9S/0V)g for the pressure, and using
Eq. (14) for the temperature, one finds the equation of
state (EOS)

p=p. (15)

This matches the EOS of a black-hole gas (see Refs. [45-
47] as well as [33, 48]).

Similarly, if one considers a Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe with scale factor a
and if one requires the entropy in a comoving volume
Va~9 to be constant, then it follows from Eq. (13) that
E ~ V=1 ~ a~? and furthermore

pr~a . (16)

Consequently, from Eq. (11), this implies

4~ (Y4 T | (17)

where one uses again the fact that G is a constant in
the Einstein frame. Therefore, if one considers a string-
hole gas in a contracting universe, then the scale factor,
the string length, and the size of the string holes become
smaller as time progresses, while the string coupling, the
dilaton, the energy density, and the (Hagedorn) temper-
ature grow.

2. String-frame properties

Let us consider an alternative point of view: the string
frame in which the fundamental constant is the string
length, i.e., 5 = constant, while the gravitational con-
stant can vary as a function of time. From this point of
view, one can eliminate G from Egs. (9) and (10) and
relate the energy and entropy through the expression

S~ UE (18)
and equivalently, it follows that s ~ fsp. From T~ ! =
(0S/OF)y and keeping the string length constant, it is

straightforward to see that

T~ 07! ~ Thag (19)



which is a constant temperature. Furthermore, from p =
T(0S/0V)g, it follows that

p=0. (20)

This confirms the result of Ref. [35] and again matches
what one could have guessed: in the string frame, the
string-hole gas is dominated by its stringy nature, and
this is why the EOS is that of a string gas with equal
contribution from momentum and winding modes (see,
e.g., Ref. [27]). Also, the expression (18) matches the
leading-order behavior of the entropy of a string gas (see,
e.g., Refs. [1, 49]).

Similarly, if one requires adiabaticity (S = constant)
in a constant comoving volume in FLRW, then it follows
that the energy must be constant; hence,

pr~a?. (21)

From the standard conservation equation (more on this
in the next section), this is in agreement with an EOS
p = 0. With Eq. (11), this implies

a~GYd~ e?ld (22)

where one uses again the fact that /5 is a constant in the
string frame. Taking the time derivative of the above,
this further implies

é
d
where H = a/a is the Hubble parameter and a dot de-
notes a derivative with respect to the (string-frame) cos-
mic time ¢.

To be consistent with the fact that the size of the
string holes is constant in the string frame (Rgg = 45 =
constant), there are two possible cosmological evolution-
ary paths consistent with the constraint (23). First, it
could be that the universe is static in the string frame
(H = 0), similar to the (quasi)static Hagedorn phase of
string gas cosmology [1] (see also Refs. [2, 50] for reviews
that highlight the challenges in that context). Second,
it could be that the radius of the string holes is of the
order of the Hubble radius (Rsy ~ H ') with the string-
frame Hubble parameter being constant (H ~ ¢;!). In
that case, a dense string-hole gas coincides with having
one string hole per Hubble volume. This last avenue
was conjectured in Ref. [35] to correspond to the string
phase in pre-Big Bang cosmology, and this is what we
explore in the rest of this paper. We note that a di-
lute gas could also be possible with less than one string
hole per Hubble volume in average, but naively, in this
situation, curvature would continue to grow until the gas
becomes dense. Conversely, an ‘overdense’ gas with more
than one string hole per Hubble volume is most likely for-
bidden by entropy considerations. Indeed, a string-hole
gas as defined above exactly saturates the appropriate
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entropy bound [51-55] (see Refs. [6, 35] and additional
references therein). This is also confirmed in the Einstein
frame in which saturation occurs when the EOS is p = p
[45, 48], and this is the only safe outcome with respect to
entropy bounds in a contracting FLRW cosmology (see,
e.g., Refs. [35, 53] but also [46]). These entropic consid-
erations also reinforce a string-hole gas to be the state of
matter at high densities.

In summary, assuming expansion in the string frame,
the evolution of a string-hole gas corresponds to a con-
stant Hubble parameter equal to the string mass, while
the dilaton grows linearly with string-frame time accord-
ing to the constraint (23). We note that expansion in the
string frame is consistent with contraction in the Einstein
frame; this is shown explicitly in Appendix A. The goal
is then to find a string-theoretic effective action that can
support the evolution of a string-hole gas, i.e., an action
of which the equations of motion (EOM) have a phase of
string-hole gas evolution as a solution.

III. DYNAMICS FROM DILATON GRAVITY
A. Tree-level dilaton gravity

We first study the string-frame, tree-level, low-energy
effective string theory action (see, e.g., Refs. [6, 27])

1 — v
So=" /dd“x lgle ¢(R+g“ V.6V,
+26710(9)) (24)

where g = det(g*,) is the determinant of the metric ten-
sor, U(¢) is the potential energy of the dilaton field, and
R denotes the Ricci scalar in this section. Since we focus
on the gravidilaton sector of the effective string theory
action, we set to zero the potential contribution from
the antisymmetric field strength coming from the Neveu-
Schwarz/Neveu-Schwarz 2-form.

The above action represents the effective action for
vacuum string theory, but we want to consider the ad-
dition of matter; hence, we take the total action to be
S = Sy + Sm, where S, represents the matter action.
The energy-momentum tensor associated with Sy, is de-
fined as usual by T}, = 2|g|~"/26Sm/dg"”. The matter
action may also depend on the dilaton, so

_ 2 05w
Vgl 00

defines the dilaton (scalar) charge density.
Varying the action (24) in a homogeneous, isotropic,
and flat FLRW spacetime,

(25)

guvdatdz” = de® — a(t)25ijdxid$j ) (26)

a set of dilaton-gravity background EOM in the string
frame can be written as (see, e.g., Refs. [6, 27])



d(d —1)H? + ¢* — 2dH¢ = 20471 (e?p + U () (27)
H = Hé+dH? = (27 (e (p - %) ~Uy) (28)
26— §% + 24H$ — 2 — d(d + 1) H* = 2627 (97~ U(9) + Uy | (29)

where one assumes that the energy-momentum tensor
can be decomposed as a perfect fluid! with T#, =
diag(p, —pd*;). Combining Eqs. (27)—(29), one can de-
rive the fluid’s conservation equation, which goes as

ﬁ+dH(p+P)=%U¢- (30)

General power-law solutions to these equations are well
known (see, e.g., Refs. [3, 6, 27, 28]) but mostly for van-
ishing potential, vanishing dilaton charge, and an EOS of
the form p = wp. We want to consider a string-hole gas,
in which these assumptions may not all be met. From
Egs. (11) and (21), a string-hole gas in the string frame
has energy density

p=Cl;7 e = poa™? (31)

where C' is a dimensionless positive constant and pg is
a positive constant with dimensions of energy density.
As seen in the previous section, this implies the con-
straint equation H = ¢/d. Substituting this constraint
and Eq. (31) into the conservation equation (30), one
finds

o=2p, (32)

independent of the EOS (only assuming H # 0). There-
fore, one notices that if the dilaton charge density van-
ishes, the pressure is zero, which is the naive EOS for a
string-hole gas in the string frame as shown in the pre-
vious section. Conversely, if we expect the pressure to
vanish from thermodynamic arguments, then this tells
us that the string-hole gas matter action should have no
explicit ¢ dependence, so the dilaton charge density van-
ishes. )

Inserting the constraint H = ¢/d = constant (which
implies ¢ = H = 0) and Eq. (32) into Eq. (28) imme-
diately yields U 4 = 0. Therefore, a fixed-point solution
satisfying the constraint H = qS/ d = constant is only pos-
sible with a constant potential independent of the dila-
ton. Then, Egs. (27) and (29) further reduce to

d
—§H2 =002+ 01U, (33)
—gHQ = wCl;2 —47U (34)

1 We comment on the possible presence of viscosity as a deviation
from a perfect fluid description later in this section.

(

where we set the EOS to be of the form p = wp. For the
above equations to yield a real solution for H, the only
possibility is to have a constant negative potential,

1 (d_, C

where the positive constant H, should be of the order of
(1 to yield the solution H = H, ~ ;1. This is equiv-
alent to introducing a fine-tuned negative cosmological
constant, A ~ —O(¢; L), in the string frame?. Any other
forms of the potential U(¢) generically cannot support a
string-hole gas evolution with H = QS/ d = constant. Fur-
thermore, the potential (35), which yields the solution
H,, is only consistent with Eqgs. (33)—(34) provided the
EOS is also tuned to be

A2 H?
O )

w=-1-— (36)
which violates the null energy condition. In summary,
this avenue does not seem particularly appealing, consid-
ering it would require tuning an ad hoc negative cosmo-
logical constant and the EOS to a physically unexpected
value.

This conclusion generalizes to nonlocal potentials of

the form U(¢), where
¢=¢—1Ina? (37)

is the shifted dilaton. Indeed, we note that ¢ = (b—dH =
0 for a string-hole gas satisfying the constraint H = ¢/d.
Thus, regardless of the modifications to the EOM for
a nonlocal potential (see, e.g., Refs. [6, 27, 28] for the
exact modified EOM), ¢ has to remain constant during
a string-hole gas evolution, so any potential U(¢$) would
simply be a constant, i.e., a cosmological constant.

In summary, it appears that one cannot support the
evolution of a string-hole gas with tree-level dilaton grav-
ity, no matter the form of the potential (unless it is a
fine-tuned negative cosmological constant). Therefore,
one should explore the possibility of higher-order correc-
tions.

2 We note, however, that such a negative constant value of U
may naturally appear in the tree-level string effective action, but
this would require a noncritical number of dimensions (see, e.g.,
Ref. [27]).



B. Action with o’ corrections

The low-energy effective action Sy introduced in the
previous subsection is only compatible with the confor-
mal invariance of quantized strings on a curved back-
ground to zeroth order in o/ ~ ¢2. When going to first
order, conformal invariance allows new higher-derivative
terms such that the effective action contains terms that
scale as the square of the spacetime curvature and so on.
As long as curvature is small, e.g., /2R < 1, then the
perturbative expansion is dominated by the zeroth-order
action. However, when the curvature reaches the string
scale, which is the case when H ~ ¢!, then higher-order
terms are necessary. In fact, when the perturbative ex-
pansion breaks down on substring scales, working with
an effective action is no longer viable, and one would
have to work with a proper conformal field theory that
could account for o’ corrections nonperturbatively (see,
e.g., Ref. [56]). This approach, however, is beyond the
scope of this study, and in what follows, we assume that
a first-order o/-corrected effective action is a sufficient
approximation when H ~ ;1.

Demanding general covariance and gauge invariance
of the string effective action, one can write down many
perfectly valid actions that are compatible with the con-
dition of conformal invariance to first order in o’. Those
actions are related by simple field redefinitions of the
metric and dilaton; hence, it is ambiguous which action
to choose (see, e.g., Refs. [6, 27] and references therein).
For instance, the simplest consistent action to first order
in o is S =5y + S, with

kO/ — VK
Ser = gpd—1 /dd+1x Vlgle ¢Rul/r€>\Ru A ) (38)
S

J

1 . .
p= ieg—de—¢ (¢>2 +d(d—1)H? —2dH¢ —

3ka’

where R, is the Riemann tensor and either £ = 1
for bosonic strings or k = 1/2 for heterotic superstrings.
However, working with the above action (i.e. with the
square of the Riemann tensor) in a cosmological con-
text is rather cumbersome, because the field equations
contain, in general, higher than second derivatives of
the metric tensor. Such a formal complication can be
avoided, however, by performing an appropriate field re-
definition [4] and considering the action with

ko!
S = e

/dd“m lgle™? (G = (V,.oV*9)?)

(39)
where G = RMMAR’“”‘)‘ — 4R, R* + R? is the Gauss-
Bonnet invariant, R,, = g’*)‘R,{MV is the Ricci tensor,
and R = g"” R, is the Ricci scalar. This was first con-
sidered by Gasperini, Maggiore & Veneziano [4] (GMV
hereafter; also studied in Refs. [23, 24, 57] and discussed
in [6, 27]). Therefore, for a first attempt, we examine the
action S = Sp+ Sy + Sm with S, given by Eq. (39), and
for the rest of this paper, we assume that the dilaton has
no potential; i.e., we set U(¢) = 0 in Sp.

GMYV already showed that this action admits no ho-

mogeneous and isotropic fixed-point solution with $=0,
i.e. with H = ¢/d = constant for a string-hole gas. How-
ever, GMV only considered the vacuum action with no
matter, i.e. S = Sy + Sy. To find dynamics for the
string-hole gas, one must include the matter action Sy,
as before. The EOM that follow from varying the corre-
sponding action in a FLRW background are

F)

/
o=—L"de9 (—2¢> +2dH + ¢* + d(d +1)H? — 2dH¢ + kTa]-'U(H, b, H, ¢)) ,

_ L

P=5

where we define

‘F,D(H7¢) = ClH4+C3H3¢.)7Q.54 )

(1de=9 <2d(d —1)H +2d¢ — d*(d — 1)H? + 2d(d — 1)H¢ — d¢? + kTO/]-"p(H, o, H, 45)) . (40)

Fo(H,d,H,p) = 3csHH? —126¢> + (c1 + des)H* — 4dHG® + 36*
Fy(H, ¢, H,¢) = 12¢, HH? + 3c3¢H? + 6cs HH + 3dey H* — 2(2¢1 — des) H3 ¢ — 3cs H2 2 + dop* (41)

and

cs=—(d-1)(d-2) . (42)

(

These equations generalize the EOM that were already
derived, e.g., in Refs. [4, 6, 27|, to include matter; the
vacuum limit (p = p = o = 0) reduces to the EOM
in Refs. [4, 6, 27]. We note that the above three EOM
are not all independent. Indeed, one can verify that the



continuity equation
. 1.
p+dH(p+p) =509 (43)

relates the three EOM.

We now seek to find solutions to the above EOM that
could describe a string-hole gas. To do so, one sets
p=Cl;3te=? 5 =2p and H = ¢/d. Furthermore, we
relate the pressure and energy density through an EOS
of the form p = wp. We expect the EOS to be p = 0
for a string-hole gas in the string frame from the thermo-
dynamic arguments of Sec. II B2, so the EOS parameter
w is set to zero later on. Nevertheless, the more crucial
property for a string-hole gas is that peg = p — 0/2 = 0;
thus, we perform a slightly more general analysis in what
follows with a generic EOS parameter w. One then
looks for fixed-point solutions with y; = H = constant,
Y2 = ¢ = constant, and ¢ = H = 0. The constraint
H = ¢/d implies y» = dy;, and the three differential
EOM reduce to three algebraic equations for y,

/ 2A
—dy? (1 _ 3’“‘491> =200,
ka'y?A
o (1 ) = .
/ 2A
—d2y? (1 - kajf) = 2dwC(I? (44)

where we define A = 2d? + d — 2. We note that A is
strictly positive (in fact, A > 19 for d > 3). The sec-
ond and third equations above are completely equivalent,
which is due to the fact that the three EOM are not in-
dependent. Therefore, one only has to solve the first and
second equations for y;. Requiring real solutions for y,
one can show that these two equations yield the same
nontrivial solutions,

2 | 2r(1 - w)
=H=4+—/——2 45
1 Es ]f(l — 3’[1)) ) ( )
if and only if w < 1/3 and

8rd(1 — w)
C=——"—-——"+ 46
k(1 —3w)2A (46)
where we use 2ra/ = (2 to simplify the expressions.

The solution for ¢ immediately follows by multiplying
Eq. (45) by d.

A couple of comments are in order. One first notes
that |H| ~ ¢;! as expected. Second, one notices that
the restrictions w < 1/3 and Eq. (46) impose C' > 0,
which means that no real and consistent solution (ex-
cept the trivial solution H = ¢ = 0) would have followed
from setting C' = 0. This reproduces what was stated
by GMV, ie. that there exists no consistent nontrivial

solution satisfying the constraint ¢ = 0 (which is equiv-
alent to H = ¢/d = constant) in vacuum. In summary,

the GMV «o’-corrected action that includes a string-hole
gas matter action does allow for consistent solutions with
the properties of a string-hole gas for any w < 1/3 and
provided p has the appropriate amplitude, with C' given
in Eq. (46).

The unique physical solution for the EOS p =0 (w =

0) is then
_o_2 [
Hidiﬁs kA (47)

taking the positive solution for expansion in the string
frame. For instance, in d = 3 dimensions and for k = 1,
the solution is H = 2¢;14/27/19. In the case w = 0, the
physical solution is valid only if C' = 8wd/(kA), which
might appear as a fine-tuning problem. However, we re-
call that C' is only an arbitrary constant amplitude for
the energy density [c.f. Eq. (31)], and it is certainly tun-
able depending on the total energy density of the universe
and the other matter contents prior to the string-hole gas
phase. In sum, the o’-corrected action considered in this
subsection has background EOM that have a unique and
natural solution [Eq. (47)] corresponding to a string-hole
gas evolution.

C. O(d,d)-invariant o/-corrected action

As we mentioned in the previous subsection, there are
several consistent o'-corrected actions related through
field redefinitions. In this subsection, we consider a dif-
ferent choice for S/, specifically

ko’ _
o [ 4 Vigle (6 - (9,070

—4GHY Vb + 2(%¢V“¢>)D¢>) ;o (48)

So =

where G, = R, — Rg,.,/2 is the Einstein tensor and
0 = g"”V,V, is the d’Alembertian. This action shares
the Gauss-Bonnet and (V¢)? terms with the action (39),
but the second in line in Eq. (48) is new; nevertheless,
this action is still free from higher derivatives in the cos-
mological field equations. The actions (39) and (48) are
related by a field redefinition (see Ref. [27]). This action
was first introduced by Meissner [41] (see also Ref. [58])
who showed that it is invariant under the O(d,d) sym-
metry to first order in the o’ expansion.

The O(d, d) symmetry plays a key role in string theory
and even more in the context of pre-Big Bang cosmol-
ogy (see Refs. [6, 27] and references therein). Indeed, the
cosmological scale factor duality a — 1/a [19] is actually
extendable to a continuous symmetry, the transformation
group of which is O(d, d). It was found that the action of
the group transforms known solutions to the effective cos-
mological string theory into new solutions [21, 59]. The
symmetry was shown to be present for the low-energy
action to zeroth order in o/ with the presence of matter
[60], but it was also argued to apply to all orders in o/



[19, 21]. The action that has the symmetry to first order
in o is the one found by Meissner [41], and it is the one
introduced above that we consider below.

Since Sy is already invariant under O(d, d) transforma-
tions [6, 27, 60], it is natural to consider the o/-corrected
action (48) that bares the same symmetry. Let us com-
ment on the nature of the symmetry for a string-hole gas.
Considering an isotropic and homogeneous cosmology for
simplicity, the EOM of the full action S = Sy + Sa/ + Sm
are O(d, d) invariant under the transformations a — 1/a,
¢ — ¢, p— p, b — —p, and & — &, where the shifted
dilaton is given by Eq. (37) and the other shifted vari-
ables are p = pa?, p = pa?, and 6 = oa?. Thus,
for a string-hole gas with p = o¢/2 = 0, we expect
p=Cl;7 e = py, p = 0, and & = 0, and readily,
we notice the O(d,d) invariance. Let us mention that
in general, though, deviations from a perfect fluid de-
scription could change this conclusion. Indeed, it was
shown in Ref. [60] that a particular nontrivial action of
the O(d,d) group can transform a perfect fluid with a
diagonal stress tensor into a fluid with nondiagonal ele-
ments in its stress tensor. More precisely, a perfect fluid
with EOS p = wp transforms into a pressureless fluid (so
p — 0) with shear viscosity given by n = —wp/(2H).
However, for a string-hole gas, the perfect fluid EOS is

J

L(t) = edﬁﬂb{% [ —2df — d(d +1)5% + 2dF§ + ﬂ

ko'
4N3

[— 3c3F 3 + (d + 1)d(d — 1)(d — 2)B* + 3c3 55 — 2d(d —

precisely expected to be that of a pressureless fluid to
start with (w = 0), so the transformation turns out to
be trivial, and no shear viscosity appears. Therefore,
a string-hole gas with vanishing pressure in the string
frame has a valid and consistent perfect fluid description
from the point of view of O(d, d) invariance of its action.
If one allows w # 0 to describe a string-hole gas (but
still with peg = p — /2 = 0), then a more refined analy-
sis should drop the perfect fluid description and include
the possible effects of viscosity, as was first considered in
Ref. [46]. We keep the exploration of this possibility for
future work.

Let us now derive the EOM. We consider the FLRW
metric

gudatdz” = N(t)2dt? — 2P, dztda? (49)

where, in this subsection, we introduce the lapse function
N(t) [which we later set to N(t) = 1]. Also, the scale fac-
tor is written as a(t) = e?®, so the Hubble parameter be-
comes H(t) = (t). This is only a matter of convenience
to compute the EOM below. The action S = Sy + Su
thus reduces to the form S = —(¢s/2) [ dt V,L(t), where
V= 674 th d%z is the volume of the spatial hypersur-
face of constant time ¥; (at time t) in string units, and
the Lagrangian density is

1625 + 2667 +246%5 — 276 — 6]},
(50)

where F = N /N. After integration by parts, the action reduces to

/dtVt df- ¢ [ ¢? —d(d— ),82+2d5¢}

i

U+ b —2d(d— )PP+ 2a86- 30} 61)

Let us add to the above action a matter action Sy, described by an energy density p, pressure p, and dilaton charge
density o as before. Then, varying the total action with respect to N, ¢, and § [and afterward setting N(¢) = 1],
one finds three EOM, which are the same as the set of equations (40), except the functions F,, F,, and F, that are

replaced by

Fo(H,¢) = e H* + c3H?¢ — 2d(d — 1) H?¢? + %qu%B - %454 , (52)
Fo(H,$,H,$) = 3csHH? — 8d(d — 1) HH¢ + 4dH > — 4d(d — 1) H? + 8dpH ) — 4¢¢* + (¢1 + des) H?
—4d?(d — 1)H?¢ + 2d(3d — 1) H?¢$? — 4dH$® + ¢* | (53)
Fyp(H, ¢, H,¢) = 12, HH? + 63 HH G — 4d(d — 1) H? + 3c3dH? — 8d(d — 1)$H + 4dp* + 3de, H
—2(2¢1 — de3)H3¢ — (3¢3 4 2d*(d — 1)) H?$? + 4d(d — 1)H@® — dé* . (54)

Note that we reexpressed the Hubble parameter 6 with
H.
As in the previous subsection, we consider a string-

(

¢, 0=2p, p=wp,and H =
=H=

hole gas with p = Cf; % e
¢/d. One looks for fixed-point solutions with y;



constant, ys = (b = constant (so H = gzﬁ =0), and yo =
dy;. The three EOM then reduce to two independent
algebraic equations:

3(d — 2)ka/ 20
2 2 .
(DY
d—2)ka’ 2wC
dy% (1 — (4)yf> = _ET . (56)

Those two equations share the same nontrivial solutions,

2 27 (1 — w)
u ‘. \/k:(d w0
if and only if the amplitude parameter satisfies
1_
o 8md w (58)

k(d—2) (1 - 3uw)?

and as long as w < 1/3. These expressions are not the
same as Eqs. (45) and (46), but they only differ by nu-
merical factors that depend on the number of spatial di-
mensions. Essentially, A = 2d? + d — 2 in Eqgs. (45) and
(46) is replaced by d — 2 in Egs. (57) and (58). The so-
lutions are certainly of the same order, and as before (as
expected), |H| ~ ¢;1. The physical solution with w = 0
reduces to

10} 2 27

B k(d—2)’ (59)
and it requires C' = 8nd/(k(d — 2)). As before, we argue
that C' is an arbitrary constant, so this does not rep-
resent fine-tuning. Therefore, the O(d, d)-invariant «'-
corrected action of this subsection yields a unique and
natural solution, which corresponds to a string-hole gas
evolution but which is different from the solution of the
previous subsection. The differences are due to the fact
that the physical effects of the higher-curvature correc-
tions are not invariant, in general, under field redefini-
tions truncated to first order in o’. Such an ambiguity
affects all models truncated to any given finite order of
the o/ expansion and can be resolved, in principle, only
by considering exact conformal models, which automati-
cally include the corrections to all orders. In the following
section, restricting our discussion to the first order in o/,

J

2]6‘63 303
™

CY(H, ) =— 1{16H(dﬂ—¢)+ e

D
3k204 {ﬁ
472 L16d

(d+3)H*

)

(d+1)H6+3C1H4¢2+3(2d—3)H3¢3_9C3H2¢4+¢6:|} ’

we perform a phase space analysis of the two previous
solutions in order to find the most appropriate one to
describe — in this approximation — the main properties
of the string-hole gas and of its dynamical evolution.

IV. PHASE SPACE ANALYSIS

At this point, two distinct solutions that correspond
to a string-hole gas evolution given two different o'-
corrected actions have been found: the solutions (47)
and (59) follow from GMV’s action and Meissner’s ac-
tion, respectively. In the perspective of a greater evolu-
tionary scheme, we now seek to determine the stability
of those fixed points in the whole phase space of cosmo-
logical solutions. For instance, the nontrivial fixed points
found by GMV [4] in vacuum were shown to be attrac-
tors in phase space and smoothly connected to the string
perturbative vacuum (i.e., to the asymptotic state with
vanishing string coupling and flat spacetime, g — 0 and
H — 0). Conversely, the attractor fixed points from
Meissner’s action in vacuum are disconnected from the
low-energy trivial fixed point (see Refs. [6, 27]). We an-
alyze the phase space with the addition of matter and in
particular for a string-hole gas in the subsequent subsec-
tions.

A. Stability of the fixed point with GMV’s action

Recall the GMV EOM given by Eq. (40). In general,
for an EOS of the form p = wp and assuming that o is
also proportional to p, one can see that there are only
three independent variables in configuration space: H,
#, and e®p. One can choose to use the Hamiltonian
constraint [the first equation of the set (40)] to elimi-
nate e?p from the other two evolution equations. This
amounts to projecting the configuration space onto a two-
dimensional vector space, where the vectors are of the
form y4 = (H,$), A € {1,2}. One can thus reexpress
the set (40) as two independent differential equations,
written in vector form as g4 = (H,¢) = C*, where C
and C? are functions of H and ¢ only [i.e. C4 = CA(y?)].
For example, when p = ¢/2 = 0 (w = 0), their expres-
sions are

SPH—2(d— 1)(2d — 1) H?$? +2(2d — 3) HY - ¢'>4]

4d (60)
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D T L4 2d
3k*lics 5 4 372 23 14 15
— WH[?)QH +6c1H* )+ 3csH ¢ + 4d(d — 3)H*¢° — 3(4d — 3)Hp™ + 6¢ ] , (61)
[
where and upon calculating the partial derivatives and evaluat-
ing at the fixed point (Hy, ¢, ), one finds
3]6[303 2 . 3 19
D=16+ =" ((d+3)H>+2H — ——¢
™ d—2 D C1’ Pl \/ 2m
3k202 3 . . ut (") T T 7.0 4 g3 —9)
2y (ZP’H3 —3(d—3)Hd* + 6(;53) . LQY k(2d +d* 4 d=2)
T
2
(62) D, C2 P 2mA 69
uC (4. o\ k(1 +a2)’ (69)
For w = 0, we recall that the string-hole gas fixed point
is given by Eq. (47), and here we denote it as where
JUPSR WL o Pl =4d(d+2)(2d — 1A,
vo = (Ho o) = [ zx (L) - (63) P? = 8d* — 8d® — 18d* + 20d , (70)

One can check that C'(H,,¢,) = C3*(H.,d.) = 0
(CA(yP) = 0), s0o H, = ¢, = 0 (g = 0) as expected.

The Jacobian matrix for the system of differential
equations is then

JAB - 8ACB ) (64)

and its eigenvalues are
1
ry = 2{8}[01 + 8(;562 + [(81{01 + (9¢')C2)2
4(0gCro,C% — 0,C oy C? v
—4(0nC1 0,7 — 0,C oY) | T (69)

After calculating the partial derivatives and evaluating
at the fixed point (Hy, ¢4), one finds

2 [2wdA
r4 = iZ K (66)

Q =16d° — 32d* — 46d* + 47d* + 36d —20 . (67)

where

Since ry > 0 > r_, it follows that the fixed point (H,, (b*)
is a saddle point, and therefore, it is generally not stable
and certainly not an attractor in phase space.

If one worries only about perturbations around the
fixed point that preserve the condition H = ¢/d, one may
check the directional derivative of C4 with respect to the
unit vector parallel to the line corresponding to H = ¢/d.
The unit vector is expressed as u? = (1 + d?)~/2(1,d).
The expression for the directional derivative is then

OCA + do,C4

D,CA =uPopct = ,
B V14 d?

(68)

Noting that P4 > 0 and Q > 0 for any d > 3, it follows
that
DucA{(Hm*)<0, A=1,2, (71)
and thus, the fixed point (H,, qﬁ*) is stable in the direc-
tion corresponding to the line H = gb/d This implies
that if one considers perturbations about the string-hole
gas saddle point that respect the condition H = ¢/d
the string-hole gas evolution is stable. However, for gen-
eral perturbations about the saddle point, the trajecto-
ries might flow away from the string-hole gas evolution.
Further insight can be gained numerically. For ex-
ample, setting £ = 1, ¢ = 1, and d = 3, one
finds two real positive nontrivial fixed points that sat-
isfy CA(H,$) = 0: the string-hole gas fixed point with
yd = (24/27/19,64/27/19) and another fixed point ap-
proximately located at (1.546,3.520). The phase space
trajectories are plotted in Fig. 1. The string-hole gas
fixed point is depicted by the red dot, and visual inspec-
tion confirms that it is a saddle point (see the left plot
of Fig. 1 for a close-up). The other fixed point, depicted
by the black dot, is the attractor of standard (vacuum)
pre-Big Bang cosmology® (see, e.g., Refs. [4, 6, 27]). We
note that this is ezactly the fixed point found by GMV,
and it appears in the phase space no matter what the
EOS parameter w is since e?p — 0 at that point.
The dashed gray curves in Fig. 1 depict the line ¢ =
dH. When projecting the trajectories onto that line, it is
clear from the left plot that the flow is attracted toward

3 Our numerical values differ from those of Refs. [4, 6, 27] simply
due to the choice of units. We work with &k = ¢35 = 1, while
Refs. [4, 6, 27] set ka’ = 1, so basically the numbers differ by a
factor of v/2.
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FIG. 1. Phase space trajectories for GMV’s action in a FLRW background with matter satisfying the continuity equation and
p=o0/2=0. Setting k =1, £ = 1, and d = 3, H and ¢ are computed from Eqs. (60) and (61), respectively. The red dot
denotes the string-hole gas saddle point (63), and the black dot denotes the attractor fixed point of vacuum pre-Big Bang
cosmology. The dashed gray curve depicts the line qi) = dH, along which the saddle point is stable. The left and right plots
show different ranges in H and ¢. The left plot is a blowup of the right plot near the two nontrivial fixed points. In the
right plot, the green line shows an example of trajectory that starts near the trivial fixed point at H = ¢ = 0 and goes to the

attractor fixed point.

the string-hole gas saddle point in its vicinity. This is
in agreement with the earlier (analytical) result that the
string-hole gas saddle point is stable in the direction of
the constraint H = ¢/d.

In the right plot of Fig. 1, we show the phase space in-
cluding the trivial fixed point (H, ¢) = (0,0) correspond-
ing to the string perturbative vacuum, and the green
curve shows one trajectory passing infinitesimally close to
that fixed point. We notice that it smoothly reaches the
attractor fixed point (black dot), confirming the result of
GMV* [4]. This also implies, however, that it is not pos-
sible for a trajectory to start near the string perturbative
vacuum and evolve toward the string-hole gas fixed point
smoothly. In the context of pre-Big Bang cosmology, the
goal would be to start at the string perturbative vacuum
and evolve toward a string-hole gas as the high-energy
state of the universe before a bounce. Although GMV’s
a’-corrected action allows for a unique string-hole gas so-
lution, it does not seem to be sufficient to describe the

4 This time, we note that this curve may not be ezactly the so-
lution found by GMV. However, it is close enough since e®p is
subdominant at all times along the green trajectory. In particu-
lar, it shares its qualitative behavior: the perturbative evolution
starts in the region ¢ = ¢ —dH > 0 (above the dashed gray line),
crosses the gray line (where ¢ = 0), and ends at the attractor

fixed point in the region ¢ < 0 (below the gray line).

evolution of the universe thoroughly from the perturba-
tive vacuum to the stringy state at high energies. This is
not surprising because black-/string-hole formation is not
a continuous process; rather, the holes collapse instanta-
neously from the vacuum fluctuations that have grown in
amplitude. Therefore, asking for continuous trajectories
connecting the vacuum to the string-hole gas fixed point
is ill posed.

Nevertheless, there are arguments to support that a
string-hole gas should be connected to the vacuum in
some way. In a broader cosmological context, one could
imagine starting asymptotically far in the past in a con-
tracting universe (in the Einstein frame) which has ‘nor-
mal’ matter (e.g., a mix of dust [w = 0] and radiation
[w=1/d]). As shown in Ref. [30] (see also Refs. [31-33]),
starting with vacuum initial conditions, the pressureless
matter would collapse into a black-hole gas, and as stated
in the present work, it would evolve into a string-hole gas
with EOS p = p. From that point of view, a string-hole
gas with EOS w = 1 is naturally an attractor®, and the

5 Matter with the EOS w = 1 is generally (marginally) an attrac-
tor in a contracting universe, whether it is a black-/string-hole
gas, anisotropies, or a massless scalar field. We use the word
‘marginal’ since any other component with EOS w > 1, e.g., an
Ekpyrotic field with negative exponential potential, would over-
turn this conclusion and become the new attractor (see, e.g.,
Ref. [61]).



same conclusion would necessarily follow in the string
frame, although the physical intuition might be less ob-
vious in the string frame. In that context, one cannot de-
scribe the entire cosmological evolution with the stringy
actions studied in this paper; they would be applicable
only at the time of formation of the string holes. In that
case, when the condition H = ¢/d is met, as we showed
above, the string-hole gas evolution is an attractor in the
string frame.

B. Stability of the fixed point with Meissner’s
action

We now perform the same stability analysis as in
the previous subsection, except starting with the EOM
derived in Sec. IIIC for Meissner’s action and setting
p =0/2=0. Here the fixed point is [recall Eq. (59)]

2
m(l,d) . (72)

yf = (H*v(b*) = éz
S
As before, we put the set of differential equations in the
form g4 = (H,¢) = C*(H, ¢) and compute the eigenval-
ues of the corresponding Jacobian matrix J4B = 0,CP
evaluated at the fixed point y2. As a result, we find that
there is one positive and one negative eigenvalue indi-
cating that the fixed point is again a saddle point. This
is confirmed by visual inspection of Fig. 2 (see the left
plot for a close-up; Fig. 2 is generated the same way as
Fig. 1, in particular, setting k = 1, {s = 1, and d = 3).
Contrary to the saddle point of the previous subsection,
though, the saddle point here turns out to be unstable in
the direction of the string-hole gas constraint H = ¢/d.
Indeed, evaluating D,C* at y2 yields two positive val-
ues. This is confirmed by looking at the direction of the
flow along the dashed gray line in the left plot of Fig. 2,
which depicts the line ¢ = dH; the trajectories are mov-
ing away from the fixed point (in red).

Additional fixed points are found by numerically solv-
ing C4(H, ¢) = 0, and they are shown by the yellow and
black dots in Fig. 2. The black dot is an attractor and
was also found in the context of vacuum pre-Big Bang
cosmology (see Ref. [27]). However, in this case, one no-
tices that the attractor fixed point is disconnected from
the trivial fixed point at the origin (see the right plot of
Fig. 2), which confirms the results of Refs. [27, 62]. Fur-
thermore, we find that the string-hole gas saddle point is
also not connected to the string perturbative vacuum as
it was the case with GMV’s action. In fact, trajectories
that start near the origin tend to grow rapidly in ¢, while
H remains small, and go nowhere near the fixed points.

In summary, the string-hole gas fixed point, which is a
solution of Meissner’s action, shares several characteris-
tics with the solution of GMV’s action: both are saddle
points, disconnected from the string perturbative vac-
uum. However, the trajectories in the vicinity of the
saddle points behave very differently for both actions.
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Indeed, the latter (GMV) is stable in the direction of
the string-hole gas constraint H = (ﬁ/d, but the former
(Meissner) is unstable. Therefore, Meissner’s action ap-
pears very unlikely to be the physical action that can
describe the evolution of a string-hole gas and of the uni-
verse at high energies.

Let us end by noting that, although the analysis out-
lined in this section focuses on the case w = 0, we found
that the qualitative results about the characterization
and (in)stability of the fixed points are the same for any
value of w € (—1,1/3). We do not include the quantita-
tive details for a generic value of w for the sake simplicity
and readability.

V. CONCLUSIONS AND DISCUSSION

In this paper, we revisited the proposal that the stringy
high-energy state of the Universe is a string-hole gas,
i.e., a gas of black holes lying on the string-/black-hole
correspondence curve. By analyzing its thermodynamic
properties, we confirmed that a string-hole gas has the
same EOS and entropy equation in the Einstein frame as
a black-hole gas with p = p and S ~ /EV/G. In the
string frame, we found that a string-hole gas has vanish-
ing pressure, and we derived the corresponding evolution
to be given by H = ¢/d ~ £;1. Our goal was then to find
such a fixed point solution from the dynamical cosmologi-
cal EOM of a string theory motivated action. We studied
the gravidilaton sector of the low-energy effective action
of string theory and found that, to zeroth order in the
o’ expansion, there is no string-hole gas solution without
adding a tuned negative cosmological constant. How-
ever, going to first order in o', we studied two different
actions, and both yielded a natural string-hole gas solu-
tion. Stability of those fixed point solutions was assessed
by performing a phase space analysis. We found that
both solutions are saddle points in (H, ¢) phase space,
but the solution coming from the action of GMV [4] tends
to be better behaved since it is stable in the direction of
the string-hole gas constraint H = ¢/d. The solution
coming from the action of Meissner [41] is unstable in
the same direction and thus less appealing, even though
it possesses the desired O(d,d) symmetry of string cos-
mology to first order in . In summary, our results show
that string theory consistently supports a string-hole gas
phase of cosmological evolution, at least at the level of a
gravidilaton effective action and minimally to first order
in the o/ expansion. Our stability analysis also indicates
that a particular choice of action (GMV’s action) is more
appropriate at the level of our approximation.

We would like to point out some of the limitations
of the current analysis. As mentioned before, the scale
at which a string-hole gas forms and evolves is right at
the limit of perturbative string theory in terms of the o’
expansion. Qur analysis showed that one needs an action
that is valid at least to first order in o/, but one could
seek for a yet higher-order action (e.g., to second order in
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FIG. 2. Phase space trajectories for Meissner’s action in a FLRW background with matter satisfying the continuity equation
and p = 0/2 = 0 (and setting k = 1, s = 1, and d = 3). The red dot denotes the string-hole gas saddle point (72), the yellow
dot denotes the repeller fixed point, and the black dot denotes the attractor (see the text). The two plots show different ranges
in H and qb The left plot is a blowup of the right plot near the string-hole gas fixed point. Also in the left plot, the dashed
gray curve depicts the curve ¢ = dH, along which the saddle point is unstable this time.

o) or an exact conformal model (valid to all orders in o)
for a more robust implementation. Beforehand, it might
be more straightforward to try to find a description of a
string-hole gas such that its corresponding matter action
has first-order o’ corrections. Indeed, if first-order o’
corrections are included in the gravity sector, they may as
well be first-order o corrections at the level of the matter
action. For example, higher energy-momentum tensor
corrections in the matter sector have been considered in
Ref. [63] for Einstein gravity, but this has never been
studied in the context of a string theory effective action
or for any other theory beyond Einstein gravity. We note
that such a possibility might also open the window to
obtaining a nonsingular curvature bounce following the
string-hole gas phase.

Another limitation comes from the fact that the cur-
rent analysis was only performed within effective field
theories of string theory and did not use perhaps the full
‘strength’ of string theory. As future work, one could
try to construct the proper matter action for string holes
from first principles rather than using a thermodynamic
approach. At the level of general relativity, there has
been recent progress in describing a black-hole lattice
in cosmology (see, in particular, Ref. [64] in a nonsin-
gular bouncing cosmological background as well as, e.g.,
Ref. [65] and references therein), which may be viewed as
an approximation of a black-hole gas. Similar ideas with
the addition of appropriate stringy ingredients could be
used to develop a nonperturbative action for a string-hole
gas.

Let us also mention the fact that black holes in string
theory may not be best described by the semiclassical
picture used in this paper. The singularity at the center
of black holes may be resolved in full string theory, and
even the concept of a black-hole horizon may need to
be revised. For instance, a stringy black hole might be
better described by a ‘fuzzball’ (see, e.g., Ref. [66] and
references therein). In that context, a black-hole gas may
be realized as a set of intersecting brane states [45], which
is related to the concept of fractional brane gas (see, e.g.,
Ref. [67] and references therein).

Within the context of a string-hole gas as studied in
this paper, we plan to extend the present work to deter-
mine what is the cosmological evolution subsequent to
the string-hole gas phase and what the cosmological ob-
servable predictions intrinsic to the resulting very early
Universe scenario are. First, the goal is to determine how
a string-hole gas phase can be connected to standard
Big Bang cosmology starting with radiation-dominated
expansion. A string-hole gas phase is not expected to
be stable for an infinitely long period of time. The gas
will ultimately (Hawking) evaporate into radiation [35],
a nonadiabatic process of entropy production that can be
viewed as quantum particle creation in curved spacetime.
Given that the string-hole gas is already saturating the
appropriate entropy bound, the entropy release from the
evaporation of the string holes cannot occur if the space-
time curvature remains constant or grows to a higher
energy scale. Instead, the decay of the string holes must
coincide with a (nonsingular) curvature bounce; in par-



ticular, the string- and Einstein-frames Hubble radii have
to start growing. This would naturally coincide with the
beginning of the expanding radiation-dominated phase of
standard Big Bang cosmology.

Finding dynamics for the process of nonsingular cur-
vature bounce shall be one of the key issues in follow-up
work. Even though the actions studied in this paper con-
tained higher-curvature corrections, they did not allow
for nonsingular transitions from the string-hole gas phase
to radiation expansion. Since the process of string-hole
gas decay into radiation is quantum mechanical in nature,
one may expect to find the desired dynamics from an ac-
tion including quantum loop corrections. This is physi-
cally equivalent to taking into account the ‘backreaction’
from particle production due to quantum fluctuations in
curved spacetime [6]. It is precisely this backreaction
that might effectively violate the null energy condition,
hence avoiding a Big Crunch singularity after the string-
hole gas phase. Nonsingular bouncing backgrounds have
already been found with string-theoretic loop corrections
(see, e.g., Refs. [6, 23-25, 27] and references therein), but
never in the context of a string-hole gas phase. Loop cor-
rections might not be the only way, though, to obtain a
nonsingular bounce in string theory. Another possibility,
for instance, would be to consider an S-brane, a stringy
object that can prevent the Universe from reaching a Big
Crunch (see Ref. [68], also studied in Ref. [69]).

Finally, once a full very early Universe scenario has
been developed at the background level, we shall be able
to study the generation and evolution of the cosmolog-
ical perturbations and determine what the observable
predictions are. If fluctuations are seeded in the string-
hole gas phase, one may find interesting results. On one
hand, the quantum perturbations for a gas of black holes
at the string scale may deviate considerably from the
usual Bunch-Davies initial state. On the other hand, one
shall not underestimate the effect of thermal fluctuations
from the gas of string holes. Indeed, since the radius of
the string holes equates the Hubble radius in the string
frame, one may obtain holographic scaling of the specific
heat capacity (Cy ~ R?) on Hubble scales, similar to
what is obtained from a string gas [2, 49]. It shall be in-
teresting to see what spectra of primordial perturbations
result and how they differ from the results of string gas
cosmology (see, e.g., Refs. [2, 49] and references therein),
pre-Big Bang cosmology (see, e.g., Refs. [6-8, 27] and ref-
erences therein), and other very early Universe scenarios.
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Appendix A: String-hole gas evolution in the
Einstein frame

~ Given a consistent string-hole gas solution with H =
¢/d = constant in the string frame, one can derive the
corresponding solution in the Einstein frame by using the
relation (see, e.g., Refs. [6, 27])

2 O\ s
H=|m—- -2 .
( d—1)°

(A1)

In this Appendix, a tilde denotes an Einstein-frame quan-

tity, while no tilde means the string frame. The con-
straint H = ¢/d thus implies
~ H

H=_ $/(d-1) A2

Aoty (42)

so one notices that for a constant-Hubble expanding
phase in the string frame (H > 0), the Einstein-frame
Hubble parameter must be negative (H < 0) and there-
fore contracting.

Let us recall that the Einstein-frame time is related to
the string-frame time via (see, e.g., Ref. [27])

di = e=¢/(d=Dqy (A3)
Since gb = dH = constant, where one now views H =
H, ~ (7! as one of the constant fixed-point solutions
found, e.g., in Secs. III B or III C, one can write

¢(t) = dH(t - to) (A4)

for t < tg. The integration constant % is set such that
#(to) = 0, at which point gy = e?/? = 1, corresponding
to strong coupling. Thus, the evolution in the perturba-
tive regime (where g; < 1) translates to t < tg. Upon
integration of Eq. (A3), one can then show that

fg = -1 (emoran 1) |

T (A5)

for t < ty, where g in the Einstein-frame time equivalent
to the string-frame time ¢y. Let us choose g = —(d —
1)/(dH) < 0, so then

d—1 1

¢/d-1) _ 2"~ - A
¢ dH (—1) (A6)
Therefore, Eq. (A2) becomes
= 1
Ht)=—-——=, A7
=75 (A7

which confirms H < 0 since < fo < 0. The above
expression further implies

a(f) ~ (=) (A8)



when integrating H = dn a/dt. Combining with
Eq. (A6), this implies @ ~ e~%/(4d=1) which is in agree-
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ment with how one expects the Einstein-frame scale fac-
tor to behave for a string-hole gas [recall Eq. (17)].
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