BOOST Poster Session - Paris, 16-20th July, 2018

# Alternative Inputs and Grooming on Large-R Jets in Run 2 of the ATLAS Detector

High-energy pp collisions at the LHC may produce massive hadronicallydecaying particles (e.g. W/Z/H bosons or top quarks) with large transverse momenta ( $p_T$ ), where the resulting decay products can be reconstructed as a single large-R jet.

W Large-R jet reconstruction in ATLAS was last optimised during Run 1 of the LHC. Since then, a wealth of theoretical developments in constituent subtraction and jet grooming have been proposed and investigated for large-R jets in Run 2.

#### 1. Inputs and Grooming Scan 3

- The impact of different groomers on R = 1.0 jets in ATLAS has been evaluated.
- Scanned 464 different jet definitions, using Soft Drop, trimming, pruning, the modified mass drop tagger (mMDT), jet reclustering, and constituent-subtraction techniques.
- Several metrics considered when investigating the performance of boosted W jets and quark/gluon-initiated light jets:
  - The pile-up stability of the jet mass scale, resolution and D<sub>2</sub> observable.

b

• The gluon/light-quark jet rejection capability of a 68% W jet efficiency mass-window cut.







#### 2. First Results (2017)

· Constituent subtraction + SoftKiller (CS+SK) pile-up mitigation noted to increase the pile-up stability of large-R jets without degrading tagging performance, regardless of the grooming procedure.

|                  | 0 01               |                                          |
|------------------|--------------------|------------------------------------------|
| Constituent Type | Grooming Algorithm | Parameter Choice                         |
| CS+SK            | Soft Drop          | $z_{ m cut} = 0.1, \ \beta = 0$          |
| CS+SK            | Pruning            | $z_{\rm cut} = 0.15, R_{\rm cut} = 0.25$ |
| CS+SK            | Trimming           | $R_{\rm sub} = 0.1, \ f_{\rm cut} = 9\%$ |
| LCTopo           | Trimming           | $R_{\rm sub} = 0.2, \ f_{\rm cut} = 5\%$ |
| EMTopo           | Reclustering       | $R(small-R) = 0.4, f_{cut} = 5\%$        |



### 3. Latest Results ! (2018)

25

30

N<sub>PV</sub>

LCTopo

CS
 CS+SK

- Recursive and Bottom-up Soft Drop (RSD/BUSD) now added to the grooming scan.
- RSD/BUSD offer reduction in W jet mass pile-up dependence with respect to 'vanilla' Soft Drop.
- However, pile-up reduction from RSD/BUSD is negligible after constituent-level pileup suppression.



- Simple mass cut +  $\tau_{32}$  top-tagger made for the different CS+SK Soft **Drop jets**, applied to a sample enriched in top jets.
- Substantial improvement in background rejection from the  $\beta$  = 1.0 Soft Drop jets.
- Suggests we can improve upon our current grooming definition, with largest gains at high  $p_{T}$ .
- Similar improvements seen for *W* tagging at low  $p_{T}$  (similar performance to trimming at high  $p_{\rm T}$ ).



€ <sub>Sig</sub>



Michael Nelson (University of Oxford), on behalf of the Jet Inputs and Grooming Team and ATLAS Collaboration

# ATL-PHYS-PUB-2017-020