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We present a family of consistent quantum field theories of monodromy quintessence in strong coupling,
which can serve as benchmarks in modeling dark energy different from the cosmological constant. These
theories have discrete gauge symmetries that can protect them from quantum field theory and quantum
gravity corrections, both perturbative and nonperturbative. The strong coupling effects, at scales ≳mm−1,
flatten the potential and activate operators with higher powers of derivatives. The predicted equation of state
is close to, but not exactly equal to, −1. Thus testing the model may be within reach of the (near) future
programs to explore the nature of dark energy.
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Roughly three quarters of the invisible world is dark
energy, whose dynamics is not understood. It may be a
cosmological constant, but explaining how it would be as
small as needed is a well-known challenge: one needs some
reason to ignore or almost completely cancel the large
quantum vacuum energy contributions [1–3]. The alter-
natives that treat dark energy as a dynamical field, also
known as quintessence, are even more challenging: one
needs both the magnitude and the slope of the potential to
be exquisitely small compared to the Planck scale or any
fundamental scales of the standard model.
That being said, quintessence is a simple concept, and

future observations of the expansion history of the Universe
will probe a large and interesting range of parameters. It is
important to better understand whether a microscopic
theory of quintessence can be made consistent and, to
any degree possible, natural (in the sense of Wilson and
’t Hooft). In this letter we discuss these issues and provide a
class of models that are natural and appear to consistently
couple to quantum gravity. Regardless of whether quintes-
sence is realized in nature, a discussion of these issues and
their resolution turns out to be interesting in its own right.
For a canonically normalized quintessence field with

scalar potential VðϕÞ, such that Vð0Þ ¼ 0, we must satisfy
two constraints. First, the vacuum energy at the present

epoch must be consistent with the present Hubble constant,
that is, V ∼ ð2 × 10−30mplÞ4, where mpl is the reduced
Planck mass. Secondly, the equation of state parameter w,
defined by p ¼ wρ, is related to the slope of the potential by

w ¼ ϵ=3 − 1

ϵ=3þ 1
; ϵ ¼ m2

pl

2

�
V 0ðϕÞ
VðϕÞ

�
2

: ð1Þ

Observations indicate1 that −1 ≤ w ≤ −0.95 [5], or
0 ≤ ϵ ≤ 0.075. During the observable epoch, the quintes-
sence field should traverse a distance δϕ ∼ _ϕH−1

0 ∼
ffiffiffi
ϵ

p
mpl,

where we have used the slow-roll equations.
Writing down models that satisfy these constraints

requires some care when we take quantum gravity into
account. The simplest potentials, including ones that are
technically natural from a QFT point of view, require that ϕ
is at a distance Δϕ > mPl from the minimum [6–12]. When
coupled to quantum gravity, fairly basic arguments render
such field ranges inaccessible to a single, simple effective
field theory (EFT). This is a slightly different problem than
the one large-field inflation faces [13]: in single field
models the inflaton must traverse super-Planckian distances
during inflation, and physics over those field ranges would
be imprinted in the observable sky. In contrast, as we see,
the quintessence scalar need only traverse sub- to near-
Planckian distances during the observable epoch. Whether
it really needs to change by a Planckian scale is a question
of model-building and eschatology.
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1We ignore the more exotic situation w < −1 which can
nevertheless be realized without pathologies [4]. This may be
too conservative, but there is no pressing reason to take w < −1 at
present.
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More seriously, as with large-field inflation, the potential
slopes required by quintessence must be small.2 One can try
to protect this with a global shift symmetry, but such
symmetries are violated by quantum gravity effects (see
[14] for a modern viewpoint). Planck-suppressed operators
with orderOð1Þ coefficients then spoil the required proper-
ties of the theory. An infinite number of fine tunings are
required to maintain the small slope and intercept of the
quintessence potential, absent a mechanism which sup-
presses even quantum gravity effects.
Finally, in addition to the small slope of the potential,

dynamical dark energy models should, in principle, explain
the near-cancellation of the vacuum energy, such that the
present dark energy is dominated by the excess potential
energy of the quintessence field. For effective field theories
extending to the minimum of the potential, one must solve
the cosmological constant problem. We do not attempt to
address this notorious problem, but merely assume the
vacuum energy is somehow canceled at the minimum of the
quintessence potential.3 We must still find a sensible EFT
with a sufficiently small slope over the required field range.
This is difficult enough, and many commonly encountered
quintessence proposals fail at this step. Let us review some
simple examples before turning to our own proposal.
Exponential potentials V ∼ expðαϕ=mPlÞ are popular,

but to the extent they are meaningful, they are problematic
as EFTs coupled to quantum gravity. The constraints on
quintessence require α <

ffiffiffi
2

p
, and the sub-Planckian bound

on the field range that ϕ has traversed until now, having
started to roll in the early Universe, means that observations
will probe at most a few low orders in a Taylor expansion in
ϕ − ϕ� around some point ϕ�. All of the coefficients must
be small, and a principle is required to ensure this
(supersymmetry, broken above a TeV, is of limited help).
If there is some mechanism enforcing the exponential form,
the future evolution would be sensitive to it over super-
Planckian distances. If the exponential potential were to
dominate the evolution of the Universe forever, it would
yield eternal quintessence that would have cosmological
event horizons; it is not clear such spacetimes make sense
in a theory of quantum gravity [15,16]. On the other hand,
absent some additional mechanism, we expect the four-
dimensional EFT to change over super-Planckian field
ranges. This implies that an exponential potential is not
obviously meaningful, essentially reducing any worry over
eternal quintessence. A change to the potential could well

terminate the slow roll needed to yield cosmological
horizons.
A simple quadratic potential V ¼ 1

2
m2ϕ2 is technically

natural, having an approximate shift symmetry for small m
that protects the theory from large perturbative corrections
due to fields including the graviton running in loops (see
[17] for a review). However, the criteria above require that
the value of ϕ during the observable epoch is ϕobs ≳ 3mPl.
As with the exponential potential, absent some protection
mechanism, such a field is expected to be governed by an
EFT at ϕ ¼ ϕobs that is quite different from the theory at
ϕ ¼ 0. But if this is true, we cannot expect the quadratic
potential to be meaningful on its own. In practice, the best
one can say is that V ¼ M4 þ gδϕp…, where M is a
constant, δϕ the deviation of the potential around some
expansion point, and p some power that is generically
expected to be unity. We are still left searching for a good
explanation for the small size of M, g. Note that quadratic
potentials eventually always fall out of slow roll, and so
avoid the conceptual problems of eternal, exponential
inflation.
Periodic pseudoscalars, also known as axions, are

protected from perturbative corrections by the topology
of field space, and in the dilute instanton gas approxima-
tion, the instantons can easily be kept small implying that
nonperturbative corrections are also small [6–9]. However,
for a cosine potential V ∼ μ4 cosðϕ=fÞ, we must have
f > 2mpl, Δϕ > 1.65mpl to get w in the right range
[18,19] (with ϕ < πfϕ in order to avoid the quintessence
tachyonic instability near the maximum of the cosine [20]).
Super-Planckian axion decay constants, however, render
the theory unstable to nonperturbative quantum gravity
effects that spoil the simple cosine potential by allowing for
arbitrary harmonics with coefficients of the same order as
the fundamental cosine potential.
A solution is hinted at by the fact that the dilute instanton

gas approximation does not always work [it appears to fail
even for SUð3Þ Yang-Mills [21]]. The generic alternative,
first noted in large-N theories [22], is a multivalued
potential, termed “axion monodromy” in the string theory
literature [23]. In such theories, the effective field range can
be super-Planckian. The EFT of these models [10,17,24]
demonstrates that a combination of continuous and discrete
gauge symmetries protects the shift symmetry from large
quantum gravity effects, even when the effective scalar
appears to have super-Planckian expectation values. In this
work, we adapt the general framework of [17,24] to
describe theories of quintessence.
We start with the description of the axion as a dual

massive 4-form,4

2Onewould in principle have toworry about direct couplings of
such light fields to matter because they could mediate long range
forces [10].

3An amusing possibility is that the small vacuum energy is
explained by the existence of a corner of the string landscape
consistent with the existence of physicists who can argue about it.
A more amusing possibility is that the string landscape contains
both quintessence and metastable de Sitter space.

4We eliminate terms with ∂kF factors using the equations of
motion.
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LðfullÞ ¼ −
1

48
F2
μνλσ −

m2

12
ðAμνλ − hμνλÞ2 −

X
n>2

a0n
M2n−4 F̃

n

−
X
n>1

a00n
M4n−4m

2nðAμνλ − hμνλÞ2n −
X

k≥1;l≥1

a000k;l
M4kþ2l−4m

2kðAμνλ − hμνλÞ2kF̃l: ð2Þ

Here A is the gauge field 3-form, F ¼ dA, F̃ ¼ �F, b is a
two-form Stückelberg gauge field with field strength
h ¼ db, and m plays the role of both the gauge field mass
and the Stueckelberg mode coupling. By gauge symmetry
and the Goldstone boson equivalence theorem (GBET), any
power of A not covered by a derivative must be multiplied
by the same power of m [17,24]. Finally, M is the cutoff of
the low energy EFT. This theory has a compactUð1Þ gauge
symmetry for the 4-form and a discrete phase space gauge
symmetry for the dual scalar. As a result the EFT (2) is a
full description of the dynamics below the cutoff M,
satisfying technical naturalness and protected from quan-
tum gravity corrections even when m ≪ M. The dimen-
sionless coefficients a0n; a00n; a000k;l are fixed by naturalness: up
to combinatorial factors and the loop factors they are5 Oð1Þ
unless they are prohibited by symmetries, in order to
guarantee that the action (2) is complete.
Next, we dualize the longitudinal mode of F to a

compact scalar: F ∼ ϵðmϕþQÞ; mA ∼ ϵ∂ϕ [17,24]. Here
Q ¼ Nq, where q is the fundamental 4-form charge,
N ∈ Z, and ϕ≡ ϕþ f where mf ¼ q [17]. Defining the
effective quintessence field φ ¼ ϕþQ=m, and using naïve
dimensional analysis (NDA) [25] to provide proper numeri-
cal normalizations of the dimensionless coefficients in (2),
which leads to substitutions φ → 4πφ=M, inclusion of the
factorials in the coefficients of (2) to reproduce the
symmetry factors of the S-matrix elements derived from
(2), and normalizing of the action by M4=ð4πÞ2 following
[25], we obtain after straightforward manipulation

L ¼ Kðφ; XÞ − VeffðφÞ

¼ M4

16π2
K
�
4πmφ

M2
;
16π2X
M4

�
−

M4

16π2
Veff

�
4πmφ

M2

�
; ð3Þ

where X ≡ −ð∂μφÞ2, and K;Veff stand for asymptotic
series, well approximated by finitely many terms, whose
coefficients in the expansion areOð1Þwhen the appropriate
combinatorial factors are included, unless they vanish
because of symmetries. This effective action is the canoni-
cal dual of the action for the form fields (2), just as in [24].
This theory has a weakly broken shift symmetry
ϕ → ϕþ ϵ, which for f < mpl is protected from further
breaking by pertubative and nonperturbative effects as well
as quantum gravity effects such as wormholes or

intermediate black hole states, due to the gauge symmetries
of the theory.
Just as the similar action applied to inflation was an

example of the k-inflation models of [26], the action (3)
with a mass m ∼H0 ∼ 10−33 eV and a strong coupling
cutoff M ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H0mPl

p
∼ 10−3 eV is a generalization of the

phenomenological theory of k-essence first proposed in
[27]. Clearly, some dynamics in the hidden sector is
required to generate such small scales, and many examples
have been produced over time [6–10,12]. From our point of
view, it is more important that once such small scales are
generated, they are automatically protected by symmetries
of the theory from dangerous corrections. This and the
choice of the scales for m, M then ensures that the models
(3) pass the experimental bounds on dark energy [18,19]
while evading any additional constraints from quantum
field theoretic or quantum gravity corrections.
In (3), while M denotes the UV cutoff above which we

must include additional degrees of freedom,Ms ¼ M=
ffiffiffiffiffiffi
4π

p
is a strong coupling scale controlling the expansion of L in
powers of X;mφ. This action thus has two regimes [24]: a
weakly coupled regime mφ=M2

s ; X=M4
s ≪ 1, and strongly

coupled regimes for which either M2
s ≪ mφ ≪ M2

or M4
s ≪ X ≪ M4 (or both). Note that the regime where

the derivative terms are large but the field vacuum ex-
pectation value (vev) is small reduces to the conventional
k-essence [27].
In the weakly coupled regime the kinetic term

is effectively canonical, and the potential effectively
quadratic,

L ¼ 1

2
ð∂φÞ2 − 1

2
m2φ2: ð4Þ

As noted above, in this regime the constraints −1 < w <
−0.95 demand φ > 3mpl compared to the minimum of the
potential. For f < mpl this involves some number of
windings of φ, or alternatively a number of quanta of F.
While monodromy protects this regime from direct quan-
tum corrections such as wormholes or black hole inter-
mediate states, it has been argued that in any UV
completion the backreaction of light fields, or the inevitable
appearance of new light fields, will alter the effective theory
as the effective scalar φ traverses a Planck distance [28–31].
We remain agnostic about these arguments. As we see,
there is a natural cutoff in the strong coupling region of the
theory, which may be compatible with the above5Up to factors that are logarithmic in momenta.
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arguments. But it is not clear whether they are relevant for
the moderate distances traversed in the case of quintes-
sence, or whether they would apply to the weak coupling
regime—explicit string constructions on which these argu-
ments are based are hard to construct, for reasons outlined
in [32].
The next step is to study the different regimes of strong

coupling. We first focus on the case that X ≪ M4
s ,

M2
s < mφ < M2 ¼ 4πM2

s , which is self-consistent [24].
In this regime, the potential can flatten considerably in the
strong coupling regime, consistent with string [23] and
field-theoretic [33] constructions. Note that the field space
in our effective theory does have a cutoff at φ ¼ M2=m, at
which point UV degrees of freedom are expected to become
important. However, as we see, there is ample room for
quintessence to occur (just as there is room for inflation to
occur in [24]).
If the observable epoch occurs in the strong coupling

regime, we can have a situation in which the weak coupling
regime at the origin of field space is governed by a larger
mass than above, and so the desired vacuum energy is
reached at a smaller value of φ, near which the potential
flattens enough to satisfy the bounds on ϵ=w. Let us
consider a particular example to make our point. Start with

L ¼ k

�
mφ

M2
s

�
ð∂φÞ2 −M4

sVeff

�
mφ

M2
s

�
: ð5Þ

In this single field, two-derivative example, we can find a
new scalar χ that is canonically normalized,

L ¼ ð∂χÞ2 −M4
s V̄eff

�
mχ

M2
s

�
: ð6Þ

Suppose the potential is (motivated by the extreme flat-
tening case discussed by [33])

V̄ðxÞ ¼ 1 −
1

1þ x2
: ð7Þ

The value of m is fixed by the location in field space where
the observable epoch lies, and the vacuum energy and
choice of w there. If we adjust the parameters of the model
to push our observable Universe closer to the unitarity
bound φ ¼ M2=m, we increase the value of m and reduce
the distance in Planck units of φ today from φ ¼ 0. At the
boundary, we find φ ¼ 0.1mpl. Note that monodromy (or
some other mechanism) is still required to suppress
operators of the form φp=mp−4

pl : if these had Oð1Þ coef-
ficients in the full EFT defined about φ ¼ 0, they would
spoil the desired slow-roll properties needed for quintes-
sence. At any rate, here we have a model for which the full
evolution of the Universe can be governed by a single
effective field theory ranging over sub-Planckian field

ranges, with a quintessence potential that eventually falls
out of slow roll.
Retention of the higher derivative terms, giving a form of

k-essence [27], can further help maintain the slow-roll
regime. For specificity, consider a simple example with
K ¼ ZX þ Z̃X2=M4

s ; we offer this not as a realistic model
but as an indication of how higher derivatives might
operate. In strong coupling X ≫ M4

s and Veff ≫ M4
s (we

return to the un-normalized potential Veff for the conven-
ience of comparing to observations), and so the leading
order slow-roll equations are

3m2
PlH

2 ¼ Veff ; 3H _φ Z̃ X ¼ −8π2M2
smV 0

eff : ð8Þ

When the potential is not too flat, if the derivative terms are
turned on they remain in control for a few e-folds at least,
and may dominate over the quadratic derivative terms
all the way to the boundary of strong coupling, while
driving cosmic acceleration. Indeed, manipulating6 (8) we
can derive

1þ w ≃
8π2

9Z̃

�
V 0
eff

Veff

�
2 m2m2

Pl

M4
s

M4
s

X
; ð9Þ

where the right-hand side can be very small when7

X=M4
s ≫ 1 even when V 0

eff ≲ Veff and mmPl ≲M2
s , imply-

ing that w ≃ −1. As the field rolls the potential diminishes
to Veff ≃M4

s . If the weak coupling potential is not too
shallow, with mmPl ∼M2

s ,
8 this violates the slow-roll

conditions and ends cosmic acceleration. Since this stage
is short, the nonlinearities induced by higher derivatives at
the large scales of the Universe do not affect the back-
ground significantly [34] and the theory remains consistent
with observations. However, higher derivatives affect the
growth of quintessence perturbations, resulting in a speed
of sound smaller than unity. Notice from Eq. (9) that the
larger the higher derivative operators, the closer the
equation of state parameter is to w ¼ −1. On the other
hand the speed of sound gets smaller. Hence, in principle,
the perturbations could differentiate between strongly
coupled quintessence and a cosmological constant. This
is very interesting observationally, and constraints will be
put in the near future [35].
Note that in our discussion, the scales m andM are quite

low. When we substitute the numerical scales of the dark
energy and the Hubble parameter, Veff ≃ 10−12 eV4 and
H0 ≃ 10−33 eV, we find that the cutoff is

6Using 3m2
PlH

2 ¼ ρ and _ρ ¼ −3Hð1þ wÞρ.
7Note that in the strong coupling regime, X=M4

s can be as large
as 16π2 ≃ 158.

8At weak coupling this is the boundary of slow roll: at strong
coupling, flattening and higher derivative terms can maintain
slow roll even at this boundary.
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M ≃
ffiffiffiffiffiffi
4π

p
V1=4
eff ≃ 3 × 10−3 eV; ð10Þ

and so the quintessence mass is, when m ∼M2
s=mPl∼

M2=4πmPl,

m≳H0 ≃ 10−33 eV: ð11Þ
At the scales M ≳mm−1 there must be new physics in the
dark sector that affects quintessence dynamics. It is
intriguing to imagine that if this new physics is gravita-
tionally coupled as we would expect, it could even generate
corrections to gravity at submillimeter distances.
Recently it has been argued that (metastable) de Sitter

vacua do not exist in string theory [36], and that string
theory cosmologies with dynamical scalar fields only admit
positive potentials while the fields are rolling, such that

mPl∂φV

V
> c ∼Oð1Þ: ð12Þ

Much follow-up work has appeared since, with some
examples given in [37]. This is a very strong constraint,
and is not without criticism [38]. We have nothing to say
about this condition, beyond noting that the phenomeno-
logical upper bound of w ¼ −0.95 on the equation of state
gives c ∼

ffiffiffiffiffi
2ϵ

p
∼ 0.4. Any further limits, or a measurement

yielding w much closer to −1, put serious pressure on this
proposal. For other recent works on quintessence vs “the
swampland,” see, e.g., [39–42].
To summarize, we have shown that the EFT of flux

monodromy in strong coupling can naturally accommodate
quintessence that easily meets the current observational
limits on dark energy. The quintessence dynamics is stable
under quantum corrections, since the unbroken gauge
symmetries of the dual massive 4-form formulations serve
as a protection mechanism. Having the gauge symmetries,
both continuous and discrete is the key, since otherwise the
corrections from quantum gravity could spoil the mecha-
nism. Moreover, an additional serendipitous circumstance
comes from the fact that the dynamics of quintessence only
requires almost-Planckian field displacements, rather
than super-Planckian ones. This may provide additional

assistance with a search for a UV realization of our
proposal. Finally, we stress that for the dynamics which
we presented here it is crucial that m≳ 10−33 EV and
M ≃ 10−3 eV, Eqs. (11) and (10)—thusm ≪ M ≪ MPl. At
this point we have to assume this to match the observations.
Such a hierarchy of scales, however, is protected by the
gauge symmetries even from the dangers of quantum
gravity. But to show that it really exists we do need a full
UV completion, within which this hierarchy would be
calculated, as opposed to being postulated.
This situation is completely analogous to the theory of

superconductors. Assuming a gap in the superconductor
spectrum, one can write an effective theory of massive
QED that gives a perfect description of any low Tc
superconductor. However to calculate the photon mass,
one needs a microscopic description—the BCS theory—
which UV completes the phenomenology based on the
massive QED. In the case of superconductivity, of course,
the difficulties with finding the microscopic theory never
stood in the way of the Londons’ EFTof superconductivity
since, after all, superconducting materials were found in
nature. In contrast, we do not yet have the advantage of
having an experimental confirmation of quintessence. At
this point, however, a general proof that quintessence is
impossible is just as absent, and therefore it remains
perfectly plausible that there do exist string compactifica-
tions that yield our model, however elusive they may seem
presently.
Thus we believe that our model yields an attractive class

of theories that provides very useful benchmarks for future
exploration of the nature of dark energy, giving a parameter
space for the dark energy observables, in particular, the
equation of state w, that ultimately may be consistent with
quantum field theory and quantum gravity.
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