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Identifying the relevant dependencies of the neural network
response on characteristics of the input space

Stefan Wunsch · Raphael Friese · Roger Wolf · Günter Quast

Abstract The relation between the input and output

spaces of neural networks (NNs) is investigated to iden-

tify those characteristics of the input space that have

a large influence on the output for a given task. For

this purpose, the NN function is decomposed into a

Taylor expansion in each element of the input space.

The Taylor coefficients contain information about the

sensitivity of the NN response to the inputs. A metric

is introduced that allows for the identification of the

characteristics that mostly determine the performance

of the NN in solving a given task. Finally, the capability

of this metric to analyze the performance of the NN is

evaluated based on a task common to data analyses in

high-energy particle physics experiments.

1 Introduction

A neural network (NN) is a multi-parameter system,

which, depending on its architecture, can consist of sev-

eral thousands of weight and bias parameters, subject

to one or more non-linear activation functions. Each of

these adjustable parameters obtains its concrete value

and meaning by minimization during the training pro-

cess. Thus the same NN can be applied to several con-

crete tasks, which are only defined at the training step.
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In applications in high-energy particle physics, which

are supposed to distinguish a signal from one or more

backgrounds, the training sample is obtained either from

simulation or from an independent dataset without over-

lap with the sample of interest, to which the NN is ap-

plied. Usually the NN output itself is then subject to

a detailed likelihood based hypothesis test, to infer the

presence and yield of the signal [1,2,3,4,5]. The likeli-

hood may include information on the shape of a vari-

able that is supposed to discriminate signal from back-

ground. This shape could (while it does not have to) be

e.g. the output of an NN. Apart from one or more pa-

rameters of interest the hypothesis test may comprise

several hundreds of nuisance parameters, steering the

response of the test statistic on a corresponding set of

uncertainties. The nuisance parameters can be corre-

lated or uncorrelated with the shape of the discrimi-

nating variable and (directly or indirectly) depend on

the response of the NN output on its input variables.

These kinds of analyses connect the observation of

a measurement to a hypothesized truth. For NN ap-

plications they pose the intrinsic problem that, beyond

statistical fluctuations, congruency between the train-

ing sample and the sample of interest may not be given.

Deviations need to be identified and quantified within

the uncertainty model of the hypothesis test. They may

occur not only in the description of single input vari-

ables to the NN, but also in correlations across input

variables, even if the marginal distributions of the in-

dividual input variables are reproduced. An NN can be

sensitive to correlations across input variables; in fact

this sensitivity is the main reason for potential perfor-

mance gains, with respect to other approaches, like e.g.

profile likelihoods. To make sure that this performance

gain is not feigned, in addition to the marginal distri-

butions, all correlations across input variables need to

be carefully checked, and their influence on the test
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statistic identified and eventually mapped into the un-

certainty model of the hypothesis test. The complexity

of this methodology motivates the interest, not only in

keeping the number of inputs to the NN at a manage-

able level, but above all in identifying those character-

istics of the input space to the NN with the largest

influence on the NN output. The definition of the un-

certainty model of the hypothesis test can then be con-

centrated on these most influential characteristics.

This approach sets the scope of this study to not

more than a few tenth, up to a few hundred, partially

highly correlated input variables in the context of par-

ticle physics experiments, or comparable applications.

It differs from the approaches of weak supervision [6,7,

8,9] and pivoting with adversaries [10] that have been

discussed in the literature. Weak supervision tries to

circumvent the problem that we are describing by re-

placing an originally ground-truth labeled training by

a training based on unlabeled training data. The corre-

sponding samples can be obtained from the data them-

selves. They do not depend on a simulation and may

be chosen to be unbiased. This approach is well justi-

fied in classification tasks, that are based just on the

characteristics of the predefined training data. In the

analyses that we are discussing the classification is tied

to the hypothesized truth. Replacing the ground-truth

labeled training by unlabeled input data does not solve

the problem that we are discussing. Our discussion is

also beyond the scope of pivoting with adversaries, for

which the mismodellings to address have to be known

beforehand. Our discussion sets in at an earlier stage,

which is the most complete identification of all uncer-

tainties that can be of relevance for the physics anal-

ysis. After the most influential features of the input

space have been identified the method of pivoting with

adversaries could be applied to mitigate potential mis-

modellings. A related approach to extract information

about the characteristics of the input space is to flatten

the distributions of sub-spaces so that possible discrim-

inating features vanish [11,12]. From the performance

degradation after retraining the NN on the modified

inputs, information about the discriminating power of

the respective sub-space can be obtained. However, this

approach does not allow to evaluate the dependencies of

the response of an unique NN function on the character-

istics of the input space, since each retrained function

may have learned different features.

So far, the questions we are raising have been ad-

dressed by methods that have been proposed to relate

the output of NNs with certain regions of input pixels in

the context of image classification [13,14]. These meth-

ods only use first-order derivatives to the NN function

to back propagate the output layer by layer. What we

propose is a Taylor expansion of the full NN function up

to an arbitrary order, which allows to connect the input

space directly to the NN output. While with this study

we will demonstrate the application of the Taylor ex-

pansion only up to second order, we explicitly propose

a generalization towards higher-order derivatives in the

Taylor expansion to capture relations across variables,

which usually play a more important role in data anal-

yses in high-energy particle physics experiments.

Due to the high-performance computation of deriva-

tives in modern software frameworks used for the im-

plementation of NNs [15,16,17], this expansion can be

obtained at each point of the input space, even if this

space is of high dimension. In this way, the sensitivity

of the NN response to the input space can be analyzed

by the gradient of the NN function. For practical rea-

sons we stop the expansion at second order. To facilitate

the following interpretation, we define a feature to be a

characteristic of a single element or a pair-wise relation

between two elements of the input space. The first class

of features relates to the coefficients of the expansion to

first order (first-order feature); the second class to the

coefficients of the second order expansion (second-order

feature). First-order features capture the influence of

single input elements on the NN output throughout the

input space; second-order features the influence of pair-

wise or auto-correlations among the input elements. It

is obvious that depending on the given task a certain

feature can have large influence on the output of the NN

in a certain region of the input space, while it is less im-

portant in others. We propose the arithmetic mean of

the absolute value of the corresponding Taylor coeffi-

cient, computed from the input space defined by the

task to be solved,

〈ti〉 ≡
1

N

N∑
k=1

∣∣ti({xj}|k)
∣∣ i ∈ P({xj}) (1)

as a metric for the influence of a given feature of the

input space on the output, where the sum runs over

the whole testing sample of size N , ti corresponds to

the coefficients of the Taylor expansion, {xj}|k to the

set of variables spanning the input space, evaluated for

element k of the testing sample, and i is an element

of the powerset of {xj}. It should be noted that the

〈ti〉 characterize the input space (as covered by the test

data) and the sensitivity of the NN to it, after training,

as a whole.

In section 2 we illustrate this choice with the help

of four simple tasks emphasizing certain single features

of the input space or their combination. In section 3 we

point out that, when evaluated at each step of the min-

imization during the training process, the 〈ti〉 can be

utilized to illustrate and monitor the training process
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and learning strategies adopted by the NN. In section 4

we show the application of the 〈ti〉 to a more realistic

task common to data analyses in high-energy particle

physics experiments. Such tasks usually have the follow-

ing attributes, which are of relevance for the following

discussion:

– they consist of not more than several tens of impor-

tant input parameters, which leads to a moderate

dimensionality of the posed problem;

– they may rely on relations between elements more

than they rely on single elements of the input space;

– they usually pose problems, where a signal and back-

ground class cannot be separated based on single or

few input variables, but only from the combination

of several input variables;

– they require a good understanding of the NN per-

formance to turn the output into a reliable measure-

ment.

2 Analysis of features of the input space for

simple tasks

In the following we illustrate the relation of the 〈ti〉 to

certain features of the input space.

The applied NN corresponds to a fully connected

feed-forward model with a single hidden layer consist-

ing of 100 nodes. As activation functions a hyperbolic

tangent is chosen for the hidden layer and a sigmoid for

the output layer. A preprocessing of the inputs is per-

formed following the (x − µ)/σ rule with the mean µ

and the standard deviation σ derived independently for

each input variable. The free parameters of the NN are

fitted to the training data using the cross-entropy loss

and the Adam optimizer algorithm [18]. The full train-

ing dataset with 105 elements is split into two equal

halves. One half is used for the calculation of the gra-

dients used by the optimizer. The other half is used as

independent validation dataset. The training is stopped

if the loss did not improve on the validation dataset for

three times in a row (early stopping). The independent

test dataset used to calculate the 〈ti〉 consists of 105

elements. We use the software packages Keras [19] and

TensorFlow [15] for the implementation of the NN and

the calculation of the derivatives.

For simplicity we choose binary classification tasks

with two inputs, x1 and x2. For the signal and back-

ground classes we sample Gaussian distributions with

parameters, as summarized in Table 1. From the Taylor

series we obtain two metrics 〈tx1
〉 and 〈tx2

〉 indicating

the influence of the marginal distributions of x1 and

x2, and three metrics 〈tx1,x1〉, 〈tx1,x2〉, and 〈tx2,x2〉 in-

dicating the influence of the relation between x1 and

x2, and the two auto-correlations. In the upper row of

Fig. 1 the distribution of the (red) signal and (blue)

background classes in the input space are shown, where

darker colors indicate a higher sample density. In the

lower row of Fig. 1 the values obtained for the 〈ti〉 after

the training are shown for each corresponding task.

For the task shown in Fig. 1a the signal and back-

ground classes are shifted against each other. In both

classes x1 and x2 are uncorrelated and of equal spread.

The classification task becomes most difficult along the

off-diagonal axis between the two classes through the

origin and simpler if both, x1 and x2, take large or

small values at the same time. Correspondingly, 〈tx1
〉

and 〈tx2
〉 obtain large values indicating the separation

power that is already caused by the marginal distribu-

tions of x1 and x2. The orientation of the two classes

with respect to each other also results in a non-negligible

contribution of 〈tx1,x2
〉 to the NN response.

For the task shown in Fig. 1b the signal and back-

ground classes are both centered at the origin of the

input space, with equal spread in x1 and x2, but with

different correlation coefficients in the covariance ma-

trix. The classification task is most difficult in the origin

of the input space and becomes simpler if x1 and x2 take

large absolute values. Correspondingly, the relation be-

tween x1 and x2 is identified as the most influential

feature by the value of 〈tx1,x2
〉. The fact that large ab-

solute values of x1 and x2 support the separability of

the two classes is expressed by the relatively large val-

ues for 〈tx1
〉 and 〈tx2

〉. A combination of the examples

of Fig. 1a and 1b is shown in Fig. 1c. For the task shown

in Fig. 1d the signal and background classes are both

centered in the origin of the input space with differ-

ent spread. In both classes x1 and x2 are uncorrelated.

According to the symmetry of the posed problem the

relation between x1 and x2 is expected to not strongly

contribute to the separability of the signal and back-

ground classes. This is confirmed by the lower value of

〈tx1,x2〉. Instead 〈tx1〉, 〈tx2〉, 〈tx1,x1〉, and 〈tx2,x2〉 take

larger values as expected from the previous discussion.

3 Analysis of the learning progress

When evaluated at each minimization step during the

training, the metrics 〈ti〉 may serve as a tool to an-

alyze the learning progress of the NN. We illustrate

this for the task shown in Fig. 1c. In Fig. 2 the evolv-

ing values of each 〈ti〉 are shown, as continuous lines

of different color, for the first 700 gradient steps. The

stopping criterion of the training is reached after 339

gradient steps (indicated by the red vertical line in the

figure). We measure the performance of the NN in sep-

arating the signal from the background class by the
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Table 1: Parameters defining the signal and background classes used for the tasks discussed in section 2. The

parameters correspond to two-dimensional Gaußian distributions.

Task Mean value Covariance matrix
Signal (x1, x2) Background (x1, x2) Signal Background

Fig. 1a 0.5 0.5 −0.5 −0.5

(
1 0
0 1

) (
1 0
0 1

)
Fig. 1b 0 0 0 0

(
1 0.5
0.5 1

) (
1 −0.5
−0.5 1

)
Fig. 1c 0.5 0.5 −0.5 −0.5

(
1 0.5
0.5 1

) (
1 −0.5
−0.5 1

)
Fig. 1d 0 0 0 0

(
0.5 0
0 0.5

) (
3 0
0 3

)
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Fig. 1: (Upper row) Contours of the distributions used in the examples for the signal (red) and background (blue)

classes discussed in section 2, and the (lower row) corresponding metrics 〈ti〉.

area under the curve (AUC) of the receiver operating

characteristic (ROC). We have added the AUC at each

training step to the figure with a separate axis on the

right. A rough distinction of two phases can be stated.

Approximately up to minimization step 30 the perfor-

mance of the NN shows a steep rise up to a plateau

value of 0.84 for the AUC. This rise coincides with in-

creasing values of 〈tx1〉 and 〈tx2〉. Both metrics have the

same progression, which can be explained by the sym-

metry of the task. Also the values for 〈tx1,x1
〉, 〈tx1,x2

〉
and 〈tx2,x2〉 show an increase, though much less pro-

nounced. Roughly 100 minimization steps later, a sec-

ond, more shallow, rise of the AUC sets in, coinciding

with increasing values for 〈tx1,x2〉. We interpret this in

the following way. During the first phase the NN adapts

to the first-order features related to 〈tx1
〉 and 〈tx2

〉,

which is the most obvious choice to separate the sig-

nal from the background class. During this phase the

learning progress of the NN is concentrated in the ar-

eas of the input space with medium to large values of

x1 and x2. In the second phase the relation between x1
and x2, as a second-order feature, gains influence. This

is when the NN learning progress concentrates on the

region of the input space where the signal and back-

ground classes overlap. It can be seen that the influ-

ence of the features related to 〈tx1
〉 and 〈tx2

〉 decreases

from minimization step 50 on. Apparently this influ-

ence has been overestimated at first and is successively

replaced giving more importance to the more difficult

to identify second-order features. From our knowledge

of the truth, this is indeed the ”more correct” assess-

ment, which from minimization step 250 on, also leads
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Gradient step
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Fig. 2: Values of the metrics 〈ti〉, as defined in Eq. 1,

evaluated at each gradient step of the NN training, for

the task discussed in section 2 and shown in Fig. 1c.

On the axis to the right the AUC of the ROC curve, as

a measure of the NN performance in solving the task

at each training step, is shown. The red vertical line

indicates after how many gradient steps the predefined

stopping criterion, given in section 2, has been met.

to another gain in performance. Note that by the end

of the training the progression of 〈tx1,x2〉 has not con-

verged, yet. The stopping criterion represents a mea-

sure of success and not a measure of truth. It might

well have happened that the stopping criterion might

have been met already between gradient step 50 and

100. In this case the NN output would have been based

on the assessment that 〈tx1,x2〉 plays a less important

role. In this case success rules over truth. In our exam-

ple the a priori known, more correct assessment leads

to another performance gain after a few more gradient

steps. Stopping the training before gradient step 100

would have missed this performance gain. We would

like to emphasize that Fig. 2 is not more but a monitor

to visualize what steps have led to the training result

of the NN. This information can help to interpret both

the features of the input space and the NN sensitivity

to it. A different NN configuration might reveal a differ-

ent sensitivity to any of the 〈ti〉. Also there is no claim

of proof that the increase in 〈tx1,x2
〉 causes the increase

in the AUC.

4 Application to a benchmark task from

high-energy particle physics

In the following we are investigating the behavior of the

〈ti〉 when applied to a more complex task, typical for

data analyses in high-energy particle physics. For this

purpose we are exploiting a dataset that was released in

the context of the Higgs boson machine learning chal-

lenge [20], in 2014. This challenge was inspired by the

discovery of a Higgs particle in collisions of high-energy

proton beams at the CERN LHC, in 2012 [21,22]. The

search for Higgs bosons in the final state with two τ lep-

tons [23,24,25] at the LHC has two main characteristics

of relevance for this challenge:

– a Higgs boson will be produced in only a tiny frac-

tion of the recorded collisions.

– there is no unambiguous physical signature to dis-

tinguish collisions containing Higgs bosons (defining

the signal class) from other collisions (defining the

background class).

Consequently, for such a search the signal needs to

be inferred from a larger number of (potentially re-

lated) physical quantities of the recorded collisions, us-

ing statistical methods, which makes the task suited

also for NN applications. For the challenge a typical

set of proton-proton collisions was simulated, of which

only a small subset contained Higgs bosons in the final

state with two τ leptons. Important physical quanti-

ties to distinguish the signal and background classes are

the momenta of certain collision products in the plane,

transverse to the incoming proton beams; the invariant

mass of pairs of certain collision products; and their an-

gular position relative to each other and to the beam

axis. In the context of the challenge the values of 30

such quantities were released, whose names and exact

physical meaning are given in [20]. Seventeen of these

variables are basic quantities, characterizing a collision

from direct measurements; the rest, like all invariant

mass quantities, are called derived variables and com-

puted from the basic quantities. These derived variables

have a high power to distinguish the signal and back-

ground classes. Other variables like the azimuthal angle

φ of single collision products in the plane transverse to

the incoming proton beams have no separating power

between the signal and background classes, due to the

symmetry of the posed problem. The task is solved by

the same NN model and training approach as described

in section 2. Applied to all 30 input quantities this re-

sults in an AUC of 0.92 and an approximate median

significance, as defined in [20], of 2.61. In total, the 30

input quantities result in 495 first- and second-order

features. For further discussion we rank these features

according to their extracted influence on the NN out-

put, based on the values of the corresponding 〈ti〉, in

decreasing order. In Fig. 3 the 〈ti〉 for all features are

shown, split into (orange) first- and (blue) second-order

features. The distribution shows a rapidly falling trend,

suggesting that only a small number of the investigated

features significantly contributes to the solution of the

task. The most important input variable is identified

as the invariant mass calculated from the kinematics of
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two distinguished particles in the collision, the identi-

fied hadronic τ lepton decay and the additional light

flavor lepton, associated with a leptonic decay of the

τ lepton, DER mass vis, as defined in [20]. This vari-

able also belongs to the most important quantities to

identify Higgs particles in the published analyses [23,

24,25], with a strong relation to the invariant mass of

the new particle. It is a peaking unimodal distribution

in the signal class, with a broader distribution, peaking

in a different position, in the background class. Among

the 10 most influential features, it appears as the most

influential first-order feature (in position 10), reflecting

the difference in the position of the peak in the sig-

nal and background classes, and as part of six further

second-order features, including the auto-correlation (in

position 6), characterizing the difference in the width of

the peak in the signal and background classes. The NN

is thus able to identify the most important features of

DER mass vis: its peak position and width. The usage

of this variable in a NN analysis requires a good under-

standing not only of the marginal distribution but also

of all relevant relations to other variables, which should

be reflected in the uncertainty model. The most influen-

tial feature is found to be the relation of DER mass vis

with the ratio of the transverse momenta of the two par-

ticles that enter the calculation of this variable, named

DER pt ratio lep tau. This feature is shown in Fig. 4,

visualizing the gain of the relation over a pure marginal

distribution on each individual axis. Features related to

φ on the other hand are consequently ranked to the end

of the list, as can be seen from Fig. 5, with the first oc-

currence in position 82. Apart from DER mass vis only

eight more inputs, which are all well motivated from

the physics expectation, contribute to the upper 5 %

of the most influential features. When exposed to only

these nine input quantities the NN solves the task with

an AUC and ROC curve identical to the one that we

observe, when using all 30 input quantities, within the

numerical precision, indicating the potential to reduce

the input space from 30 to 9 dimensions without sig-

nificant loss of information. We refrain from a more

detailed analysis of the complete list of features, which

quickly turns very abstract and cannot be fully appre-

ciated without deeper knowledge of the exact physical

meaning of the input quantities. We conclude that the

metric of Eq. 1 allows for a detailed understanding of

the role of each input quantity - even without know-

ing their exact meaning - and quantitatively confirms

the intuition of the high-energy particle physics analy-

ses that have been performed during the search for the

Higgs boson in 2012 and afterwards. We would like to

emphasize that the reduction of the dimension of the

input space (in the demonstrated case from 30 to 9),

100 200 300 400
Rank

0.000

0.001

0.002

0.003

t i

Second-order features
First-order features

Fig. 3: Metrics 〈ti〉, as defined in Eq. 1, obtained from

the 30 inputs of the task discussed in section 4. The

〈ti〉, have been ranked by value, in descending order.

A color coding identifies (orange) first-order and (blue)

second-order features.

0.8 1.2 1.6 2.0
DER_pt_ratio_lep_tau

50

70

90

110

DE
R_

m
as

s_
vi

s

Fig. 4: Relation between the variables DER mass vis

and DER pt ratio lep tau, as defined in [20] and dis-

cussed in section 4, shown in a subset of the input space.

The red (blue) contours correspond to the signal (back-

ground) class. Darker colors indicate a higher sample

density. This relation is identified as the most influen-

tial feature after the NN training.

which can be achieved also by other methods, like the

principal component analysis [26], is not the main goal

of our investigation. The main goal is an improved and

more intuitive understanding of the features of the in-

put space and the sensitivity of the NN output on it.

5 Summary

We have discussed the usage of the coefficients ti from

a Taylor expansion in each element of the input space

{xj} to identify the characteristics of the input space

with the largest influence on the NN output. For practi-

cal reasons we have restricted the discussion to the ex-

pansion up to second order, concentrating on the char-
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100 200 300 400
Rank

0

10

20

30

40

Co
un

t

Assoc. with prim.  variables
Assoc. with mass variable

Fig. 5: Occurrence of features containing primitive φ

variables and occurrence of DER mass vis, as discussed

in section 4, in the ranked list of features.

acteristics of marginal distributions of input elements,

xj , or relations between them, referred to as first- and

second-order features. We propose the arithmetic mean

of the absolute value of a corresponding Taylor coeffi-

cient 〈ti〉, built from the whole input space, as a metric

to quantify the influence of the corresponding feature

on the NN output. We have illustrated the relation be-

tween features and corresponding 〈ti〉 with the help of

simple tasks emphasizing single features or relations be-

tween them. Evaluating the 〈ti〉 at each step of the NN

training allows for the analysis and monitoring of the

learning process of the NN. Finally we have applied the

proposed metrics to a more complex task common to

high-energy particle physics and found that the most

important features, known from physics analyses are

reliably identified, while features known to be irrele-

vant are also identified as such. We consider this as the

first step to identify those characteristics of the NN in-

put space that have the largest influence on the NN

output, in the context of tasks, typical for high-energy

particle physics experiments. As shown for the example

in section 4 these most influential characteristics may

well correspond to relations between different inputs or

auto-correlations, and not just to the marginal distri-

bution of single inputs. In subsequent steps the quan-

tification of systematic uncertainties in the NN inputs

can be concentrated on those most relevant inputs.
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