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Abstract
The relation between the input and output spaces of neural networks (NNs) is investigated to identify those characteristics of 
the input space that have a large influence on the output for a given task. For this purpose, the NN function is decomposed 
into a Taylor expansion in each element of the input space. The Taylor coefficients contain information about the sensitivity 
of the NN response to the inputs. A metric is introduced that allows for the identification of the characteristics that mostly 
determine the performance of the NN in solving a given task. Finally, the capability of this metric to analyze the performance 
of the NN is evaluated based on a task common to data analyses in high-energy particle physics experiments.

Keywords  High-energy particle physics · Neural networks · Taylor expansion

Introduction

A neural network (NN) is a multi-parameter system, which, 
depending on its architecture, can consist of several thou-
sands of weight and bias parameters, subject to one or more 
non-linear activation functions. Each of these adjustable 
parameters obtains its concrete value and meaning by mini-
misation during the training process. Thus the same NN can 
be applied to several concrete tasks, which are only defined 
at the training step.

In applications in high-energy particle physics, which are 
supposed to distinguish a signal from one or more back-
grounds, the training sample is obtained either from simu-
lation or from an independent dataset without overlap with 
the sample of interest, to which the NN is applied. Usually 

the NN output itself is then subject to a detailed likelihood 
based hypothesis test, to infer the presence and yield of the 
signal [1–5]. The likelihood may include information on the 
shape of a variable that is supposed to discriminate signal 
from background. This shape could (while it does not have 
to) be e.g. the output of an NN. Apart from one or more 
parameters of interest the hypothesis test may comprise sev-
eral hundreds of nuisance parameters, steering the response 
of the test statistic on a corresponding set of uncertainties. 
The nuisance parameters can be correlated or uncorrelated 
with the shape of the discriminating variable and (directly 
or indirectly) depend on the response of the NN output on 
its input variables.

These kinds of analyses connect the observation of a 
measurement to a hypothesised truth. For NN applications 
they pose the intrinsic problem that, beyond statistical fluc-
tuations, congruency between the training sample and the 
sample of interest may not be given. Deviations need to be 
identified and quantified within the uncertainty model of 
the hypothesis test. They may occur not only in the descrip-
tion of single input variables to the NN, but also in correla-
tions across input variables, even if the marginal distribu-
tions of the individual input variables are reproduced. An 
NN can be sensitive to correlations across input variables; 
in fact this sensitivity is the main reason for potential per-
formance gains, with respect to other approaches, like e.g. 
profile likelihoods. To make sure that this performance gain 
is not feigned, in addition to the marginal distributions, 
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all correlations across input variables need to be carefully 
checked, and their influence on the test statistic identified 
and eventually mapped into the uncertainty model of the 
hypothesis test. The complexity of this methodology moti-
vates the interest, not only in keeping the number of inputs 
to the NN at a manageable level, but above all in identifying 
those characteristics of the input space to the NN with the 
largest influence on the NN output. The definition of the 
uncertainty model of the hypothesis test can then be concen-
trated on these most influential characteristics.

This approach sets the scope of this study to not more 
than a few tenth, up to a few hundred, partially highly cor-
related input variables in the context of particle physics 
experiments, or comparable applications. It differs from 
the approaches of weak supervision  [6–9] and pivoting 
with adversaries [10] that have been discussed in the litera-
ture. Weak supervision tries to circumvent the problem that 
we are describing by replacing an originally ground-truth 
labelled training by a training based on unlabelled training 
data. The corresponding samples can be obtained from the 
data themselves. They do not depend on a simulation and 
may be chosen to be unbiased. This approach is well justified 
in classification tasks, that are based just on the character-
istics of the predefined training data. In the analyses that 
we are discussing the classification is tied to the hypoth-
esised truth. Replacing the ground-truth labelled training 
by unlabelled input data does not solve the problem that 
we are discussing. Our discussion is also beyond the scope 
of pivoting with adversaries, for which the mismodellings 
to address have to be known beforehand. Our discussion 
sets in at an earlier stage, which is the most complete iden-
tification of all uncertainties that can be of relevance for 
the physics analysis. After the most influential features of 
the input space have been identified the method of pivot-
ing with adversaries could be applied to mitigate potential 
mismodellings. A related approach to extract information 
about the characteristics of the input space is to flatten the 
distributions of sub-spaces so that possible discriminating 
features vanish [11, 12]. From the performance degradation 
after retraining the NN on the modified inputs, information 
about the discriminating power of the respective sub-space 
can be obtained. However, this approach does not allow to 
evaluate the dependencies of the response of an unique NN 
function on the characteristics of the input space, since each 
retrained function may have learned different features.

So far, the questions we are raising have been addressed 
by methods that have been proposed to relate the output 
of NNs with certain regions of input pixels in the context 
of image classification [13, 14]. These methods only use 
first-order derivatives to the NN function to back propa-
gate the output layer by layer. What we propose is a Tay-
lor expansion of the full NN function up to an arbitrary 
order, which allows to connect the input space directly 

to the NN output. While with this study we will dem-
onstrate the application of the Taylor expansion only up 
to second order, we explicitly propose a generalization 
towards higher-order derivatives in the Taylor expansion 
to capture relations across variables, which usually play a 
more important role in data analyses in high-energy parti-
cle physics experiments.

Due to the high-performance computation of deriva-
tives in modern software frameworks used for the imple-
mentation of NNs [15–17], this expansion can be obtained 
at each point of the input space, even if this space is of 
high dimension. In this way, the sensitivity of the NN 
response to the input space can be analyzed by the gra-
dient of the NN function. For practical reasons we stop 
the expansion at second order. To facilitate the following 
interpretation, we define a feature to be a characteristic of 
a single element or a pair-wise relation between two ele-
ments of the input space. The first class of features relates 
to the coefficients of the expansion to first order (first-
order feature); the second class to the coefficients of the 
second order expansion (second-order feature). First-order 
features capture the influence of single input elements on 
the NN output throughout the input space; second-order 
features the influence of pair-wise or auto-correlations 
among the input elements. It is obvious that depending on 
the given task a certain feature can have large influence 
on the output of the NN in a certain region of the input 
space, while it is less important in others. We propose the 
arithmetic mean of the absolute value of the corresponding 
Taylor coefficient, computed from the input space defined 
by the task to be solved,

as a metric for the influence of a given feature of the input 
space on the output, where the sum runs over the whole test-
ing sample of size N, ti corresponds to the coefficients of the 
Taylor expansion, {xj}|k to the set of variables spanning the 
input space, evaluated for element k of the testing sample, 
and i is an element of the powerset of {xj} . It should be noted 
that the ⟨ti⟩ characterize the input space (as covered by the 
test data) and the sensitivity of the NN to it, after training, 
as a whole.

In Sect. 2 we illustrate this choice with the help of four 
simple tasks emphasizing certain single features of the 
input space or their combination. In Sect. 3 we point out 
that, when evaluated at each step of the minimization dur-
ing the training process, the ⟨ti⟩ can be utilized to illustrate 
and monitor the training process and learning strategies 
adopted by the NN. In Sect. 4 we show the application of 
the ⟨ti⟩ to a more realistic task common to data analyses in 

(1)⟨ti⟩ ≡
1

N

N�

k=1

���ti({xj}
���k)

��� i ∈ ({xj})
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high-energy particle physics experiments. Such tasks usu-
ally have the following attributes, which are of relevance 
for the following discussion:

•	 they consist of not more than several tens of important 
input parameters, which leads to a moderate dimensional-
ity of the posed problem;

•	 they may rely on relations between elements more than 
they rely on single elements of the input space;

•	 they usually pose problems, where a signal and back-
ground class cannot be separated based on single or few 
input variables, but only from the combination of several 
input variables;

•	 they require a good understanding of the NN perfor-
mance to turn the output into a reliable measurement.

Analysis of Features of the Input Space 
for Simple Tasks

In the following we illustrate the relation of the ⟨ti⟩ to certain 
features of the input space.

The applied NN corresponds to a fully connected feed-
forward model with a single hidden layer consisting of 
100 nodes. As activation functions a hyperbolic tangent is 
chosen for the hidden layer and a sigmoid for the output 
layer. A preprocessing of the inputs is performed follow-
ing the (x − �)∕� rule with the mean � and the standard 
deviation � derived independently for each input variable. 
The free parameters of the NN are fitted to the training 
data using the cross-entropy loss and the Adam optimizer 
algorithm [18]. The full training dataset with 105 elements 
is split into two equal halves. One half is used for the cal-
culation of the gradients used by the optimizer. The other 
half is used as independent validation dataset. The train-
ing is stopped if the loss did not improve on the valida-
tion dataset for three times in a row (early stopping). The 
independent test dataset used to calculate the ⟨ti⟩ consists 

of 105 elements. We use the software packages Keras [19] 
and TensorFlow [15] for the implementation of the NN 
and the calculation of the derivatives.

For simplicity we choose binary classification tasks 
with two inputs, x1 and x2 . For the signal and background 
classes we sample Gaussian distributions with parame-
ters, as summarized in Table 1. From the Taylor series we 
obtain two metrics ⟨tx1⟩ and ⟨tx2⟩ indicating the influence of 
the marginal distributions of x1 and x2 , and three metrics 
⟨tx1,x1⟩ , ⟨tx1,x2⟩ , and ⟨tx2,x2⟩ indicating the influence of the 
relation between x1 and x2 , and the two auto-correlations. 
In the upper row of Fig. 1 the distribution of the (red) 
signal and (blue) background classes in the input space 
are shown, where darker colors indicate a higher sample 
density. In the lower row of Fig. 1 the values obtained for 
the ⟨ti⟩ after the training are shown for each correspond-
ing task.

For the task shown in Fig. 1a the signal and background 
classes are shifted against each other. In both classes x1 
and x2 are uncorrelated and of equal spread. The classifica-
tion task becomes most difficult along the off-diagonal axis 
between the two classes through the origin and simpler 
if both, x1 and x2 , take large or small values at the same 
time. Correspondingly, ⟨tx1⟩ and ⟨tx2⟩ obtain large values 
indicating the separation power that is already caused by 
the marginal distributions of x1 and x2 . The orientation of 
the two classes with respect to each other also results in a 
non-negligible contribution of ⟨tx1,x2⟩ to the NN response.

For the task shown in Fig. 1b the signal and background 
classes are both centered at the origin of the input space, 
with equal spread in x1 and x2 , but with different corre-
lation coefficients in the covariance matrix. The classi-
fication task is most difficult in the origin of the input 
space and becomes simpler if x1 and x2 take large absolute 
values. Correspondingly, the relation between x1 and x2 
is identified as the most influential feature by the value 
of ⟨tx1,x2⟩ . The fact that large absolute values of x1 and x2 

Table 1   Parameters defining the 
signal and background classes 
used for the tasks discussed in 
Sect. 2

The parameters correspond to two-dimensional Gaussian distributions

Task Mean value Covariance matrix

Signal ( x1 , x2) Background ( x1 , x2) Signal Background

Fig. 1a 0.5 0.5 −0.5 −0.5
(
1 0

0 1

) (
1 0

0 1

)

Fig. 1b 0 0 0 0
(

1 0.5

0.5 1

) (
1 − 0.5

− 0.5 1

)

Fig. 1c 0.5 0.5 −0.5 −0.5
(

1 0.5

0.5 1

) (
1 − 0.5

− 0.5 1

)

Fig. 1d 0 0 0 0
(
0.5 0

0 0.5

) (
3 0

0 3

)
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support the separability of the two classes is expressed 
by the relatively large values for ⟨tx1⟩ and ⟨tx2⟩ . A combi-
nation of the examples of Fig. 1a, b is shown in Fig. 1c. 
For the task shown in Fig. 1d the signal and background 
classes are both centered in the origin of the input space 
with different spread. In both classes x1 and x2 are uncor-
related. According to the symmetry of the posed problem 
the relation between x1 and x2 is expected to not strongly 
contribute to the separability of the signal and background 
classes. This is confirmed by the lower value of ⟨tx1,x2⟩ . 
Instead ⟨tx1⟩ , ⟨tx2⟩ , ⟨tx1,x1⟩ , and ⟨tx2,x2⟩ take larger values as 
expected from the previous discussion.

Analysis of the Learning Progress

When evaluated at each minimization step during the 
training, the metrics ⟨ti⟩ may serve as a tool to analyze the 
learning progress of the NN. We illustrate this for the task 
shown in Fig. 1c. In Fig. 2 the evolving values of each ⟨ti⟩ 
are shown, as continuous lines of different color, for the 
first 700 gradient steps. The stopping criterion of the train-
ing is reached after 339 gradient steps (indicated by the red 
vertical line in the figure). We measure the performance of 
the NN in separating the signal from the background class 
by the area under the curve (AUC) of the receiver operat-
ing characteristic (ROC). We have added the AUC at each 
training step to the figure with a separate axis on the right. 
A rough distinction of two phases can be stated. Approxi-
mately up to minimization step 30 the performance of the 
NN shows a steep rise up to a plateau value of 0.84 for the 

AUC. This rise coincides with increasing values of ⟨tx1⟩ and 
⟨tx2⟩ . Both metrics have the same progression, which can 
be explained by the symmetry of the task. Also the values 
for ⟨tx1,x1⟩ , ⟨tx1,x2⟩ and ⟨tx2,x2⟩ show an increase, though much 
less pronounced. Roughly 100 minimization steps later, a 
second, more shallow, rise of the AUC sets in, coinciding 
with increasing values for ⟨tx1,x2⟩ . We interpret this in the 
following way. During the first phase the NN adapts to the 
first-order features related to ⟨tx1⟩ and ⟨tx2⟩ , which is the most 
obvious choice to separate the signal from the background 

(a) (b) (c) (d)

Fig. 1   (Upper row) Contours of the distributions used in the examples for the signal (red) and background (blue) classes discussed in Sect. 2, and 
the (lower row) corresponding metrics ⟨t

i
⟩

Fig. 2   Values of the metrics ⟨t
i
⟩ , as defined in Eq.  (1), evaluated at 

each gradient step of the NN training, for the task discussed in Sect. 2 
and shown in Fig. 1c. On the axis to the right the AUC of the ROC 
curve, as a measure of the NN performance in solving the task at each 
training step, is shown. The red vertical line indicates after how many 
gradient steps the predefined stopping criterion, given in Sect. 2, has 
been met
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class. During this phase the learning progress of the NN is 
concentrated in the areas of the input space with medium to 
large values of x1 and x2 . In the second phase the relation 
between x1 and x2 , as a second-order feature, gains influence. 
This is when the NN learning progress concentrates on the 
region of the input space where the signal and background 
classes overlap. It can be seen that the influence of the fea-
tures related to ⟨tx1⟩ and ⟨tx2⟩ decreases from minimization 
step 50 on. Apparently this influence has been overestimated 
at first and is successively replaced giving more importance 
to the more difficult to identify second-order features. From 
our knowledge of the truth, this is indeed the “more cor-
rect” assessment, which from minimization step 250 on, also 
leads to another gain in performance. Note that by the end 
of the training the progression of ⟨tx1,x2⟩ has not converged, 
yet. The stopping criterion represents a measure of success 
and not a measure of truth. It might well have happened that 
the stopping criterion might have been met already between 
gradient step 50 and 100. In this case the NN output would 
have been based on the assessment that ⟨tx1,x2⟩ plays a less 
important role. In this case success rules over truth. In our 
example the a priori known, more correct assessment leads 
to another performance gain after a few more gradient steps. 
Stopping the training before gradient step 100 would have 
missed this performance gain. We would like to emphasize 
that Fig. 2 is not more but a monitor to visualize what steps 
have led to the training result of the NN. This information 
can help to interpret both the features of the input space and 
the NN sensitivity to it. A different NN configuration might 
reveal a different sensitivity to any of the ⟨ti⟩ . Also there 
is no claim of proof that the increase in ⟨tx1,x2⟩ causes the 
increase in the AUC.

Application to a Benchmark Task 
from High‑Energy Particle Physics

In the following we are investigating the behavior of the 
⟨ti⟩ when applied to a more complex task, typical for data 
analyses in high-energy particle physics. For this purpose we 
are exploiting a dataset that was released in the context of 
the Higgs boson machine learning challenge [20], in 2014. 
This challenge was inspired by the discovery of a Higgs par-
ticle in collisions of high-energy proton beams at the CERN 
LHC, in 2012 [21, 22]. The search for Higgs bosons in the 
final state with two � leptons [23–25] at the LHC has two 
main characteristics of relevance for this challenge:

•	 a Higgs boson will be produced in only a tiny fraction of 
the recorded collisions.

•	 there is no unambiguous physical signature to distinguish 
collisions containing Higgs bosons (defining the signal 

class) from other collisions (defining the background 
class).

Consequently, for such a search the signal needs to be 
inferred from a larger number of (potentially related) physi-
cal quantities of the recorded collisions, using statistical 
methods, which makes the task suited also for NN applica-
tions. For the challenge a typical set of proton–proton colli-
sions was simulated, of which only a small subset contained 
Higgs bosons in the final state with two � leptons. Important 
physical quantities to distinguish the signal and background 
classes are the momenta of certain collision products in the 
plane, transverse to the incoming proton beams; the invariant 
mass of pairs of certain collision products; and their angular 
position relative to each other and to the beam axis. In the 
context of the challenge the values of 30 such quantities 
were released, whose names and exact physical meaning are 
given in [20]. Seventeen of these variables are basic quanti-
ties, characterizing a collision from direct measurements; 
the rest, like all invariant mass quantities, are called derived 
variables and computed from the basic quantities. These 
derived variables have a high power to distinguish the signal 
and background classes. Other variables like the azimuthal 
angle � of single collision products in the plane transverse 
to the incoming proton beams have no separating power 
between the signal and background classes, due to the sym-
metry of the posed problem. The task is solved by the same 
NN model and training approach as described in Sect. 2. 
Applied to all 30 input quantities this results in an AUC of 
0.92 and an approximate median significance, as defined 
in [20], of 2.61. In total, the 30 input quantities result in 495 
first- and second-order features. For further discussion we 
rank these features according to their extracted influence 
on the NN output, based on the values of the correspond-
ing ⟨ti⟩ , in decreasing order. In Fig. 3 the ⟨ti⟩ for all features 
are shown, split into (orange) first- and (blue) second-order 
features. The distribution shows a rapidly falling trend, sug-
gesting that only a small number of the investigated features 

Fig. 3   Metrics ⟨t
i
⟩ , as defined in Eq. (1), obtained from the 30 inputs 

of the task discussed in Sect. 4. The ⟨t
i
⟩ , have been ranked by value, 

in descending order. A color coding identifies (orange) first-order and 
(blue) second-order features
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significantly contributes to the solution of the task. The most 
important input variable is identified as the invariant mass 
calculated from the kinematics of two distinguished particles 
in the collision, the identified hadronic � lepton decay and 
the additional light flavor lepton, associated with a leptonic 
decay of the � lepton, DER_mass_vis, as defined in [20]. 
This variable also belongs to the most important quantities 
to identify Higgs particles in the published analyses [23–25], 
with a strong relation to the invariant mass of the new parti-
cle. It is a peaking unimodal distribution in the signal class, 
with a broader distribution, peaking in a different position, 
in the background class. Among the 10 most influential fea-
tures, it appears as the most influential first-order feature 
(in position 10), reflecting the difference in the position of 
the peak in the signal and background classes, and as part 
of six further second-order features, including the auto-cor-
relation (in position 6), characterizing the difference in the 
width of the peak in the signal and background classes. The 
NN is thus able to identify the most important features of 
DER_mass_vis: its peak position and width. The usage of 
this variable in a NN analysis requires a good understanding 
not only of the marginal distribution but also of all relevant 
relations to other variables, which should be reflected in the 
uncertainty model. The most influential feature is found to 
be the relation of DER_mass_vis with the ratio of the 
transverse momenta of the two particles that enter the calcu-
lation of this variable, named DER_pt_ratio_lep_tau. 
This feature is shown in Fig. 4, visualizing the gain of the 
relation over a pure marginal distribution on each individual 
axis. Features related to � on the other hand are consequently 
ranked to the end of the list, as can be seen from Fig. 5, with 
the first occurrence in position 82. Apart from DER_mass_
vis only eight more inputs, which are all well motivated 
from the physics expectation, contribute to the upper 5% of 

the most influential features. When exposed to only these 
nine input quantities the NN solves the task with an AUC 
and ROC curve identical to the one that we observe, when 
using all 30 input quantities, within the numerical precision, 
indicating the potential to reduce the input space from 30 to 
9 dimensions without significant loss of information. We 
refrain from a more detailed analysis of the complete list 
of features, which quickly turns very abstract and cannot 
be fully appreciated without deeper knowledge of the exact 
physical meaning of the input quantities. We conclude that 
the metric of Eq. (1) allows for a detailed understanding 
of the role of each input quantity—even without knowing 
their exact meaning—and quantitatively confirms the intui-
tion of the high-energy particle physics analyses that have 
been performed during the search for the Higgs boson in 
2012 and afterwards. We would like to emphasize that the 
reduction of the dimension of the input space (in the dem-
onstrated case from 30 to 9), which can be achieved also by 
other methods, like the principal component analysis [26], 
is not the main goal of our investigation. The main goal is an 
improved and more intuitive understanding of the features 
of the input space and the sensitivity of the NN output on it.

Summary

We have discussed the usage of the coefficients ti from a 
Taylor expansion in each element of the input space {xj} to 
identify the characteristics of the input space with the largest 
influence on the NN output. For practical reasons we have 
restricted the discussion to the expansion up to second order, 
concentrating on the characteristics of marginal distributions 
of input elements, xj , or relations between them, referred to 
as first- and second-order features. We propose the arith-
metic mean of the absolute value of a corresponding Taylor 
coefficient ⟨ti⟩ , built from the whole input space, as a metric 

Fig. 4   Relation between the variables DER_mass_vis and DER_
pt_ratio_lep_tau, as defined in  [20] and discussed in Sect. 4, 
shown in a subset of the input space. The red (blue) contours cor-
respond to the signal (background) class. Darker colors indicate a 
higher sample density. This relation is identified as the most influen-
tial feature after the NN training

Fig. 5   Occurrence of features containing primitive � variables 
and occurrence of DER_mass_vis, as discussed in Sect.  4, in the 
ranked list of features
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to quantify the influence of the corresponding feature on the 
NN output. We have illustrated the relation between features 
and corresponding ⟨ti⟩ with the help of simple tasks empha-
sizing single features or relations between them. Evaluating 
the ⟨ti⟩ at each step of the NN training allows for the analysis 
and monitoring of the learning process of the NN. Finally 
we have applied the proposed metrics to a more complex 
task common to high-energy particle physics and found that 
the most important features, known from physics analyses 
are reliably identified, while features known to be irrelevant 
are also identified as such. We consider this as the first step 
to identify those characteristics of the NN input space that 
have the largest influence on the NN output, in the context of 
tasks, typical for high-energy particle physics experiments. 
As shown for the example in Sect. 4 these most influential 
characteristics may well correspond to relations between dif-
ferent inputs or auto-correlations, and not just to the mar-
ginal distribution of single inputs. In subsequent steps the 
quantification of systematic uncertainties in the NN inputs 
can be concentrated on those most relevant inputs.
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