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1 Introduction

We present a search for the decays of the Higgs boson [1, 2], produced via the vector boson fusion (VBF)
process [3, 4], into invisible final states (χ χ̄) with an anomalous and sizable O(10)% branching fraction. The
hypothesis under consideration [5–16] is that the Higgs boson might decay into a pair of weakly interacting
massive particles (wimp) [17, 18], which may explain the nature of dark matter (see Ref. [19] and the
references therein). The search carried out for the 125GeV particle is repeated for hypothetical scalars with
masses up to 3TeV.

The data sample corresponds to an integrated luminosity of 36.1 fb−1 of pp collisions at
√

s = 13TeV recorded
by theATLASdetector at theLHC in 2015 and 2016. The experimental signature of the signalVBFproduction
process is a pair of energetic quark jets with a wide gap in pseudorapidity (η) corresponding to the O(1)TeV
value of the invariant mass (mj j) of the two highest-pT jets in the event.1 The signature for the decay process
is the O(100)GeV value of the missing transverse momentum (Emiss

T ) that corresponds to the Higgs boson
pT. The VBF topology offers a powerful rejection of the strongly produced backgrounds of single vector
boson plus two jets, and the multijet background. In this analysis, the Higgs production in the gluon fusion
process is subdominant to VBF and is considered as part of the Higgs signal.

Direct searches for invisible Higgs decays look for an excess of events over Standard Model expectations.
The absence of an excess is interpreted as an upper limit on the branching fraction of invisible decays (Binv)
assuming the Standard Model production cross section [20] of the 125GeV Higgs boson. Other published
results have targeted a variety of production mechanisms—gluon fusion, VBF, W or Z associated production
[21–25]—to set upper limits on Binv. The best limits are from the statistical combination of search results
for which ATLAS reported an observed (expected) limit of 0.25 (0.27) [26] and CMS 0.24 (0.23) [27] at
95% confidence level (CL). For these combinations the single input with the highest expected sensitivity is
VBF, the channel pursued here, for which ATLAS reported an observed limit of 0.28 [28] and CMS 0.43
[27], with an expected limit of 0.31 in both experiments.

Global fits to the measurements of visible decay channels of the Higgs boson place indirect constraints on
the sum of the branching fraction to final states that are not detected using current reconstruction and analysis
techniques plus the branching fraction to the invisible final states described above. For this sum, denoted by
Bbsm, ATLAS reports an observed (expected) limit of 0.49 (0.48) [26] and CMS of 0.57 (0.52) [29] with
similar but not identical assumptions. A combination of ATLAS and CMS results gives 0.34 (0.39) [30].
As noted in Ref. [28], there is complementarity between the direct search for invisible Higgs decays and the
indirect constraints from the global fits. A null result in the former and a non-zero result in the latter would
point to undetected decays or incorrect model assumptions as the cause.

In this analysis, several changes and improvements are made with respect to the previous ATLAS paper on
this topic [28]. The event selections are changed to retain a good sensitivity despite the higher pileup. The
trigger and hadronic objects are defined considering the simultaneous pp collisions in the same and nearby
bunch crossings (pileup) (Section 2). The leading backgrounds are simulated using state-of-the-art QCD

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and
the z-axis along the beam direction. The x-axis points from the interaction point to the center of the LHC ring; the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, where φ is the azimuthal angle around the z-axis. The
pseudorapidity is defined as η = − ln(tan (θ/2)), where θ is the polar angle.
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predictions (Section 3). The analysis uses three bins in mj j to increase the signal sensitivity (Section 4). The
Zνν estimation relies only on the Zee and Zµµ control samples, and is not affected by theoretical uncertainties
of the W-to-Z extrapolation (Section 5). The systematic uncertainties are evaluated separately for each mj j

bin (Section 6). The search is repeated for other scalars with masses up to 3TeV, which can easily be
reinterpreted for models not considered in this Letter (Section 7). Several aspects of the analysis have not
changed compared to the ATLAS Run-1 analysis—e.g., subdetector descriptions, transfer factor method,
Higgs portal models—and details of these may be found in Ref. [28].

2 Detector, trigger, and analysis objects

ATLAS is a multipurpose particle physics detector with a forward–backward symmetric cylindrical geometry
consisting of a tracking system, electromagnetic and hadronic calorimeters, and a muon system [31].

The trigger to record the sample containing the potential signal process used a two-level Emiss
T algorithm with

thresholds adjusted throughout the data-taking period to cope with varying levels of pileup [32, 33]. The
level-1 system used coarse-spatial-granularity analog sums of the calorimeter energy deposits to require
Emiss
T > 50GeV. The second-level high level trigger system [34] used jets that are reconstructed from

calibrated clusters of cell energies [35] and requires Emiss
T > 70–110GeV depending on the luminosity and

the pileup level. The trigger efficiency [36] for signal events is 98% for Emiss
T > 180GeV when comparing

the trigger selection with the offline Emiss
T definition that contains additional corrections.

The triggers to record the control samples for background studies used lepton and jet algorithms [37]. The
sampleswith leptonicW and Z decayswere collectedwith a single-electron or -muon triggerwith pT > 24GeV
(26GeV) and an isolation requirement in 2015 (towards the end of 2016). The sample of multijet events
was collected using a set of low-threshold single-jet triggers with large prescale values to keep the event rate
relatively low.

For each event, a vertex is reconstructed from two or more associated tracks (t) with pT > 400MeV. If
multiple vertices are present, the one with the largest

∑
t (pT,t )2 is taken as the hard-scatter primary vertex.

Leptons (` = e, µ) are identified to help characterize events with leptonic final states from decays of vector
bosons. Since the signal process contains no leptons, such events are used for the background estimation
described in Section 5. Electrons (muons) must have pT > 7GeV, |η | < 2.47 (2.5), and satisfy an isolation
requirement. Electrons are reconstructed by matching clustered energy deposits in the electromagnetic
calorimeter to tracks from the inner detector [38, 39] and muons by matching inner detector and muon
spectrometer tracks [40]. All leptons must originate from the primary vertex.

Jets are reconstructed from topological clusters in the calorimeters using the anti-kt algorithm [41] with a
radius parameter R= 0.4. Jets must have pT > 20GeV and |η | < 4.5. The subset of jets with pT < 60GeV and
|η | < 2.4 are jet vertex tagged (jvt) [42] to suppress pileup effects, using tracking and vertexing, with 92%
efficiency.

Cleaning requirements help suppress non-collision backgrounds [43]. Fake jets due to noisy cells are removed
by requiring a good fit to the expected pulse shape for each constituent calorimeter cell. Fake jets induced by
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beam-halo interactions with the LHC collimators are removed by requirements on their energy distribution
and the fraction of their constituent tracks that originate from the primary vertex.

In events with identified leptons, the leptons can also be reconstructed as jets, which can potentially lead to
double counting of objects. The lepton–jet overlap in ∆R distance2 is resolved sequentially as follows. If
an electron is near a jet with ∆R < 0.2, the jet is removed to avoid the double counting of electron energy
deposits. If a remaining jet is near an electron with 0.2 ≤ ∆R < 0.4, the electron is removed. If a muon is near
a jet with ∆R < 0.4 and the jet is associated with at least (less than) three charged tracks with pT > 500MeV,
the muon (jet) is removed.

The Emiss
T variable is the magnitude of the negative vector sum of the transverse momenta, −

∑
i ®pT,i, where

i represents both the “hard objects” and the “soft term.” The hard objects consist of leptons and jets, which
are individually reconstructed and calibrated; the list excludes pileup jets, which are removed by a jvt
requirement. The soft term is formed from inner detector tracks not associated with the hard objects, but
matched to the primary vertex. In the search region, Emiss

T is mostly from the recoil against the dijet system.

The jvt procedure is intended to remove pileup jets, but can cause large fake Emiss
T if it removes a high-pT

jet from the hard scatter, e.g., a jet from a pT-balanced three-jet event. In order to reduce this, a correlated
quantity Hmiss

T —defined as |
∑

j ®pT, j |, where j represents all jets without the jvt requirement—is required to
be Hmiss

T > 150GeV. In the three-jet example, Hmiss
T would be near zero.

The Emiss
T significance (Smet) is used only in events with an electron and is defined as Emiss

T /
√

pT, j1+pT, j2+pT,e,
where the pT quantities are for leading jet ( j1), subleading jet ( j2), and electron, respectively. The use of this
quantity to reduce the contamination from jets misidentified as electrons is discussed in Section 5.

3 Event simulation

Monte Carlo simulation (MC) consists of an event generation followed by detector simulation [44] using
geant4 [45]. To each hard-scatter MC event, pileup collisions (30 on average) were added to mimic the
environment of the LHC. The added collisions, simulated with pythia8 [46] using mstw2008 PDF [47] and
the a2 set of tuned parameters [48], were subsequently reweighted to reproduce the pileup distribution in
data. In general, simulated events were corrected for the trigger efficiency, the jet energy, and the lepton
selections using dedicated data samples. Simulated events were corrected for the small differences between
data and MC in the trigger, the lepton identification efficiency, and the jet energy scale and resolution.

For the signal process, the VBF cross sections were calculated at next-to-leading order (NLO) in QCD and
the events were generated using powheg-box2 [49]; NLO electroweak corrections were applied using hawk
[50]. The generated events were interfaced with pythia8 [46] for hadronization and showering, using the
aznlo tune [51] and the nnpdf3.0 NNLO PDF set [52]. The gluon fusion cross section was calculated at
NNLO in QCD and events were generated using powheg-nnlops [53] with the pdf4lhc15 PDF set [54]
interfaced to a fast detector simulation [55]. The showering simulation followed the same procedure as for
the VBF sample. For both the VBF and gluon fusion events, the H→ Z Z∗→ 4ν process is included in the

2 ∆R=
√
(∆η)2 + (∆φ)2.
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sample as invisible Higgs decays. Additional scalars with masses up to 3TeV were simulated as described
above for VBF signal process, assuming a full width of 4MeV.

The W and Z events were generated using sherpa2.2.1 [56] with comix [57] and openloops [58] matrix-
element generators, and merged with sherpa parton shower [59] using the me+ps@nlo prescription [60].
The nnpdf3.0 NNLO PDF set was used. In terms of the order of the various processes, the strong production
was calculated at NLO for up to two jets and leading order (LO) for the third and fourth jets. The electroweak
production was calculated at LO for the second and third jets. The levels of the interference between
electroweak and strong processes were computed with madgraph5_amc@nlo [61]. The interference on the
total expected background is only 0.1% and thus neglected.

Other potential background processes involve top quarks, dibosons, and multijets. Top quarks and dibosons
were generated with powheg interfaced with pythia and evtgen [62], which simulate the heavy-flavor
decays. The diboson backgrounds include electroweak-mediated processes. The multijet estimate does not
directly use the MC.

4 Event selection

All events must have a primary vertex. The selection listed below divides the data sample into a signal-
enriched search region (SR) and background-enriched control regions. The control regions and the statistical
fit are discussed in detail in Section 6. The rest of this section focuses on the SR and the prefit event yields.

For the SR, an event is required to have

• no isolated electron or muon,

• a leading jet with pT > 80GeV,

• a subleading jet with pT > 50GeV,

• no additional jets with pT > 25GeV,

• Emiss
T > 180GeV,

• Hmiss
T > 150GeV.

The two jets are required to have the following properties:

• not be aligned with ®Emiss
T , | ∆φ j-met | > 1,

• not be back-to-back, | ∆φ j j | < 1.8,

• be well separated in η, | ∆ηj j | > 4.8,

• be in opposite η hemispheres, ηj1 · ηj2 < 0,

• mj j > 1TeV.
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Table 1: Event yields in the signal region (SR) and control regions (CR) summed over lepton charge and flavor. The
yields are the prefit values for mj j > 1TeV. The observed data (N), the background estimate (B), and the signal (S
for mH = 125GeV with Binv = 1) are given. The B and S values for individual processes are rounded to a precision
commensurate with the sampling uncertainty associated with the finite MC sample size. For all processes the fractions
of electroweak production [ew] are given. “Other” is defined in the text.

Description SR W CR Z CR
Yield [ew] Yield [ew] Yield [ew]

N , observed 2252 1602 166
B, expected 2243 1648 183

Z→ νν 1111 [18%] - -
Z→ ee, µµ 12 [ 9%] 38 [ 9%] 181 [23%]
Z→ ττ 10 [16%] 11 [16%] -
W→ eν, µν 540 [16%] 1400 [30%] -
W→ τν 533 [20%] 130 [34%] -
Other 36 67 2

S, signal 1070 - -
VBF 930 - -
Gluon fusion 140 - -

The SR includes background events containing a W or Z plus two jets, where the W decays into eν, µν, and
τν, and the Z decays into two neutrinos.

Table 1 gives the prefit SR yields in the first column. The VBF production process gives the biggest
contribution (87%) to the signal sample (fixed as Binv = 1). The contribution from gluon fusion accompanied
by parton radiation is small (13%) and other production modes contribute negligibly. The fraction of VBF
signal events that pass the signal region event selections, defined as acceptance times reconstruction efficiency,
is 0.7%. For the backgrounds, both the strong production and the electroweak production contribute in the
SR. The strong production processes contributes more than 70% of the backgrounds in all of the mj j bins.

As is discussed in Section 7, the signal significance is improved by considering three bins of mj j defined by
boundaries at [1, 1.5, 2, -] TeV. The prefit S/B ratio (for Binv = 1) in these bins is approximately 0.3, 0.4, 0.8,
respectively.

5 Control samples and statistical treatment

The main backgrounds in the SR are the W and Z processes and the minor backgrounds are the diboson, tt̄,
and multijet processes. Accurate estimation of the W and Z processes is the biggest challenge of the analysis.
Both estimations make use of control regions (CR) in the MC and the lepton-triggered data samples.

The W CR requires one identified lepton, but the selections are otherwise identical to those of the SR. The
lepton-pT threshold is 30GeV. The sample is divided into four subsamples depending on the lepton flavor
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and charge. The two We±ν subsamples are further subdivided by Smet < 4
√
GeV (> 4) to provide a subsample

enriched (depleted) in fake electrons, where a jet is misidentified as an electron. In addition, a region enriched
in non-prompt electrons was defined by requiring that the electron likelihood fail the tightest definition, while
satisfying the looser definition. After subtracting the prompt W events, this sample was used to measure the
ratio of events with Smet ≶ 4

√
GeV. The Emiss

T is calculated excluding all detector signals associated with
leptons to mimic the quantity used in the SR. The kinematic bias in Emiss

T due to the Smet selection was found
to be negligible.

The Z CR is based on the same selection criteria as the SR, but the lepton veto is replaced by the requirement
of two same-flavor opposite-sign leptons ` with |m`` − mZ | < 25GeV. The sample is studied separately for
the two lepton flavors. The leading lepton-pT threshold is the same as above, and the subleading lepton-pT
threshold is 7GeV. The sample is divided by lepton flavor. The Emiss

T is calculated as for the W CR.

Table 1 gives the prefit CR yields for mj j > 1TeV for the W (Z) CR in the third (fourth) columns. These
prefit yields are the inputs for the statistical fit described below. The samples are very pure, as the relative
contribution of the W (Z) CR is 95% (99%) from W (Z) decays. The definitions of the parameters that are
inputs to the fit are (

Bsr
W

)
estimate = Ncr

W · B
sr
W /B

cr
W = Bsr

W · N
cr
W /B

cr
W(

Bsr
Z

)
estimate = Ncr

Z · B
sr
Z /B

cr
Z︸   ︷︷   ︸

α transfer

= Bsr
Z ·N

cr
Z /B

cr
Z︸    ︷︷    ︸

β normalization

,

where the event yields are for the observed data (N) and the MC estimate of the background (B). The transfer
factor α is the SR-to-CR ratio of the MC yields, and is a quantity useful for visualizing how the systematic
uncertainties partially cancel out. The normalization β is the data-to-MC ratio in the CR, which is extracted
from the fit.

Model testing uses a profile likelihood-ratio test statistic [63] in the CLs-modified frequentist formalism [64].
A maximum-likelihood fit of the observed data and MC estimate for each bin sets an upper limit,3 using a
one-sided CL, on Binv for the 125GeV Higgs boson and on the product σvbf

scalar · Binv for a scalar of different
mass. The fit considers a total of 27 bins: three mj j bins for each of nine subsamples (one for the SR, six
for the W CR, two for the Z CR). The prefit comparisons of data and MC are shown for all subsamples in
Fig. 1.

Six normalization β parameters are extracted from the fit, one for each of the three mj j bins for the W and Z
backgrounds. The β parameters extracted from the fit are consistent with unity within their 1σ uncertainties.
The βW (βZ) parameters are extracted in a simultaneous fit of the six W CR (two Z CR) subsamples to
the SR, one β for each mj j bin. In particular, the Weν subsamples are split into two bins of of Smet, one
enriched in non-prompt electrons, and split by charge, since the non-prompt contribution is expected to be
charge symmetric. The normalization of the fake component in the Weν subsamples with Smet ≶ 4

√
GeV

are simultaneously determined, where the ratio between the fakes in the two regions is fixed. This ratio is
determined by the fit using dedicated control region of electrons that satisfy a looser definition than is used in

3 The likelihood is a product of Poisson functions, one for each sample of N events while expecting λ, a Gaussian function for
each systematic uncertainty, and a Poisson function for the number of MC events. The λ for the SR is S +

∑
k βk · Bk with each

quantity multiplied by the response function for a systematic uncertainty, and for the CR it is βk · Bk for region k. See, e.g., Ref.
[65].

7



0 5 10 15 20 25
1

10

210

310

E
ve

nt
s ATLAS

-1fb TeV, 36 13

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1

1.5

R
at

io
s

ν-e ν+e ν-e ν+e ν-µ ν+µ ee µµ SR

  Fake enriched   W CR   Z CR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Superimposed 
Data

=1invBB + S, 
 syst,±B 

all postfit
 

Stacked bkg. 
W (strong)
Z (strong)
W (EW)
Z (EW)
e fakes
tt

multijet

Figure 1: Data-to-MC yield comparisons in the 27 subsamples used in the statistical fit. The observed data N (dots)
are superimposed on the prefit backgrounds B (stacked histogram with shaded systematic uncertainty bands). The
hypothetical signal S (empty blue histogram) is shown on top of B for Binv = 1. The bottom panels show the ratios
of N (dots) and B+ S (blue line) to B with the systematic uncertainty band shown on the line at 1. The 1, 2, and
3 bin label corresponds to the three mj j bins with [1, 1.5, 2, -]TeV boundaries, respectively. The “e fakes” refers to
Smet < 4

√
GeV selection and is determined by the fit, so postfit values are shown for the purposes of illustration. The

diboson contribution is included in the electroweak (EW) W and Z bosons.

the signal region as described earlier. The postfit comparisons of data and expected backgrounds are shown
in Fig. 2 for mj j and Emiss

T for the W and Z CR. The mj j (Emiss
T ) plot groups the backgrounds to show the

dependence of the distribution shape on the production mechanism (final state).

The remaining processes—top quarks, dibosons, multijets—contribute negligibly to the SR (called “other”
in Table 1). The first two are estimated with MC using nominal cross sections. The multijet contribution
is very small, but it is a difficult process to estimate and a potentially dangerous background because those
events that pass the Emiss

T selection are due to instrumental effects, such as the mismeasurement of the jet
energy.

The billionfold-or-more reduction of multijets after the event selection makes it impractical to simulate, so a
data-driven method based on a rebalance-and-smear strategy [66] is used. The assumption is that the Emiss

T is
due to jet mismeasurement in the detector response to jets and neutrinos from heavy-flavor decays [67, 68].
Using the jet-triggered sample, the jet momenta are rebalanced by a kinematic fit, within their experimental
uncertainties, to obtain the balanced value of the jets’ pT. The rebalanced jets are smeared according to jet
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Figure 2: Distribution of event yields in the Z (top) and W (bottom) control regions. The postfit normalizations for mj j

(left) and Emiss
T (right) are summed over the subsamples. The Emiss

T distributions start at 180GeV as indicated. The
observed data N (dots) are superimposed on the sum of the backgrounds B (stacked histogram with shaded systematic
uncertainty bands). The breakdown of the B is given in the lower left box in each panel. The bottom panels show the
ratios of N to B with the systematic uncertainty band shown on the line at 1. The “other,” as listed in Table 1, contribute
a few events at low values of mj j and Emiss

T , and are omitted. The last bin in each plot contains the overflow.

response templates, which are obtained from MC and validated with dijet data. The procedure is validated
in a ∆φ j j-sideband validation region (VR) with 95% purity. This VR is defined by 1.8< | ∆φ j j | < 2.7
and the loosening of the other requirements (| ∆ηj j | > 3, mj j > 0.6TeV, and allow a third leading jet with
25< pT < 50GeV, but no other jets with pT > 25GeV). The comparison of the predictions and the data in the
VR shows good agreement (Fig. 3). The multijet component is obtained using the data-driven method with
the associated systematic uncertainty bands, while the non-multijet components are obtained using MC.

9



0 1000 2000 3000 4000 5000

1

10

210

310

410

510

610

E
ve

nt
s 

/ G
eV

 

 

 

syst ± Multijet 

Non-multijet 

shown left plot

0 1000 2000 3000 4000 5000
 [GeV]jjm

0
1
2
3

R
at

io
s 200 400

1

10

210

310

410

510

610

E
ve

nt
s 

/ G
eV  ATLAS 

-1fb 36 to scaled TeV, 13 
 Data
 B

200 400
 [GeV]miss

TE

0
1
2
3

R
at

io
s

Figure 3: Distribution of event yields in the multijet validation region for mj j (left) and Emiss
T (right). The mj j plot

shows the 100< Emiss
T < 120GeV subset of the right plot as indicated by the arrow. The N observed data (dots) are

superimposed on the sum of the B backgrounds (stacked histogram). The systematic uncertainty band applies only to
the multijet component. The statistical uncertainties are relatively large because of the weighting of the trigger samples
with large prescale values. See the caption of Fig. 2 for other plotting details.

6 Uncertainties

Experimental sources of uncertainty are due mainly to the jet energy scale and resolution [69], Emiss
T soft term

[70], and lepton measurements [39, 40]. In order to reduce fluctuations due to limited MC sample size, the
uncertainties in number of expected events for the variations of jet energy scale and resolution for the strong
and electroweak background samples are averaged. This is motivated by the similarities of the kinematics
and the detector effects for the two production processes for each mj j bin. For the lepton measurements, the
impact of identification in the W CR is negligible, but the veto in the SR affects the W background there.
Other sources, such as the pileup distribution and luminosity [71, 72], have a relatively small impact.

Theoretical sources of uncertainty are due mainly to scale choices in fixed-order matrix-element calculations.
For the background processes, QCD scales are varied for the resummation scale (resum.), renormalization
scale (renorm.), factorization scale (fact.), and ckkw matching scale. The first three scales in the list—
technically called q2, µR, µF, respectively—are varied by a factor of two. For the ckkw matching scale
between the matrix element and the parton shower [56], the central value and the considered variations
are 20+10

−5 GeV. The higher-order electroweak corrections to the strongly produced W or Z are found to be
negligible.

The effects of the theoretical variations are evaluated with a sample of generated MC events prior to
reconstruction, which is larger than the reconstructed sample. Moreover, in order to reduce fluctuations
due to limited MC statistics, the effect of the resummation and ckkw variations as a function of mj j are
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Figure 4: Contributions to the relative uncertainty in the transfer factors αZ (left) and αW (right) in the three mj j bins of
the SR. The theoretical uncertainties from the sources noted in the legend are combined in quadrature.

determined by a linear fit, using mj j values below the selection for the SR and a sample with loosened
selection on ∆ηj j and ∆φ j j .

For both signal and background, the effects of the choice of a parton distribution function (PDF) set have a
relatively small impact. The variations are considered using an ensemble of PDFs within the nnpdf set [52]
and the standard deviation of the distribution is taken as the uncertainty.

For the signal process, the effect of the scale uncertainty on the third-jet veto for the gluon fusion plus two-jet
contribution is evaluated using the jet-bin method [73].

Statistical uncertainties are due to the data and MC sample sizes.

Systematic uncertainties are assumed to be either fully correlated or uncorrelated. The uncertainties from
the following sources in each independent mj j bin are correlated between the SR and CR: QCD scales, PDF,
and lepton measurements. The theoretical uncertainties due to QCD scales are uncorrelated between the
following pairs: signal vs. background, electroweak vs. strong production, and W vs. Z production.

The sources of uncertainty are grouped into the three main categories given above (Table 2). The impact of
each source is measured in two ways: (1) on the 95% CL upper limit on Binv and (2) on the event yields and
α transfer factors. Impact (1) assesses the percentage improvement of the Binv limit should that source of
uncertainty be “removed” by fixing the associated parameter to its best-fit value. Impact (2) demonstrates that
the systematic uncertainties in the individual yields partially cancel out for many of the theoretical sources.
However, for many of the experimental sources the cancellation is not achieved due to limited MC statistics
of the varied samples. For example, the effects of changing the renormalization and factorization scales
change the MC yield in the Z SR (BZ

sr) and the Z CR (BZ
cr) by about 20%, but the αZ transfer factor changes

by only 1%. In Table 2, only the 1<mj j < 1.5TeV yields are shown for the purpose of illustrating the partial
cancellation. For the sources contributing the largest uncertainties, the αZ and the αW variations in the three
mj j bins are shown graphically in Fig. 4.
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Table 2: Sources of uncertainty. The first set shows ∆, the relative improvement of the 95% CL upper limit on Binv
when the source of uncertainty is “removed” by fixing it to its best-fit value. Combined rows are not simple sums of the
rows above because of the ∆ metric; the symbols (†, ‡,?) are parenthetically defined in the table. The column labeled
“visual” shows bars whose lengths from the center tick are proportional to ∆. The second set of columns shows the
effect on the yields and the α transfer factors; values in the 1<mj j < 1.5TeV bin are shown. The yields are for the
signal process in the SR (S), Z MC in the SR (Bsr

Z ), and Z MC in the CR (Bcr
Z ). The αZ is given to demonstrate the

reduction in the uncertainty in the ratio Bsr
Z /B

cr
Z . The individual yields for theW are not shown because the cancellation

effects are similar to the Z counterparts. The abbreviations for the theoretical sources are described in the text. The
‘-’ indicates that the quantity is not applicable. The penultimate (last) row shows the summary impact of removing the
systematic uncertainties due to the experimental and theoretical sources (as well as statistical uncertainties of the MC
samples).

Source Binv improve. [%] Yields,α changes (%)
using allmj j bins in 1<mj j<1.5TeV
∆ visual S BZ

sr BZ
cr αZ αW

Experimental (†)
Jet energy scale 10 12 7 8 8 6
Jet energy resol. 2 2 0 1 1 4
Emiss
T soft term 1 2 2 2 2 2

Lepton id., veto 2 - - - - 4
Pileup distrib. 1 3 1 2 3 1
Luminosity 0 2 2 2 - -

Theoretical (‡)
Resum. scale 1 - 2 3 0 2
Renorm., fact. 2 - 20 19 1 2
ckkw matching 4 - 2 3 1 5
PDF 0 1 1 2 1 1
3rd jet veto 2 7 - - - -

Statistical
MC sample (?) 12 4 5 9 10 9
Data sample 21 6 5 12 12 6

Combined
All † sources 17
All ‡ sources 10
Combine †, ‡ 28
Combine †, ‡, ? 42

The combination of uncertainties from various sources shows that the dominant category has a systematic
origin (penultimate row of Table 2). The lack of MC statistical precision for background processes with
mj j > 2TeV has the largest impact on Binv. We note that the ∆ values are percent improvements of Binv, so
they do not add in quadrature or in any such standard statistical combinations.
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Figure 5: Distribution of event yields in the signal region for mj j (left) and Emiss
T (right). The Emiss

T distributions start at
180GeV and shows the most sensitive mj j > 2TeV subset of the SR as indicated by the arrow. The postfit normalizations
for mj j (Emiss

T ) distributions use separate background, B, normalizations in the mj j range of [1, 1.5, 2, -] ([2, -])TeV, and
sum the contributions from W and Z bosons (electroweak and strong production modes). The hypothetical signal S
(empty blue histogram) is shown on top of B for Binv = 1. The bottom panels show the ratios of N (dots) and B+ S
(blue line) to B with the systematic uncertainty band shown on the line at 1. The bin width in the mj j plots (Emiss

T ) is
500GeV (50GeV except for the first bin with the non-zero entry, which is 20GeV). See the caption of Fig. 2 for other
plotting details.

7 Result and interpretations

The 2252 observed events in the SR are divided among the three mj j bins defined previously: 952, 667, and
633 events. These values are consistent with the background-only postfit yields of the sum of the background
processes of 2100 events, which are divided among the three mj j bins: 850± 113, 660± 90, and 590± 812,
respectively. The uncertainty represents the combined effect due to experimental and theoretical systematic
uncertainties (MC sample size). These postfit values are also consistent with the prefit values. The expected
signal yields (for Binv = 1 for VBF and gluon fusion) are 300, 310, and 460, respectively, and the last mj j bin,
with S/B≈ 0.8, has the highest sensitivity.

The postfit SR event distributions of mj j and Emiss
T are shown in Fig. 5, and a good agreement between the

data and the expected backgrounds is observed.

Figure 5(a) also shows that the S/B ratio rises with increasing mj j values, which motivates our division of the
SR into multiple bins. The total electroweak contribution in the SR is relatively small at O(10%) (Table 1),
but the much flatter distribution of mj j makes it an important contribution to the final result. As noted in
Section 5, the background estimation is done independently for each mj j bin to reduce the dependence on
mj j modeling.

The fit, assuming the 125GeV Higgs boson, gives the observed (expected) upper limit on Binv of 0.37
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(0.28 +0.11
−0.08) at 95% CL, and 0.32 (0.23 +0.11

−0.10) at 90% CL, where the uncertainties placed on the expected limit
represent the 1σ variations. With this result, connections to wimp dark matter can be made in the context
of Higgs portal models [74]. In particular, relations between Higgs boson and scalar wimp and Majorana
fermion wimp [11, 75, 76] allows the translation of the results into the wimp–nucleon scattering cross section
(σwimp-nucleon).

The overlay of the interpretation of this result with the limits from some of the direct detection experiments
[77–79] shows the complementarity in coverage (Fig. 6(a)). For the scalar wimp interpretation cross sections
are excluded at values ranging from O(10−42) to O(10−45) cm2 and for the Majorana fermion wimp interpret-
ation the exclusion range is from O(10−45) to O(10−46) cm2, depending on the wimp mass. The uncertainty
band in the plot uses an updated computation of the nucleon form factors [80].

The correlation between Binv and σwimp-nucleon is presented in the effective field theory framework assuming
that the new-physics scale is O(1)TeV [28], well above the scale probed at the Higgs boson mass. Adding
a renormalizable mechanism for generating the fermion wimp masses could modify the above-mentioned
correlation [81].

In place of the 125GeV Higgs boson, the same selection is applied to additional scalars with masses (mscalar)
of up to 3TeV assuming only VBF production. The fraction of VBF signal events that pass the signal
region event selections corresponding to the acceptance times efficiency ranges from 3–5%. The limit on
σvbf
scalar · Binv as a function of mscalar is shown in Fig. 6(b). The 95% confidence level upper limits on the cross

section times branching fraction are in the range of 0.3–2.0 pb.

8 Conclusions

A search for Higgs boson decays into invisible particles is presented using the 36.1 fb−1 of pp collision data
taken at

√
s = 13TeV by the ATLAS detector at the LHC. The targeted signature is the VBF topology with

two energetic jets with a wide gap in η and large Emiss
T .

Assuming the Standard Model cross section for the 125GeV Higgs boson, an upper limit is set on Binv at
0.37 at 95% CL. This result is interpreted using Higgs portal models to exclude regions in the σwimp-nucleon vs.
mwimp parameter space to exclude cross section values ranging from O(10−42) to O(10−46) cm2, depending
on the wimp mass and the wimp model.

Searches for invisible decays of scalars with masses of up to 3TeV are reported for the first time from ATLAS
in the VBF production mode. These results are rather general and can be used for further interpretations.
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