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Abstract: We test various conjectures about quantum gravity for six-dimensional string

compactifications in the framework of F-theory. Starting with a gauge theory coupled to

gravity, we analyze the limit in Kähler moduli space where the gauge coupling tends to

zero while gravity is kept dynamical. We show that such a limit must be located at infinite

distance in the moduli space. As expected, the low-energy effective theory breaks down in

this limit due to a tower of charged particles becoming massless. These are the excitations

of an asymptotically tensionless string, which is shown to coincide with a critical heterotic

string compactified to six dimensions.

For a more quantitative analysis, we focus on a U(1) gauge symmetry and use a chain

of dualities and mirror symmetry to determine the elliptic genus of the nearly tensionless

string, which is given in terms of certain meromorphic weak Jacobi forms. Their mod-

ular properties in turn allow us to determine the charge-to-mass ratios of certain string

excitations near the tensionless limit. We then provide evidence that the tower of asymp-

totically massless charged states satisfies the (sub-)Lattice Weak Gravity Conjecture, the

Completeness Conjecture, and the Swampland Distance Conjecture. Quite remarkably, we

find that the number theoretic properties of the elliptic genus conspire with the balance

of gravitational and scalar forces of extremal black holes, such as to produce a narrowly

tuned charge spectrum of superextremal states. As a byproduct, we show how to compute

elliptic genera of both critical and non-critical strings, when refined by Mordell-Weil U(1)

symmetries in F-theory.
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1 Introduction and summary

Quantum gravitational effects are deeply woven into the fabric of string theory. Effective

field theories that derive from string theory should reflect these, and in particular must

be consistent with any consistency constraints that quantum gravity may impose. String

theory is therefore an ideal framework to investigate and exemplify general ideas about

quantum gravity in a reasonably well-controlled and computable setting. The dichotomy

between theories which can or which cannot be coupled to gravity manifests itself in the

distinction between the so-called landscape of consistent vacua, and the swampland of effec-

tive theories without a UV completion [1]. Various, mostly conjectured criteria characterize

the boundary between both regions in theory space [2]. Since this boundary is still under

considerable debate, it is important to use the opportunity of confronting such conjectures

with as quantitative an analysis as possible in the context of string compactifications.

In this work we address the interplay between gauge and gravitational effects in what

one may call the open string sector, by analyzing gauge symmetries under which the matter

fields are charged. Realizing such a setup in F-theory allows us to relate general arguments

about constraints of quantum gravity to questions in algebraic and enumerative geometry,

number theoretic properties of modular forms, and conformal field theory. This includes

applying the theory of weak Jacobi forms to state counting via the elliptic genus, as well

as computations in topological strings and mirror symmetry.

Among the earliest conjectures on general quantum gravity properties is that contin-

uous global symmetries should not exist in the presence of gravity, as pointed out in the

context of perturbative string theory in [3]. Rather, what appears as a global symmetry

at low energies should derive from a gauge theory in the UV. This is motivated e.g. by

the physics of quantum black holes: global continuous symmetries would lead to charged

stable remnants that would exceed certain covariant entropy bounds [4].

More generally, according to the Weak Gravity Conjecture [5], gravity should be the

weakest force at any point in moduli space. Starting from a gauge theory coupled to gravity

and taking a limit in the stringy moduli space where the gauge symmetry becomes a global

symmetry should therefore be prohibited within the landscape of consistent theories. At a

macroscopic level, this means that the global symmetry limit must lie at an infinite distance

in the moduli space. Microscopically, the effective field theory should break down as the

problematic limit is approached.

This in turn ties in beautifully with another general expectation about the structure of

quantum gravity, which can be summarized in the Swampland Distance Conjecture [6] as

follows: the effective field theory formulated at a given point in moduli space is well-defined

only within a finite distance from this reference point. As we travel an infinite distance in

moduli space, a tower of infinitely many states should become massless at an exponentially

fast rate. This leads to a breakdown of the effective field theory and, in turn, explains why

such points at infinite distance cannot be attained within the effective field theory [7, 8].

In combination with the rationale that no points with global symmetries can exist in the

presence of gravity, this suggests the appearance of infinitely many charged states that

become massless in the limit where a gauge symmetry becomes global.
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This reasoning has been recently verified in the context of Type IIB compactifications

to four dimensions with eight supercharges [8]: as infinite distance points in complex

structure moduli space are approached, a tower of BPS states from D3-branes wrapping

vanishing 3-cycles becomes massless. These states are charged under abelian Ramond-

Ramond gauge symmetries which indeed become global symmetries at infinite distance.

If true, the Weak Gravity and Swampland Distance Conjectures would have far-

reaching consequences for cosmology and phenomenology, which, together with various

refinements, have been the subject of intensive investigations in the recent literature, in-

cluding [7, 9–35].

In this article we initiate a systematic investigation of quantum gravity constraints for

compactifications where the gauge symmetries are localised on branes, in the framework

of 6-dimensional F-theory [36–38]. We will address the Swampland Distance Conjecture,

the Weak Gravity Conjecture and its refinement as a (Sub)Lattice Weak Gravity Conjec-

ture [17, 39] as well as the Completeness Hypothesis of [40].

Our starting point is the question whether it is possible to go to a point in moduli

space where an (‘open string’) gauge symmetry becomes a global symmetry while gravity

is kept dynamical, or rather what prevents us from realising such a limit. This question

turns out to have an answer directly from the compactification geometry. Recall that the

6-dimensional Planck mass is set by the volume of the F-theory compactification space.

This is a complex Kähler surface, B2, which serves as the base of an elliptically fibered

Calabi-Yau 3-fold, Y3. The open string gauge symmetry, on the other hand, arises from

7-branes that wrap holomorphic curves C on B2. Thus we have

M4
Pl ∼ volJ(B2) ,

1

g2
YM

∼ volJ(C) , (1.1)

where J denotes a chosen Kähler form with respect to which the volumes are measured. In

the special case of abelian gauge groups that we will sometimes restrict our discussion to, C

has a description in terms of the so-called height-pairing of a rational section of the elliptic

fibration over B2. The critical limit we are interested in thus corresponds to the limit

volJ(C)→∞ with volJ(B2) finite. (1.2)

Our first result is that this necessarily implies that B2 must contain a rational curve C0

whose volume goes to zero as volJ(C) → ∞. The proof we provide makes use of various

properties of Kähler geometry including in particular Mori’s cone theorem. As we will

see, the limit (1.2) manifestly lies at infinite distance in the Kähler moduli space, which

realizes one of the general expectations spelled out above. Technically, this means that the

curve C0 is not contractible in the sense of algebraic geometry, which would require the

self-intersection of a contractible curve to be strictly negative. By contrast, the curve C0

whose volume vanishes asymptotically is shown to have zero self-intersection.

A D3-brane wrapping the curve C0 gives rise to a solitonic string in the uncompactified

six dimensions. Asymptotically, its tension T is controlled by

T ∼ volJ(C0)→ 0 . (1.3)
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As it turns out, C0 necessarily intersects the curve C and hence the strings associated to

the C0 are charged under the 7-brane gauge group. A tower of light charged states thus

appear in the effective theory, whose masses vanish exponentially fast as we approach the

limit gYM → 0. This signals the breakdown of the effective theory, which in a sense provides

a microscopic censor that forbids the appearance of a global symmetry.

We can be considerably more quantitative. Since the curve C0 is always a rational

curve of vanishing self-intersection, its zero-mode structure [41, 42] coincides with the zero

mode structure of a heterotic string. Near the tensionless limit, the string in fact becomes

identical to the familiar, critical heterotic string compactified to six dimensions. Note that

the physics of the nearly tensionless heterotic string is fundamentally different from the

non-critical strings that arise from curves with negative self-intersection. These become

tensionless at superconformal points of 6d N = (1, 0) gauge/tensor theories in the absence

of gravity [43, 44] (see the recent review [45] for more details). The critical heterotic strings

we consider include gravity, however, and may also be weakly coupled.

The appearance of a weakly coupled heterotic string is evident when the base, B2, of

the elliptically fibered Calabi-Yau 3-fold, Y3, is a Hirzebruch surface. In this case the 6d F-

theory vacuum is known [37, 38] to be dual to the perturbative heterotic string compactified

on a K3 surface. The rational fiber of the Hirzebruch surface plays the role of the curve

C0, and the tensionless limit coincides with the heterotic weak coupling limit [37].

More generally, we will see that in order for the limit (1.2) in Kähler moduli space to

exist, the elliptic fibration Y3 must always admit a K3 fibration, whose K3 fiber class Ĉ0 is

exactly the restriction of the elliptic fibration to C0. The D3-brane that wraps C0 maps to

an M5-brane along Ĉ0 in the dual M-theory. Upon S1-reduction, which takes us to the dual

IIA string on Y3, the M5-brane turns into an NS5-brane wrapped on the K3 surface Ĉ0.

As an NS5-brane on K3 is known to be dual to the heterotic string in 6d [46], adiabatically

fibering it over the base of the K3 fibration again identifies the string in question with the

heterotic one, albeit compactified in a less standard way (see the recent work [47] for an

account of that more general Type IIA/heterotic duality).

The appearance of a potentially weakly coupled, critical heterotic string from a D3-

brane wrapped on a shrinking curve C0 allows us to determine the charge and mass spec-

trum in some detail, at least near that limit. However, even for configurations where the

heterotic string is non-perturbative and not necessarily weakly coupled, estimates for the

spectrum can be made by considering its elliptic genus. Such reasoning is quite analogous

to using the elliptic genus to determine properties of non-critical strings in 6 dimensions.

This has been a rich and beautiful topic, pioneered in [48] and with dramatic progress also

in the recent literature, including [41, 49–59] (see e.g. the review [45] for more references).

The elliptic genus is defined as a weighted trace over the BPS spectrum of winding and

Kaluza-Klein momentum modes of the string wrapped on S1, and counts the index of BPS

particles in the dual 5d M-theory. In the limit of infinite radius, it reduces to a trace over

the left-moving excitations of the 6d string. As a consequence, their partition function

is meromorphic and thus highly constrained by modular invariance. This fact remains

true in the presence of background gauge fields whose field strengths enter the partition

function as ‘fugacities’. The corresponding modular forms are weak Jacobi forms, which
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are characterized by a “fugacity index” besides their modular weight. The fugacity index,

in turn, is related to the anomaly polynomial of the string [55, 56]. The interplay of

modular invariance and anomalies traces back to the earliest applications [60–62] of the

elliptic genus in string theory.

A new result that we will find is that for abelian flavour groups, the fugacity index is

given by the intersection of the shrinking curve C0 with the height-pairing of the rational

section that is responsible for the appearance of the abelian symmetry. With this input

one can then make, for any concrete model, an ansatz for the elliptic genus with a few free

parameters. These can in turn be fixed by using a non-trivial duality [50, 52] which relates

the elliptic genus to the topological string theory on Y3.

For given examples, this allows us to determine a characteristic part of the charge/mass

spectrum of the nearly tensionless heterotic string explicitly, and to address questions

related to the various Quantum Gravity conjectures mentioned above. However, even

without explicitly determining the elliptic genus for concrete examples, we can draw some

important conclusions just from its general properties. These include the following:

1. The excitation spectrum of the string contains states for every allowed value of the

charge under the abelian gauge group. In this sense the full charge lattice is popu-

lated, in agreement with the Completeness Hypothesis of [40]. While this is a rather

trivial fact for perturbative heterotic strings, it seems less so for non-perturbative

variants for which no partition function is known. For example, in F-theory the spec-

trum of open string excitations in the 7-brane sector alone would spectacularly fail

to populate the full charge lattice. Indeed, at the massless level only a few charges

are realized explicitly. Their stringy or Kaluza-Klein excitations do not carry higher

charges either because the charge is set by the Chan-Paton factors of the open string.

2. At least in the limit of vanishing tension, the states of maximal charge per string

excitation level satisfy the Sublattice Weak Gravity Conjecture bound of [39], i.e.

the charge-to-mass ratio exceeds that of an extremal (non-BPS) Reissner-Nordström

black hole in six dimensions. This condition is required in order for non-BPS extremal

black holes to decay, which in turn was argued [5] to be a necessary property of any

theory of quantum gravity to evade various entropy bounds.

The conclusions we draw concerning the censorship against global symmetries or

concerning the Weak Gravity Conjecture can be read either as statements about six-

dimensional F-theory vacua, or as analogous properties of the six-dimensional heterotic

string with N = (1, 0) supersymmetry as such, even without any reference to an F-

theory dual.

There are, however, a few caveats to the above reasoning and we therefore need to

spell out our working assumptions concerning them. Foremost is the absence of a BPS

property of particle excitations in (1, 0) supersymmetric 6d theories. Rather what is BPS

protected are strings. Their BPS nature allows one to infer the appearance of asymptoti-

cally tensionless strings in certain limits of the moduli space. It is natural to expect that

their particle excitations are gapped in terms of the tension, but strictly speaking there
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is little control of the mass spectrum. Fortunately some of the geometries lead to weakly

coupled, perturbative heterotic strings, for which one can make quantitative statements at

least in the asymptotic limit of vanishing coupling. For strongly coupled versions the only

tool is, as mentioned above, the elliptic genus, but since it does not involve BPS protected

states in 6 dimensions, it is not entirely clear what conclusions can be rigorously drawn. We

assume, as our working hypothesis, that the statements about charge-to-mass relationships

inferred from the elliptic genus remain at least qualitatively valid. The same applies also

to the extremal black hole solutions with which masses and charges of the string states are

to be compared, as these are not protected by a BPS property either.

This article is organized as follows: in section 2.1 we begin with a brief recapitulation

of 6d F-theory vacua, mainly in order to set up our notation. In section 2.2 we characterize

the geometric limit (1.2) in which a generic 7-brane-supported gauge symmetry becomes

a global symmetry in the presence of gravity. The technical details of the derivation are

relegated to appendix B. As we will see in section 2.3, the limit lies, quite as expected,

at infinite distance in Kähler moduli space. In section 2.4 we explain the appearance of a

critical 6d heterotic string that becomes tensionless as the 7-brane gauge group becomes

global. The main properties of the charge spectrum of this heterotic string are summarized

in section 2.5. The results of this section will be derived in the technical section 3, but

we present the main points already at this stage in order to give the casual reader a quick

overview. In section 2.6 we put these findings into perspective with various conjectured

quantum gravity constraints. Apart from verifying at least asymptotically the Sublattice

Weak Gravity Conjecture, we give evidence that integrating out the tower of charged states

reproduces the vanishing of the gauge coupling in the tensionless limit [7, 8].

The technical section 3 contains a detailed analysis of the tensionless heterotic string

with regard to its elliptic genus. In section 3.1 we explain how to infer from the elliptic

genus of the perturbative heterotic string the appearance of (a characteristic subset of

the) physical charged states that become light in the tensionless limit. We then review

some basic properties of the elliptic genus, its relation to weak Jacobi forms and to the

topological string in section 3.2. The upshot of this discussion is to relate the elliptic

genus of the heterotic string to the genus-zero free energy of the topological string on the

F-theory 3-fold Y3. This allows us to obtain results also for situations where Y3 is not a

fibration over a Hirzebruch surface, in which case the nearly tensionless heterotic string is

not necessarily weakly coupled.

In section 3.3 we provide a new result, namely the computation of the U(1) fugacity

index via the height pairing of a rational section in F-theory. Subsequently, the general

strategy to determine the charge-to-mass ratio of excited states via the elliptic genus is

summarized in section 3.4; a proof of some underlying mathematical facts is presented in

appendix D.

In section 4 we apply the general machinery of section 3 to various explicit examples

of elliptic fibrations with a non-trivial Mordell-Weil group; these correspond to F-theory

compactifications with a single unbroken U(1) gauge symmetry. Apart from being inter-

esting by themselves, these computations serve as a check of the predicted charge-to-mass

ratio of the string excitations as encoded in the elliptic genus. More specifically, in sec-
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tion 4.1 we present models on Hirzebruch bases and recover a U(1)-refined version of the

familiar, conformal field theoretic heterotic elliptic genus on K3 [60, 61, 63–66]. In sec-

tion 4.2 we exemplify the more general situation where the dual heterotic string theory

involves additional tensor fields and thus is non-perturbative. The elliptic genus then dif-

fers from the familiar perturbative version, but is consistent with a tensor transition to a

model on a more conventional Hirzebruch base. Details of the computation are relegated

to appendix E.

In section 5 we conclude with an outlook and some speculations.

2 Global symmetries and their geometric realizations

In this section we will analyze the “ungauging” of a local gauge symmetry in 6d F-theory

compactifications, while keeping gravity dynamical. We begin with an analysis of the

geometric realisation of this process as a very special limit in Kähler moduli space, and

then study its physical implications.

2.1 F-theory on elliptic Calabi-Yau 3-folds

We will be working in the framework of F-theory [36–38] compactified on a Calabi-Yau

3-fold Y3 which is elliptically fibered over a compact Kähler surface B2,

π : Eτ → Y3

↓
B2 (2.1)

The effective theory in six dimensions is a 6d N = (1, 0) supergravity theory. Background

on F-theory in general and its compactifications to six dimensions in particular can be

found e.g. in the reviews [67–69]. In units where the string length is `s = 1, the Planck

mass in the 6d Einstein frame is determined by the volume of the base surface B2 as follows:

M4
Pl = 4π volJ(B2) . (2.2)

Throughout this article the value of MPl will be kept fixed by normalizing the volume of

the base B2 as

volJ(B2) = 1 . (2.3)

The volume is defined with respect to a Kähler form J . A summary of our conventions for

the effective action in 6d is provided in appendix A.

Non-trivial gauge symmetries arise essentially along the world-volume of 7-branes that

wrap holomorphic divisors of the base B2. A non-abelian gauge symmetry algebra gI is

localised on a stack of 7-branes that wrap a divisor ΣI , which is in itself a component of

the discriminant divisor of the elliptic fibration. More specifically, suppose we describe the

elliptic fibration Y3 by a Weierstrass model

y2 = x3 + fxz4 + gz6 , (2.4)

– 7 –
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where [x : y : z] denote the homogeneous coordinates on the fiber ambient space, P231. If

the elliptic fibration is to be Calabi-Yau, we must require that

f ∈ H0(B2,OB2(4K̄)) , g ∈ H0(B2,OB2(6K̄)) (2.5)

in terms of the anti-canonical divisor K̄ on the base. In order for these sections to exist,

K̄ must be an effective class on B2. The vanishing locus of the discriminant

∆ = 4f3 + 27g2 (2.6)

of the elliptic fibration is a divisor

Σ = Σ0 ∪
⋃
I

ΣI . (2.7)

Then to each component ΣI we associate a non-abelian gauge algebra gI , while the residual

discriminant divisor Σ0 carries a trivial gauge algebra. For later purposes note that as a

consequence of (2.5) the divisor class of Σ is

[Σ] = 12 K̄ . (2.8)

On the other hand, abelian gauge symmetries are generated by non-trivial rational sections

S of the fibration Y3 [37], more precisely by the image of such a section under the Shioda

homomorphism [70–72]

σ(S) = S − S0 −D . (2.9)

Here S0 is the zero-section of the fibration and D ∈ π∗H2(B2) is a base divisor class which

is chosen such that σ(S) satisfies certain transversality conditions. In absence of additional

non-abelian gauge algebra factors, the divisor class D is given as

D = π−1(π∗((S − S0) · S0)) , (2.10)

which we will use later in section 4 when analyzing explicit models. More generally, in

presence of non-abelian algebras, D contains in addition a linear combination of the blow-

up divisors that resolve the singularities in the fiber. For more information we refer to the

summary in appendix A of [73] and references therein.

What is important for us is the fact that the gauge coupling gYM associated with both

a non-abelian or an abelian gauge symmetry is determined by the Kähler volume of a

certain divisor on B2,
1

g2
YM

=
1

2π
volJ(C) , (2.11)

where1

C =

{
ΣI if g = gI

b := −π∗(σ(S) · σ(S)) if g = u(1)
(2.12)

1We are normalizing the gauge coupling as spelled out in appendix A.
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The quantity b is called the height pairing of the section S, and in absence of additional

non-abelian gauge group factors it is given by

b = 2K̄ + 2π∗(S · S0) . (2.13)

In the presence of several abelian gauge group factors, mixing can occur between the kinetic

terms of the individual field strengths, which makes the definition of the gauge coupling

more complicated. In such a situation, b is the diagonal part of the gauge kinetic function.

We will restrict ourselves, for simplicity, to situations with a single abelian gauge group

factor to avoid the need to diagonalise the gauge kinetic function.

Massless charged matter fields in the 6d N = (1, 0) supergravity theory arise from

strings stretched between the 7-branes. Note that these matter fields transform un-

der a finite number of irreducible representations, or have a finite number of U(1)

charges, respectively.

2.2 Global symmetries as a limit in Kähler moduli space

Let us suppose that the coupling of a certain gauge group factor, be it a U(1) or a simple

non-abelian one, is parametrically smaller than the gravitational coupling, that is,

gYM �M−1
Pl . (2.14)

In view of (2.2) and (2.11), this can be rephrased in geometric terms as

volJ(C)� (volJ(B2))1/2 . (2.15)

As we will show, in such a geometric setup, there must arise an infinite tower of charged

particles which become asymptotically massless. This is because the limit (2.15) drives

the base B2 to a very degenerate regime in Kähler moduli space, where the Kähler form

J approaches the boundary of the Kähler cone. More precisely, we are interested in the

regime where

volJ(C) ∼ t→∞ , volJ(B2) finite . (2.16)

This forces the base B2 to become very anisotropic in the sense that it grows ‘long and

thin’, as specified in technical terms below. In order for the base volume to remain finite

while the volume of the curve C goes to infinity, there must exist another curve C0 which

intersects C and whose volume goes to zero as t → ∞. This happens in such a way that

the product of the volume of C and C0 must lie below a finite upper limit. The infinitely

many particles which become massless as t → ∞ are the excitations of an effective string

obtained by wrapping a D3-brane along C0. As we will see, the properties of this string

depend crucially on the fact that the curve C0 has vanishing self-intersection C0 · C0 = 0.

This implies that the elliptic fibration whose base allows for a limit (2.16) necessarily

exhibits a K3-fibration.

While the properties of the string associated with C0 are the subject of the subsequent

sections, we will first analyze this degenerate limit of the base B2 in more detail. To this

end, let us formulate our above findings concerning the limit in the Kähler cone in more

precise terms:
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1. Our first key result is that in the limit (2.16), with the finite volume of B2 normalised

to 1, the Kähler form J of the base B2 must take the universal form

J = tJ0 +
∑
ν

sνIν , as t→∞ . (2.17)

Here J0 ∈ H1,1(B2,Z) is a Kähler cone generator satisfying

J0 · J0 = 0 , 2m :=

∫
C
J0 ≥ 1 . (2.18)

The remaining Kähler cone generators Iν ∈ H1,1(B2,Z) have the property that∑
ν

nνsν →
1

t
as t→∞ , (2.19)

where

nν = J0 · Iν (2.20)

and at least one nν 6= 0. The non-negative expansion parameters sν stay finite as

t→∞ and are chosen such that volJ(B2) = 1.

To summarize, the Kähler form asymptotes to the direction of one Kähler cone gen-

erator, J0, and the fact that
∫
C J0 ≥ 1 guarantees that the volume of C goes to

infinity as t→∞. This happens in a very special way such that the total volume of

B2 remains finite.

2. The second key result is that there exists a rational curve C0 which intersects C and

whose volume goes to zero in the limit (2.16) as

volJ(C0)→ 1

t
. (2.21)

It is of crucial importance that its self-intersection vanishes, C0 · C0 = 0. This leads

to the behaviour

volJ(C) volJ(C0)→ 2m+
s

t
(2.22)

for the product of the volumes of the two curves, in the limit where C becomes

infinitely large while B2 is kept finite. Here

s :=
∑
ν

sν

∫
C
Iν (2.23)

is a non-negative real number which remains finite in the limit.

3. The curve C0 is the only curve whose volume vanishes in the limit with the property

that C0 · C0 = 0. All other vanishing curves have negative self-intersection.

4. Whenever the base admits a limit of the form (2.15), the elliptic fibration over it

admits the structure of a K3 fibration,

ρ : K3 → Y3

↓ (2.24)

C ′
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over some curve, C ′. The class of the K3-fiber is

Ĉ0 := π−1(C0) ∈ H4(Y3) , (2.25)

i.e. the restriction of the elliptic fibration (2.1) to C0. In general, this K3 fibration

is not compatible with the elliptic fibration (2.1).

In appendix B we derive these four results (Assertions 1–4). The busy reader not interested

in the technical details is invited to skip the derivation on a first reading.

2.3 The global limit as a point at infinite distance

As explained in the previous section, we are interested in taking a limit in Kähler moduli

space in which a self-intersection zero curve C0 shrinks to zero volume. Before analyzing in

more detail the physical consequences of this limit in the next section, note that on a surface

B2 a curve of non-negative self-intersection cannot be contractible in the sense of algebraic

geometry. In fact, the limit in Kähler moduli space in which C0 shrinks to zero volume

is strikingly different from the limit where a contractible curve assumes vanishing volume.

In the latter case, we can take the curve volume to zero without any other curve on B2

acquiring infinite volume. The result of such a contraction is a canonical singularity on B2,

which, for F-theory bases, is of the local form [74] C2/G with G a discrete subgroup of U(2).

If we view the degeneration leading to a canonical singularity in complex structure moduli

space, then these occur at finite distance with respect to the Weil-Petersson metric [75].

The degeneration of B2 in the present context, however, is much more severe. In particular,

C0 cannot be considered in isolation because we have shown that there must exist another

curve C with C · C0 6= 0 with the property

volJ(C)→∞ as volJ(C0)→ 0 . (2.26)

In fact, as we show now, the point t → ∞ in (2.17) lies at infinite distance in the Kähler

moduli space.2

To see this, let us consider a basis ωα, α = 0, . . . , nT of H1,1(B2). We recall first

that the intersection form Ωαβ =
∫
B2
ωα ∧ωβ on the compact Kähler surface has signature

SO(1, nT ) and can be assumed to take the form

Ωαβ = diag(+1,−1, . . . ,−1) , (2.27)

upon an appropriate diagonalization. In physics terms, nT = h1,1(B2) − 1 is the number

of tensor multiplets in the 6d N = (1, 0) F-theory vacuum. Any Kähler form J normalised

such that 1
2

∫
B2
J2 = 1 can therefore be expanded in the diagonal basis as

J =
√

2jαωα . (2.28)

Thus, we may parameterise the coordinates on the hypersurface MT of constant six-

dimensional Planck mass, namely,

j · j = jαΩαβj
β = (j0)2 −

nT∑
i=1

(ji)2 = 1 , (2.29)

2The following computation was worked out in collaboration with Diego Regalado.
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as

j0 = coshx ji = sinhxui(φ1, . . . , φnT−1) . (2.30)

Here x takes any real value and the functions ui(φ1, . . . , φnT−1) are chosen such that∑
i(u

i)2 = 1. Hence the coordinates φA (A = 1, . . . , nT −1) parameterise the unit (nT −1)-

sphere S.

Now, the metric on the (nT + 1)-dimensional Kähler moduli space spanned by jα is

known to take the form

gαβ = 2ΩαρΩβκj
ρjκ − Ωαβ . (2.31)

Given (2.30) we may compute the induced metric on the hypersurface MT of unit volume

surfaces, which reads

ds2 = dx2 + sinh2 x dΩS , (2.32)

where dΩS = hAB(φ) dφAdφB denotes the standard metric on the unit sphere S. The

distance between any two points P,Q ∈MT is given by

L(P,Q) =

∫ xQ

xP

dx

√
1 + sinh2 xhAB(φ(x))

dφA

dx

dφB

dx
(2.33)

where we used x itself to parameterise the path between the two points. The important

point is that for any path connecting P,Q, including the geodesic path, we have that

L(P,Q) ≥ |xP − xQ| (2.34)

since sinh2 xhAB(φ(x))dφ
A

dx
dφB

dx ≥ 0 for any path φA(x).

It is interesting to compare the parameterisation of the Kähler form (2.28) with the

one in (2.17). Since the behaviour of the moduli parameterising the finite volume sphere

S is irrelevant for our purposes, it suffices to take h1,1(B2) = 2 for simplicity. In this

case (2.28) reads

J =
√

2(coshxω0 + sinhxω1) . (2.35)

On the other hand, the ansatz (2.17) for h1,1(B2) = 2 can be written explicitly as

J =
1√

n1
2 + n11

8t̃2

(
t̃J0 +

1

2t̃
I1

)
, I1 · I1 =: n11 , J0 · I1 =: n1 , (2.36)

where J0 and I1 are the two generators of the Kähler cone. Then the parameter t in (2.17)

controlling the asymptotic volume of C is given by

t =

(
n1

2
+
n11

8t̃2

)− 1
2

t̃ (2.37)

and asymptotically proportional to t̃. We can now make an ansatz for J0 and I1 in terms

of ω0 and ω1 and fix the coefficients by comparing the intersection forms. For large t, we

find that

t ' 1

2
ex . (2.38)
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In particular, we are interested in measuring the geodesic distance d between two points

with t(xP ) finite and t(xQ) = ∞. In view of (2.34) and (2.38), this means that xQ = ∞,

and therefore the distance between an arbitrary point in MT and the boundary x→∞ is

infinite. In general, due to the term proportional to sinh2x inside the square root in (2.33),

even the geodesic distance d acquires a “correction” term from the lower bound (2.34).

However, such a correction is finite and we can still estimate d to be the same as x up to

subleading terms for large t, so that

t ' 1

2
ed . (2.39)

In conclusion this confirms the expectation that the limit in which a gauge symmetry

becomes global in F-theory indeed lies at infinite distance in Kähler moduli space.

2.4 Asymptotically tensionless heterotic strings

The appearance of a genus-zero curve C0 in B2 with zero or almost zero volume has impor-

tant physical consequences: a D3-brane wrapped on C0 gives rise to a string propagating

in 6 dimensions, which becomes tensionless as volJ(C0) → 0. Evidently this tensionless

string is quite different from the familiar non-critical strings that have been intensively

investigated after the initial works of [48, 76] in the context of N = (1, 0) superconformal

field theories (SCFTs) (see [45] for a recent review).

The special properties of the string associated with C0 stem from the fact that C0 ·C0 =

0, and, consequently, that the restriction of the fibration to C0 describes a K3 surface, Ĉ0.

The appearance of this K3 surface has already been stressed at the end of section 2.2.

By contrast, the familiar non-critical strings which appear in the context of N = (1, 0)

SCFTs are due to D3-branes wrapping vanishing curves Γ of negative self-intersection.

Correspondingly the surface Γ̂ = π−1(Γ) is never a K3 surface because3

− 2 = 2g(Γ)− 2 = Γ · (Γ− K̄) ⇒ Γ · K̄ ≤ 1 if Γ · Γ < 0 . (2.40)

This means that the surface cannot contain 24 I1 fibers which would have been required

for an elliptic K3. This is because these are located at the intersection points of Γ with

the discriminant divisor Σ in class 12K̄, and by the above Γ · Σ ≤ 12.

The 2d supersymmetric field theory on the world-volume of the effective string can be

deduced [41, 42] with the help of a certain topological duality twist [78] along C0, and turns

out to have (0, 4) world-sheet supersymmetry. Given a general curve Cβ in the base B2, the

complex structure of the elliptic fiber of Y3 is identified with the complexified gauge coupling

of the N = 4 SYM theory on the D3-brane along Cβ , which therefore varies holomorphically

over Cβ . Using the topological duality twist [41, 42, 78] the effective world-sheet theory

can be obtained by dimensional reduction of the underlying N = 4 SYM. The spectrum of

massless fields as determined by the twist is shown in table 1. More specifically, the space

R4 ⊂ R1,5 normal to the string world-sheet comes with a transverse rotation group

SO(4)T = SU(2)+ × SU(2)− , (2.41)

3The first equality follows because a contractible curve on an F-theory base is always rational [77].
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Fermions Bosons (0, 4) Multiplicity

(2,1)1 ψ+ (1,1)0, (1,1)0 ā, σ̄
Hyper g − 1 + K̄ · Cβ

(2,1)1 ψ̃+ (1,1)0, (1,1)0 a, σ

(1,2)1 µ+
(2,2)0 ϕ

Twisted
1

(1,2)1 µ̃+ Hyper

(1,2)−1 ρ̃−
Fermi g(Cβ)

(1,2)−1 ρ−

(1,1)−1 λ− half-Fermi 8K̄ · Cβ

Table 1. Spectrum of massless 2d N = (0, 4) multiplets of the effective world-sheet theory of the

string that arises from a D3-brane that wraps Cβ ⊂ B2 (not contained in the discriminant). The

representations are under SU(2)+×SU(2)−×SO(1, 1). The table is a modification of table 3 in [42].

and the spectrum organizes into (0, 4) supermultiplets distinguished by their SU(2)+ ×
SU(2)− quantum numbers, as well as by their spin with respect to the SO(1, 1) Lorentz

algebra along the string world-sheet. The fields shown in the first three rows of table 1 arise

from dimensional reduction of the underlying N = 4 supermultiplet, while the half-Fermi

multiplets in the last line localize at the intersection of Cβ with the discriminant divisor Σ.

While the naive number of such half-Fermi multiplets would be 12K̄ · Cβ given that Σ is

in the class of 12K̄, not all of these modes are independent due to SL(2,Z) monodromies.

The correct counting is 8K̄ · Cβ and can be deduced [41, 42] e.g. from the requirement of

gravitational anomaly cancellation or by duality with MSW strings [79]. These half-Fermi

multiplets carry net charge with respect to the gauge group of the 6d N = (1, 0) field

theory. As a result, also the excitations of the effective string will be charged.

Applied to the rational curve C0 with C0 · C0 = 0 and C0 · K̄ = 2, we recover 16

left-moving chiral fermions (λ−) along with 4 + 4 left-moving scalars. The latter describe

the center-of-mass motion in the four extended normal directions (ϕ) as well as the internal

degrees of freedom of the gauge field (a, ā) and the normal bundle modes within B2 (σ, σ̄).

The right-moving sector consists of the right-moving counterparts of these scalars along

with their their fermionic superpartners.

This spectrum identifies the effective string with the heterotic string. This can be

equivalently understood by going to the M-theory picture and recalling that the M5-brane,

when wrapped on a K3 surface, is dual to the heterotic string [46, 80]. More precisely, in our

situation, where the K3 is embedded in an elliptic threefold, we have less supersymmetries

than in the usually discussed situation, where the heterotic string is compactified on T 4.

Rather we will obtain a chiral heterotic string with (1, 0) space-time supersymmetry in

d = 6, which means that it is, morally speaking, compactified on some K3 (generically

with gauge bundles on top, potentially dressed by pointlike instantons, and not necessarily

weakly coupled). We will denote this generalized K3 compactification geometry by K.

Note that there is no reason why K should coincide with the vanishing K3 surface, Ĉ0, in

our F -theory setup.
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Hence the strings of our present interest are orthogonal to the familiar non-critical

strings that appear in 6d SCFTs. This is of course as expected, because the latter arise in

the limit of decoupling gravity at finite distance in the moduli space, while the reason for

the appearance of a zero-volume curve C0 in our context was the requirement of preserving

gravity, and keeping the Planck mass fixed. Thus it makes sense that we obtain a critical

string theory (albeit compactified), rather than a non-critical one.

Since this is an important point, let us investigate the relation to the heterotic string

in more detail. Before discussing the general case, assume for a moment that the base B2 is

given by one of the Hirzebruch surfaces, Fa. While we will review the pertinent properties

of these surfaces in more detail in section 4.1, what is important for us here is that they

have the structure of a P1-fibration

p : P1
f → Fa

↓
P1
b (2.42)

As we will see in section 4.1, the limit (2.17) is compatible with this structure if and only

if we identify

P1
f = C0 . (2.43)

This means that the elliptic K3 surface, Ĉ0 = π−1(C0), which we advertised on general

grounds at the end of section 2.2, turns out to be in itself fibered over the base, C ′ = P1
b ,

of the Hirzebruch surface. Thus, in this case, the elliptic fibration of Y3 is compatible with

the K3 fibration. F-theory on this K3 fibration Y3 is then dual to the heterotic string on

a K3 surface K which is an elliptic fibration by itself:

r : T 2 → K
↓
P1
b (2.44)

To avoid confusion, let us recapitulate and spell out again that we generally deal with

two K3 surfaces, which are given by Ĉ0 on the F-theory side and K on the heterotic side,

respectively. That is, the nearly tensionless heterotic string that is obtained by wrapping

a D3-brane on the shrinking base C0 of Ĉ0 coincides with the heterotic string compactified

on K. In the situation where the base B2 of Y3 is a Hirzebruch surface, Ĉ0 is an elliptic

K3 with base C0 = P1
f , which by itself is fibered over P1

b . Moreover on the heterotic side,

K is an elliptic fibration over P1
b .

Having straightened out any possible confusion, we now continue with an analysis of

the various couplings. The coupling of the heterotic string (measured in the heterotic string

frame) is determined by the duality as [37]

(ghs )2 =
volJ(P1

f )

volJ(P1
b)
. (2.45)

In our limit (2.17), volJ(P1
f ) = volJ(C0) → 0 while volJ(P1

b) → ∞. Therefore the

string under consideration indeed asymptotically describes the weakly coupled heterotic
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string. The fact that the heterotic string is weakly coupled is a priori true only in

the specific limit (2.17), and away from this limit quantitative statements are harder to

make. Fortunately, this is sufficient for our purposes as we are interested just in the

asymptotic behaviour.

We can be more precise about the dual heterotic theory in the weak coupling limit,

where we continue to work for now in the string frame when discussing the heterotic side of

the duality, and in the Einstein frame when referring to the Type IIB side. First note that

the tension of the string associated with C0 in the Type IIB Einstein frame takes the form

T =
2π

`4s
vol(C0) , (2.46)

where we have reinstated the Type IIB string length `s (outside of this section, we will

generally set `s ≡ 1.). The precise normalization is computed in appendix A, which also

states our conventions. Equating this with the heterotic string tension determines the

heterotic string length `h (measured in heterotic string frame) as

2π

`2h
=

2π

`4s
volJ(C0) . (2.47)

Furthermore, the unwrapped D3-brane corresponds to a heterotic 5-brane on the fiber T 2

of (2.44), and comparing the tensions leads to

2π

`6h(ghs )2
vol(T 2) =

2π

`4s
. (2.48)

This gives an alternative expression for the heterotic coupling,

(ghs )2 =
vol(T 2)vol(P1

f )

`4h
. (2.49)

Combining (2.49) and (2.47) we find for the Planck scale of the heterotic theory

(Mh
Pl)

4 =
4π

`8s
vol(P1

f ) vol(P1
b) . (2.50)

If we apply the limit (2.17) to the special case of a base space with h1,1(B2) = 2, the product

of C0 and the remaining curve class indeed remains constant, see (2.22), and therefore the

Planck scale of the heterotic theory remains fixed. On the other hand, the heterotic gauge

coupling is related to the heterotic Planck scale as

1

(ghYM)2
= (Mh

Pl)
4 `2h
16π2

. (2.51)

In summary, in the limit (2.17), the heterotic string becomes tensionless, `h → ∞, and

weakly coupled, ghs → 0. Gravity remains dynamical as Mh
Pl stays constant, while the

gauge coupling ghYM scales to zero.

We recall that the above discussion applies to geometries where Y3 is elliptically fibered

over a Hirzebruch surface. Let us now discuss the situation for general base spaces, B2,
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that are compatible with the limit (2.17). What we have established is the existence of

a K3 fibration of the form (2.24), which, however, is in general not compatible with the

elliptic fibration of Y3. Nevertheless, we will argue that in the tensionless limit we will

again obtain the critical heterotic string.

To see this, we use a chain of dualities as follows. First, we use F/M-theory duality

to relate F-theory on the elliptic fibration Y3 times a circle S1 to M-theory on the same

3-fold, Y3. This duality makes use of the elliptic fibration (2.1) in the usual manner. The

D3-brane wrapping C0 but not wrapping the circle S1 dualises to an M5-brane wrapped on

Ĉ0. We are therefore interested in the effective theory on the string world-sheet associated

with this M5-brane. M-theory on the 3-fold Y3 is dual to strongly coupled Type IIA theory

on Y3, with the M5-brane dualising to an NS5-brane on Ĉ0.

Finally, we make use of the K3 fibration (2.24): type IIA string theory compactified on

the K3 fibration (2.24) is dual to a 4d N = 2 compactification of heterotic string theory.

This is a fibered version of the 6d IIA - heterotic duality, which equates the (strongly

coupled) Type IIA string on K3 with the weakly coupled heterotic string on T 4 [81].

Famously, under this duality the NS5-brane wrapped along K3 turns into the heterotic

string [46, 80]. Adiabatically fibering the 6d duality over a rational curve C ′ leads to the

duality with the heterotic string in four dimensions [82]. If the K3 fibration (2.24) were

compatible with the elliptic fibration of the K3 fiber, then the dual heterotic string theory

would be compactified on T 2 × K. Here K is the K3 surface (2.44) that appears also

in the duality between F-theory on Y3 and the heterotic string in six dimensions. When

in addition the base of the K3 fibration of Y3 becomes large, the dual heterotic string is

weakly coupled, as discussed above.

More generally, however, the K3-surface K of the dual heterotic compactification

space K × T 2 is not elliptically fibered globally. Type IIA - heterotic duality under such

more general conditions has been revisited in the recent work [47]. More specifically,

degenerations of the K3 fiber in the fibration (2.24) of Y3 can lead to heterotic 5-brane

defects in the dual theory. Even in the limit of large base C ′, such localised defects on

the heterotic side can spoil a fully perturbative CFT description. Nonetheless, as long

as the base C ′ is large, it is reasonable to think of the resulting theory as being ‘weakly

coupled away from the defects’, while these provide important further degrees of freedom

that render the full theory consistent.

Despite these complications, we will find evidence in the course of this paper that

the string that arises from wrapping a D3 brane on C0, shares essential properties of the

heterotic string, in particular its elliptic genus. As we will see, this includes a generalization

which describes not just single wrapped, but also multiply wrapped strings, which makes it

evident that we really deal with heterotic strings that arise from wrapping D3 branes on C0.

2.5 U(1)-charge spectrum of the heterotic string

To summarise the discussion so far, we have seen that in the asymptotic limit in Kähler

moduli space, the string from a D3-brane wrapped on a shrinking curve, C0, becomes

tensionless and can be identified with a critical heterotic string on some K3 surface, K.
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The excitation spectrum of this string takes the usual form

M2
n = α 2π T (n− 1) , T = 2π volJ(C0) , (2.52)

where we have set `s = 1 in the expression for the string tension, and n refers to the (left-

moving) excitation level. This will be discussed in more detail in section 3.2. Furthermore

for the critical heterotic string the overall normalization is

α = 4 . (2.53)

Note that, strictly speaking, we can argue for the specific relation (2.52) only as we approach

the tensionless limit, which coincides with the weak coupling limit (modulo complications

for general B2, as discussed above). In this limit we are essentially changing the duality

frame from F-theory/Type IIA to the heterotic one. In particular, we will find later that the

massless sector of the heterotic string correctly reproduces the massless F-theory spectrum,

at least at the level of the elliptic genus that we will be computing. This fact holds true

both if the base is a Hirzebruch surface and in more general situations.

Before we discuss the role of the (nearly tensionless) heterotic string in the context

of the Weak Gravity Conjecture in the next section, let us first analyze the charges of

the string excitations in some more detail. Indeed the excitations necessarily carry charge

under the gauge symmetries that become global in the tensionless string limit. The reason

is that, as we have shown, the D3-brane wrapped around C0 intersects the stack of 7-branes

on C (see Point 2 made in section 2.2). The intersection locus between C0 and C hosts

massless 3-7 strings between the D3-brane on C0 and the 7-brane on C. The resulting

fermionic zero-modes have already been discussed in section 2.4 in terms of the chiral

(half-)Fermi supermultiplets charged under the 7-brane gauge group. From the space-time

point of view, these charges translate into global “flavor” charges of the string excitations.

In order to be more quantitative, we will focus on a single U(1) gauge symmetry. The

detailed technical arguments will be developed in section 3, while for now we present the

following key results:

1. For each value of U(1) charge q ∈ Z there exists at least one state in the excitation

spectrum of a single string along C0. All of these states become massless in the limit

volJ(C0) → 0, which coincides with the limit gYM → 0. Oftentimes, we will only

discuss non-negative charges q ∈ Z≥0 given that the states in the theory come in

pairs of U(1) charges q and −q.

2. At each excitation level n, the spectrum of these string excitations contains states of

maximal charge

q2
max(n) ≥ β(n)n , (2.54)

for some numerical prefactor β that is fixed by the specifics of the abelian gauge

group and its realisation in F-theory. For large n, this prefactor can be taken as a
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Figure 1. Maximal charge qmax(n) per excitation level n for a 6d F-theory compactification on

Y3 with base B2 = F1. The model refers to the values (x, y) = (4, 4) in the notation of section 4.1,

and has charge index m = 1
2C ·C0 = 2. The solid blue curve is given by q(n) =

√
4m(n− 1), which

corresponds to the modified, scalar weak gravity bound derived in ref. [83] for the relevant extremal

black holes. Observe that the charges for some excitations lie just barely above this curve, as a

consequence of the plateau pattern in conjunction with the offset of the vacuum energy by −1. The

maximally superextremal states, marked in red, lie on the dashed curve given by qmax(n) =
√

4mn

and populate a charge sublattice with spacing given by ∆q = 2m = 4. Together with the additional

superextremal states lying between the red and the blue curves they populate the full charge lattice.

This is a feature of this particular example.

positive constant with an upper bound given by 2C · C0, in the following sense: for

each value of ε ∈ (0, 1), we can find some N(ε) such that

β(n) ≥ (1− ε) 4m =: βε ∀n ≥ N(ε) , (2.55)

with

m =
1

2
C · C0 (2.56)

as introduced in (2.18). This implies, in particular, that

q2
max(n) ≥ βε (n− 1) ∀n ≥ N(ε) . (2.57)

As we will explain in section 3.4 and appendix D, these properties of the excitation

spectrum can be deduced on general grounds without reference to a concrete model.

We can reduce the bound N(ε) at the cost of increasing ε and therefore decreasing

βε. In concrete examples we will give an even lower value for βε such that the bound

holds for all values of n.

3. Conversely, there exists a sublattice of charges of index 2m such that for each qk in

the sublattice, i.e. for each

qk = 2mk , k ∈ Z , (2.58)
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there exists a state at excitation level n(k) =
q2k
4m = mk2. Put differently, for each

charge in the sublattice (2.58), there exists a state with excitation level n such that

q2
k = 4mn(k) . (2.59)

A derivation will be given in section 3.4. The importance of these states is that

they are superextremal with respect to a (dilatonic) charged black hole and hence an

extremal such black hole can decay into them, see section 2.6 for a detailed discussion.

In general, there may be further superextremal states (possibly even corresponding to

a smaller index sublattice), but already the states associated with the sublattice (2.58)

suffice for the Sublattice Weak Gravity Conjecture to hold.

This general behaviour is illustrated in figure 1, which refers to a particular example

that will be discussed in more detail in section 4.1. Depicted is the maximal U(1) charge

per excitation level, qmax(n), for a D3-brane wrapping a curve C0 in the base B2 = F1

with C0
2 = 0 and m = 1

2C0 · C = 2. Note that at given n, each value of the charges with

|q| ≤ qmax(n) is populated by string states. We can see that the maximally superextremal

excitations indeed obey eq. (2.59) and form the sublattice defined by (2.58). In this par-

ticular example, the full set of superextremal states in fact happens to populate the full

charge lattice.

In section 3 of this paper we will substantiate the claims (2.54), (2.55) as well

as (2.58), (2.59) by computing the elliptic genus for the nearly tensionless heterotic strings

we are encountering. Our main focus will be on the massive states that are charged under

a U(1) gauge symmetry that becomes global in the limit t→∞. A key role will be played

by the charge refinement of the elliptic genus in terms of the height pairing associated with

the rational section underlying U(1).

2.6 Relation to quantum gravity conjectures

As volJ(C0)→ 0, the tension of the heterotic string discussed in the previous section tends

to zero, and so do the masses of its excitations. A priori we need to distinguish between

the appearance of the asymptotically tensionless (BPS protected) heterotic string as such

and the (non-BPS) particle type excitations of the string. The latter result in a tower of

nearly massless, charged (particle) states. In this section we discuss the implications of the

tower of particle states in the context of four interrelated Quantum Gravity conjectures,

reserving some speculations about the role of the string for section 5.

Before entering the discussion let us note that the results of this section can be read

in two ways: from the outset we view them as statements about the 6d F-theory com-

pactification and its relation to the Quantum Gravity Conjectures. Equivalently, however,

we can interpret them directly in the duality frame of the heterotic string introduced in

section 2.4, and as such they make sense for 6d heterotic string compactifications per se,

without any reference to an F-theory dual.

1) Censorship against global symmetries in Quantum Gravity. The appearance

of infinitely many massless particle-like states in the tensionless limit is responsible for the
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breakdown of the 6d effective field theory. Such a breakdown is expected and, in fact,

required by quantum gravity arguments: in the limit t → ∞, a global symmetry emerges

while at the same time gravity remains dynamical as the 6d Planck mass remains constant;

this would be in stark contrast with general reasoning (see [4, 5] and references therein) that

continuous global symmetries are incompatible with quantum gravity. In this sense, the

appearance of a tensionless string and its associated infinite tower of massless modes acts

as a censor that prevents the theory from an inconsistency with general quantum gravity

arguments: the field theory breaks down before reaching a catastrophic global symmetry

limit [4, 5].

2) The sublattice weak gravity conjecture. The particle excitations of the nearly

tensionless string play an important role also in the context of the so-called Sublattice

Weak Gravity Conjecture (SWGC) [17, 39]. In the sequel, we will show that, under certain

assumptions, the string excitation spectrum contains charged particle-like states whose

charge-to-mass ratio, near the tensionless limit, is in accordance with the SWGC bounds.

Applied to a single 1-form U(1) gauge symmetry in d-dimensional spacetime, the

SWGC posits that there must exist some finite index sublattice of the charge lattice such

that for each value of charges q in that sublattice, there exists an elementary particle-like

state of mass M with the property that its charge-to-mass ratio exceeds that of a charged

(non-BPS) extremal black hole. This gives rise to a bound of the form

q2g2
YM

!
≥ µM

2

M4
Pl

. (2.60)

The precise value of the numerical constant µ depends on the type of extremal black hole

with respect to which the particles must be super-extremal.

Certainly in six dimensions many kinds of black objects are known to exist, in particular

black strings4 (see, for instance, [84–87] and references therein for a sample of the vast

possibilities in higher dimensions). Given the enormous richness of possible black objects

in six dimensions, we adopt the working assumption that the relevant objects with respect

to which super-extremal states are to exist are certain extremal Reissner-Nordström (RN)

black holes; in this we follow ref. [17]. If we could completely ignore the influence of massless

scalar field fluctuations, the corresponding black objects to consider would be non-dilatonic

extremal RN black holes [88] in d-dimensional Einstein-Maxwell theory. With respect to

these, the constant µ in (2.60) takes the value [17]

µ|d=6,non−dil. =
d− 3

d− 2
|d=6 =

3

4
. (2.61)

However, in a supergravity context, the effect of massless scalar field fluctuations cannot

be neglected [17, 25]. In the forthcoming work [83] we will derive in detail that including

the massless scalar field fluctuations in the tensor multiplets increases the numerical value

of the bound µ in (2.60) to

µ|d=6,dil. =
d− 3

d− 2
|d=6 +

1

4
= 1 . (2.62)

4Unlike black holes, these can be BPS in six dimensions with N = (1, 0) supersymmetry; however, BPS

objects are not of interest here in the context of the SWGC.
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We proceed by evaluating whether the charge spectrum (2.54) obeys the require-

ment (2.60) with this value µ = µ|d=6,dil. = 1. Such a comparison is meaningful a priori

only in the tensionless limit t → ∞, where we have perturbative control of the heterotic

string spectrum and trust in particular the mass relation (2.52). With this in mind, first

deduce from (2.52) and (2.54) that

q2
max(n) ≥ β(n)

(
1

4π2α

M2
n

vol(C0)
+ 1

)
(2.63)

near the tensionless limit. Next we multiply both sides with g2
YM, given in (2.11), and

furthermore express the result in terms of the 6d Planck mass (2.2), using that we have

fixed volJ(B2) = 1. As a result we obtain

q2
max(n) g2

YM ≥ β(n)

(
2

α

1

vol(C) vol(C0)

M2
n

M4
Pl

+ g2
YM

)
. (2.64)

In the limit where volJ(C) ∼ t → ∞, which coincides with the tensionless limit in which

we are working, we have established the behaviour (2.22) for the product volJ(C) volJ(C0).

Hence in this limit we can estimate

q2
max(n) g2

YM ≥ β(n)

(
1

αm

M2
n

M4
Pl

+ g2
YM

)
as t→∞ . (2.65)

At this stage we recall that there exists a sublattice of charges q2
k, see (2.58), with the

property (2.59). These charges hence saturate the inequality (2.65) with β(n) replaced by

4m. Using α = 4 in (2.54), as is appropriate for the perturbative heterotic string, we find

for this charge sublattice the relation

q2
k g

2
YM =

M2
n

M4
Pl

+ 4mg2
YM >

M2
n

M4
Pl

as t→∞ , (2.66)

where g2
YM → 0 as t→∞. This beautifully matches the Weak Gravity bound (2.60) for the

value µ = 1 as in (2.62). Specifically, after dividing by g2
YM the two sides of this inequality

correspond to the two curves shown in figure 1, in the context of an explicit example. We see

that that the plateau-like structure of the maximal charges, in combination with the offset

of the vacuum energy by −1, is crucially responsible for the existence of superextremal

string exitations that lie just minimally above the Sublattice Weak Gravity bound. This

is close in spirit to, and generalizes, the original analysis of the Weak Gravity Conjecture

for heterotic strings compactified on T 6 [5].

We find it quite remarkable that the purely number theoretic relation (2.59) implies

that the corresponding states in this sublattice just narrowly satisfy the (Scalar) Weak

Gravity Conjecture bound, which after all has been derived in a completely independent

manner that also takes the effects of scalar fluctuations [17, 25, 83] into account.

Before claiming victory, however, we hasten to point out a few caveats. The inequal-

ity (2.66) has been established only asymptotically for t → ∞. Specifically, eq. (2.66)

makes use of the behaviour (2.22), which applies only for t → ∞ in Kähler moduli space.

Moreover, only in this limit can we rely on the perturbative mass relation (2.52) of the
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non-BPS string excitations, for geometries where the base space is rationally fibered. For

more general base spaces, we have argued that in the tensionless limit the heterotic string

can be trusted too. Away from the limit, however, it is expected that the precise value of

the mass per excitation level is subject to renormalisation, in particular since the states

are not BPS protected. A related point is that the Weak Gravity relation (2.60) rests on

the formula for the mass of an extremal Reissner-Nordström black hole in 6d. A priori

one could expect it to receive quantum corrections due to absence of the BPS property. It

would be interesting to understand these effects and their potential interplay. In particular

it is tempting to conjecture that the various corrections away from the limit t→∞ conspire

such that the string states continue to satisfy the Sublattice Weak Gravity Conjecture, but

this is pure speculation at this point.

3) The Completeness Conjecture. The Sublattice Weak Gravity Conjecture is a vari-

ant of the Completeness Conjecture [4, 40], according to which each point of the charge

lattice should be populated by a state. As stressed in section 2.5, for the excitations of

a string from a single D3-brane wrapping C0, we find that indeed each charge q ∈ Z is

realized for some mass in the spectrum.

While this fact is pretty self-evident in terms of the weakly coupled heterotic dual

string, it can be contrasted with the subsector of charged matter states in F-theory which

are due to 7-7 strings. For these states the SWGC and in fact even the completeness

hypothesis appears to be badly violated, at least at the level of stable one-particle states.

To see this, consider again an abelian U(1) gauge symmetry and suppose that the massless

string excitations contain states of certain charge. Then the tower of massive 7-7 string

states above the massless ground states does not contain any charges higher than that.

From a perturbative Type IIB perspective, the U(1) charges are a consequence of the

Chan-Paton factors of open strings stretched between 7-branes, and these do not change at

higher string excitation levels. One might wonder if this situation is remedied in F-theory

due to the appearance of multi-pronged strings, but this is not the case: under F/M-theory

duality the spectrum of (p, q) string states maps to M2-branes wrapping exclusively curves

in the fiber in the dual M-theory. Computation of the BPS invariants for these curves shows

that no charges appear beyond the ones present already at the massless level in the F-theory

spectrum. By contrast, M2-branes wrapping linear combinations of charged fibral curves,

the full fiber and curves in the base do give to rise to arbitrarily highly charged states. In

fact, these are precisely encoded in the Gromov-Witten invariants which will be computed

in section 4. But the associated states in M-theory are the 5d BPS states obtained from

wrapped 6d strings [48]. So again the string is needed to render the spectrum complete.

Let us now come back to the fate of the heterotic string excitations away from the

tensionless, perturbative limit t→∞. It is natural to speculate that these states continue

to be realized as physical states even though we cannot trust the weak coupling expres-

sion (2.52) for their masses. In fact, we can turn tables around and use the Completeness

Conjecture to argue for the existence of these states, as otherwise the states of high charge

would appear to be missing in the F-theory spectrum.

The situation seems reminiscent of the duality between Type I string theory and the

Spin(32)/Z2 heterotic string in 10 dimensions: the D1-string of Type I theory becomes
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light in the limit of large Type I string coupling. In this limit its physical excitation spec-

trum coincides with the spectrum of the weakly coupled dual heterotic string. Unlike the

fundamental Type I string, this includes excitations in spin representations of Spin(32)/Z2.

As the Type I string coupling becomes smaller, the description of the D1-string becomes

non-perturbative in heterotic language, but it is reasonable to expect that the spinorial

representations stay in the spectrum of the Type I theory, albeit at high masses.

4) Swampland conjectures and emergence of gauge symmetries. As shown in

section 2.3, the limit t→∞ occurs at infinite distance in Kähler moduli space. According

to the general Swampland Conjecture of [6] and its refinement in [21], as one approaches

a point at infinite distance in moduli space, a tower of infinitely many states becomes

massless, and the mass scale of the tower of states which become massless must be at

least exponentially suppressed by the distance in moduli space. This fits perfectly with the

behaviour in the concrete situation studied in this paper. Indeed, from (2.21) and (2.39)

we notice that as we take the limit t → ∞, the volume of the curve C0 goes to zero

parametrically as

volJ(C0) ∼ 1

t
∼ e−d , (2.67)

where d is the (geodesic) distance in moduli space as we approach the point t→∞. At the

same time, from (2.52) we see that the masses of the particles that arise from excitations of

the D3-brane wrapped on C0 are suppressed by e−d/2. Hence we confirm the expectations

of [6, 21] that at infinite distance in moduli space a tower of infinitely many states becomes

exponentially light.

However, as we have discussed, the tower of massless states is also charged under

the U(1) gauge symmetry that becomes a global symmetry at infinite distance in moduli

space. A very detailed analysis of a similar phenomenon in the context of 4d N = 2

compactifications of Type IIB string theory on a Calabi-Yau 3-fold has been presented

in [8]; the relevant points lie at infinite distance in complex structure moduli space, and a

tower of infinitely many BPS states has been identified that become massless in the vicinity

of these points. The points at infinite distance considered in [8] indeed coincide with the

limit where the couplings of the RR gauge fields vanish. The appearance of infinitely

many charged massless particles is in perfect agreement with field theoretic expectations:

such massless states can be thought of as inducing a running of the gauge coupling in

such a way as to enforce its vanishing in the extreme limit where all of them become

massless [7, 8, 21, 31, 89]. Whereas the appearance of a finite number of charged massless

states leads to a divergence of 1/g2
YM which is logarithmic in the mass, as in the prototypical

example of the conifold transition [90, 91], an infinite number of charged massless states

gives rise to a polynomial divergence of 1/g2
YM with the particle mass [8].

In the six-dimensional F-theory context that we are considering, the gauge coupling

indeed vanishes polynomially in the Kähler moduli as

1

g2
YM

=
1

2π
volJ(C) ∼ t as t→∞ . (2.68)
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By a very crude estimate, we can relate this behaviour to the appearance of the tower of

massless charged string excitations in the spirit of the above discussion, as follows.

We are considering the effective theory at an IR scale ΛIR, which is identified with

the scale of the charged particle with lowest mass. Above this scale, a tower of massive

charged states arises. The field theory description breaks down at the UV cutoff ΛUV,

where gravitational effects are non-negligible. If we denote by N the number of massive

states below ΛUV, then in a theory in d spacetime dimensions, the UV cutoff is to be

identified [7, 8] with the so-called species scale ΛUV determined by [92–94] ΛD−2
UV =

MD−2
Pl
N ,

which for d = 6 gives

Λ4
UV =

M4
Pl

N
. (2.69)

The fact that, in the presence of a tower of light states, the correct cutoff scale is indeed the

species scale was stressed in [7, 8] and is an important ingredient in the following analysis.

In our context, we identify N with the excitation level of the highest mass state which lies

below the UV cutoff. This is, a priori, a significant oversimplification because we know

that the excitation numbers already from the single string sector at a given excitation level

n are certainly far from uniform and, in fact, considerably larger than one. Nonetheless, as

far as the parametric behaviour is concerned, this simplification leads to the desired result.

Indeed, with the above interpretation, and using that the mass Mn at level n scales with√
n, see (2.52), we can alternatively express ΛUV as

ΛUV =
√

(4π2α)
√
N volJ(C0) , (2.70)

where we neglect the constant offset in (2.52) for large N . Combining both relations and

ignoring unimportant numerical prefactors, we arrive at the relation

N3 ∼
M4

Pl

vol2J(C0)
(2.71)

for the maximal excitation level of states below ΛUV.

The 1-loop running of the inverse gauge coupling from the UV to the IR cutoff is - up

to potential subleading contributions -

1

g2
YM

∣∣∣∣
IR

=
1

g2
YM

∣∣∣∣
UV

− x
N∑
n=1

q2
nM

2
n , (2.72)

where the numerical prefactor x depends on the specific type of state considered. To obtain

the dominant contribution to the running one can hence very crudely estimate, with q2
n ∼ n

from (2.54) and M2
n ∼ n volJ(C0) from (2.52), that

N∑
n=1

q2
nM

2
n ∼

N∑
n=1

n2volJ(C0) ∼ N3 volJ(C0) ∼ 1

volJ(C0)
∼ t . (2.73)

The underlying approximation is that at each excitation level n, the dominant contribution

to the running comes from the states of the highest charge qn. This indeed reproduces the

vanishing of the gauge coupling as the infinite distance point t→∞ is attained.
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3 U(1)-charge spectrum from elliptic genus

In this section we address the counting of charged states of the (nearly) tensionless heterotic

string, by evaluating its elliptic genus. The main result of our analysis is an underpinning

of our claim (2.54) for the maximal charge per excitation level. In particular, we will

see that the counting of string states charged under an abelian group U(1) is determined

geometrically via the intersection product between the curve C0 wrapped by the D3-brane

and the height pairing associated with the section S. This result may be of interest also

to other applications.

We begin by reviewing the overall strategy how to determine the charge spectrum, or

at least a characteristic portion thereof, of a nearly tensionless heterotic string that arises

from a given elliptically fibered threefold, Y3. Following the pioneering work of refs. [48, 76]

(as reviewed in [45]), the procedure consists of several logical steps which are connected

as follows:

topological string on Y3 −→ elliptic genus of K −→ charge spectrum (3.1)

In the next sections we will discuss each step in detail, while roughly following the arrows in

reverse order. In section 3.1, we give some overview and comments on the charge spectrum.

Then in section 3.2 we will proceed with a technical review of the elliptic genus in terms

of weak Jacobi forms. We will also review the relation between the elliptic genus and

the topological string partition function, which will later be used in actual computations

for concrete examples. In section 3.3 we will derive the abovementioned result about the

relation between the “fugacity index m” of the elliptic parameter related to the U(1) gauge

symmetry in the 6d theory, and the height pairing of its underlying section. Finally in

section 3.4 we will summarize the preceding technical sections, and the casual reader is

invited to directly jump there.

3.1 Perturbative and non-perturbative elliptic genera

Our aim is to determine the charge spectrum (or rather a characteristic part of it) of

the nearly tensionless heterotic string in six dimensions with N = (1, 0) space-time su-

persymmetry, with respect to a nearly global U(1) symmetry whose specific embedding is

determined by the given elliptic threefold, Y3.

A familiar method is to use the elliptic genus associated with the 6-dimensional het-

erotic string theory. Computations of elliptic genera of the various non-critical strings have

been a long-standing theme over the years, following the works of refs. [48, 76]. There one

starts with the compactification of such strings on S1 to 5 dimensions, making use of the

fact that the wrapped strings can be straightforwardly counted as BPS particles in one

dimension lower. Indeed, ref. [48] considers the non-critical E-string, obtained in F-theory

by wrapping a D3-brane on a rational curve Γ with Γ · Γ = −1. The authors then analyze

the level-matching condition for the 6d non-critical E-string wrapped on an S1 with wind-

ing number κ and Kaluza-Klein level n. The total excitation number N of the string turns

out to be related to the winding number and KK level as

κn = N . (3.2)
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In particular for a single wrapped string, κ = 1, one can identify the KK momentum n

with the excitation number N . In this way one can write down a counting function for

the excited string states, which defines, in the limit of large S1, what is meant by the

elliptic genus of the 6d non-critical string. Concretely, for the non-critical E-string one

obtains [48, 76] the expression

ZE8(τ) =
ΘE8(τ)

η12(τ)
, (3.3)

where ΘE8(τ) is the partition function of the root lattice of E8.

As is well-known, a crucial property of the elliptic genus is that it is a meromorphic

modular form (for early works, see [60, 61, 64, 95, 96]), and this often allows us to determine

it with very little physical input; for instance, for the E-string it is given in terms of an

Eisenstein series, ΘE8(τ) = E4(τ). When adding background fields, the elliptic genus still

maintains good modular properties and turns into a meromorphic, in general Weyl-invariant

Jacobi form [66, 97, 98].

We now turn to the nearly tensionless heterotic strings under consideration. The

simplest situation occurs when the heterotic string is perturbative and weakly coupled.

As we have discussed in section 2.4, it arises by wrapping a D3-brane along the fiber C0

of a Hirzebruch surface in the tensionless limit (2.17). Being weakly coupled, the string

can be formulated in terms of a 2d superconformal world-sheet theory, which guarantees a

well-defined partition function. From modular invariance and the mere fact that we have

chiral N = (1, 0) space-time supersymmetry in d = 6, it immediately follows [61] that,

in the absence of background fields, the elliptic genus of this perturbative heterotic string

must be given by

ZK3(τ) ≡ TrR
[
(−1)FF 2qHL q̄HR

]
= 2

E4(τ)E6(τ)

η24(τ)
=

2

q
− 480− 282888q + . . . . (3.4)

Here, as usual q = e2πiτ , and F denotes the right-moving fermion number.5 This expression

incorporates besides the conformal field theoretical, N = (0, 4) world-sheet supersymmetric

elliptic genus pertaining to any K3 surface [63, 97, 98], also the extra left-moving degrees

of freedom of the perturbative heterotic string. In the following we will always implicitly

assume this when we refer to the elliptic genus of K3, and in particular this applies to the

elliptic genus related to the specific, not necessarily perturbative compactification geometry

K that was introduced in section 2.4.

We will be interested in a refinement induced by the U(1) symmetry that is determined

by the elliptic fibration Y3. In terms of K this refinement translates into certain bundles

on top such that the only unbroken gauge symmetry is just this U(1). For reasons of

modularity, the elliptic genus must then take the more general form [64, 98]

ZK(τ, z) =
Φ10,m(τ, z)

η24(τ)
, (3.5)

5The factor of F 2 is required in order to obtain a non-vanishing result, where the trace is taken over the

entire Hilbert space. Equivalently, one can factor out the spin content of a half-hypermultiplet and only

trace over the remaining quantum numbers of the states in the Hilbert space, but without insertion of F 2.
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where Φ10,m(τ, z) is a weak Jacobi form of weight 10. The concept of weak Jacobi forms

and their behaviour under modular transformations is reviewed in appendix C. The U(1)

‘fugacity index’ m depends on the specific U(1) embedding and will be determined in

section 3.3 (z denotes the field strength of the U(1) background field, or its ‘fugacity’). As

is familiar in this context, and will be re-addressed later in section 3.4, the ring of such

modular forms is finitely generated and this is why one can easily determine ZK(τ, z) for

concrete examples.

Note that the elliptic genus (3.5) is not a partition function for physical states, at least

not directly. This is because the left-moving tower of states lacks level-matching; most

notably, the tachyon is not physical. Rather, it needs to be properly combined with right-

moving excitations. This means that these states cannot be BPS protected (and indeed

there are no BPS particles for 6d (1, 0) supersymmetry in the first place).

We can put a slightly different perspective on this trivial fact by employing space-time

supersymmetry, which can be implemented by spectral flow of the elliptic genus [64, 99, 100]

from the R to the NS sector. This transports the tower of left-moving states paired with

the right-moving Ramond ground states to a partition function summed over all fermionic

periodicities.6 Since the left sector will not be touched by this operation, the total sum

will still be holomorphic, now as a consequence of space-time supersymmetry rather than

of world-sheet supersymmetry.

The partition function can then be disentangled into bosonic and fermionic space-time

sectors, and one can infer the existence of physical, level-matched states coming from the

super-Virasoro modules over the bosonic and fermionic ground states (corresponding to

massless representations of the N = (0, 4) world-sheet supersymmetry [64]). Certainly this

does not give, by far, the full partition function, rather it gives a piece of it that is holomor-

phically factorized. This subsector is protected, and in particular moduli independent, by

an interplay between modularity and world-sheet/space-time supersymmetry; see figure 2

for an illustration. While this is indeed only a very small subsector of the theory, it suffices

to demonstrate the existence of physical states with certain charge-to-mass ratios, and this

is all we need for discussing weak gravity conjectures as in section 2.6.

Note that these arguments apply primarily when we have a well-defined world-sheet

formulation in terms of conformal field theory, i.e. to perturbative heterotic strings in the

limit of vanishing coupling. As mentioned in section 2.4, these arise when we consider

threefolds Y3 that are elliptic fibrations over Hirzebruch bases, Fa, in the limit volJ(C0)→
0. However, tensionless heterotic strings can also arise from shrinking zero-intersection

curves C0 on non-Hirzebruch bases. These will in general contain more than one massless

tensor field and will not be easily describable in terms of conformal field theory.

For such strongly coupled heterotic strings the physical particle spectrum is less clear,

since the massive excitations are not BPS protected and a world-sheet formulation is also

not at hand. For such cases, one may adopt as working assumption that it suffices to con-

sider the elliptic genus at face value, even though it may not directly count physical states.

6One can see this more directly by making use of certain generalized Riemann theta function identities

that map the parity-odd sector to a sum over all sectors [101, 102].
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Figure 2. Shown are left- and right-moving spectra relevant for the elliptic genus of a perturbative

heterotic string with (1, 0) supersymmetry in d = 6. In the right-moving periodic Ramond sector,

the massive towers cancel due to world-sheet supersymmetry, but they can also be mapped into

towers that cancel between bosons and fermions due to space-time supersymmetry. In this way

we see that the left-moving, U(1)-charged excitations can be level-matched to excitations in the

vacuum modules of the right-moving sector, to form physical supermultiplets with fixed masses.

As we will show below, an elliptic genus can indeed be defined also for strongly cou-

pled heterotic strings via dualities, analogously as for the non-critical E-strings. For such

heterotic strings the elliptic genus is still of the form (3.5), where however Φ10,m(τ, z) is in

general only quasi-modular (which means that may involve the quasi-modular Eisenstein

series, E2(τ)). The deviation from the familiar conformal field theoretic expression (3.4),

for which Φ10,m(τ, 0) = E4(τ)E6(τ), is due to the modified anomaly associated with the

extra massless tensor fields. The mild non-modularity reflects that we do not have a stan-

dard world-sheet description in this case. We will continue to refer to this more general

object as ZK(τ, z), even though it may not necessarily coincide with the familiar, conformal

field theoretical elliptic genus associated with a K3 surface. In the following we explain

how to compute ZK(τ, z) also in these cases.

3.2 From elliptic genus to topological string partition function

We now review and discuss some technical aspects of the elliptic genus that are relevant to

us. The discussion will be structured according to the following four different aspects:

1. For a string arising from a D3-brane wrapping a curve Cβ on the base of an F-theory

model, it is convenient to define a refined notion of an elliptic genus, ZCβ (τ, λs, z),
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as in (3.7) below, by introducing an extra fugacity parameter λs with respect to the

group of rotations transverse to the string. We will sometimes refer to ZCβ (τ, λs, z)

as the ‘spin-refined elliptic genus’. The elliptic genus we are ultimately interested in,

namely ZK(τ, z) in (3.5), is contained in this more general notion of the elliptic genus

as we will explain.

2. The spin-refined elliptic genus ZCβ (τ, λs, z) enjoys good modular properties and can

hence be expanded in terms of suitable weak Jacobi forms.

3. Duality with M-theory relates ZCβ (τ, λs, z) to the topological string partition function

on the elliptic 3-fold Y3 as in (3.21) and (3.25) below.

4. The topological string genus-zero free energy determines the elliptic genus ZK(τ, z)

of the heterotic string, as shown in (3.34). For perturbative heterotic strings, this

relation reproduces the conformal field theoretical elliptic genus, and we will take it as

a definition for the non-perturbative generalisation with extra massless tensor fields.

Most of the material corresponding to the first three points is well-known in the literature

(see for example [41, 49, 50, 52–59] and the review [45] for further references), and we will

review it below to set the notation and to make the article self-contained. The informed

reader (or those not interested primarily in the technical details) may skip directly to

point 4.

1) The spin-refined elliptic genus of wrapped strings. We consider strings that

arise from a D3-brane wrapping some curve, Cβ ∈ H2(B2,Z), in the base B2 of an ellip-

tically fibered Calabi-Yau, Y3. We assume that the curve is at general position, i.e. that

it is not a component of the discriminant. As pointed out in section 2.4, the restriction

of the elliptic fibration to Cβ describes an in general non-trivially fibered elliptic surface,

Ĉβ ∈ H4(Y3,Z). For the nearly tensionless heterotic string that we consider, this surface

turns out to be a K3 surface Ĉ0. This is not to be confused with K, which represents the

K3 surface on which the dual heterotic string is compactified, whose elliptic genus we are

up to determine.

Following [48, 76] we consider a compactification of the 6d string on S1, while also

making the time direction periodic. Thus we can think of space-time formally to be given by

R4 × T 2. (3.6)

An elliptic genus-like partition function, ZCβ (τ, λs, z), can then be defined [48, 76] as a

trace over the spectrum of 5d BPS momentum and winding states of the wrapped string,

with periodic boundary conditions:

ZCβ (τ, λs, z) = TrR
[
(−1)FF 2qHL q̄HRu2J−ξJ

]
. (3.7)

Here u = e2πiλs , where the parameter λs implements a refinement by the universally

present global SU(2)− symmetry with generator J−, which is part of the transverse Lorentz
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group (2.41). Thus, the insertion of u2J− in the trace weighs the BPS states depending on

their SU(2)− spin. Moreover

ξJ = e2πizJ (3.8)

induces a grading with respect to the almost global U(1) symmetry, with generator J . It

is here that the dependence of the BPS spectrum on the gauge symmetry of the specific

F-theory background enters. Moreover, we have defined

q = e2πiτ , (3.9)

where τ refers to the torus T 2 and does, a priori, not refer as usual to the string world-

sheet. Rather, ZCβ (τ, λs, z) counts the index of winding and Kaluza-Klein 5d BPS states

arising from the wrapped string on S1.

The spin-refined elliptic genus enjoys an expansion of the form

ZCβ (τ, λs, z) = qE0

(
f (0)(λs, z) +

∞∑
n=1

qnf (n)(λs, z)

)
, (3.10)

where n corresponds to the Kaluza-Klein level of the string. The shift in vacuum energy

is due to the Casimir energy of the N = (0, 4) worldsheet theory [55, 58],

E0 = −1

2
Cβ · K̄ , (3.11)

where K̄ is the anti-canonical bundle of B2.

The important point [48, 76] is that the functions f (n)(λs, z) for n ≥ 1 appearing

in (3.10) have an equivalent interpretation directly in terms of the string propagating in

R1,5, namely as counting left-moving string excitations at level N = n. This makes contact

with the conformal field theoretical elliptic genus that we mentioned in the previous section,

for which q refers to the modular parameter of a stringy world-sheet.

2) Modular properties of the elliptic genus. As is well-known, key to determining

the elliptic genus is to make use of the specific behaviour under modular transformations

of τ and the elliptic parameters λs and z. That is, it must transform as a Jacobi form of

given weight w and index m as defined in eqs. (C.2) and (C.3) of the appendix. Modular

invariance implies that the total weight w of ZCβ (τ, λs, z) must vanish, w = 0. The indices

of ZCβ (τ, λs, z) with respect to the elliptic parameters λs and z are encoded in the modular

anomaly equation7 [49, 52, 53, 55–57, 103](
∂

∂E2(τ)
+

(2π)2

12
fCβ (λs, z)

)
ZCβ (τ, λs, z) = 0 . (3.12)

Indeed, as reviewed in appendix C, the index of a weak Jacobi form with respect to the

elliptic parameters can be read off from the quadratic terms in fCβ (λs, z), see eq. (C.24). A

general strategy to determine the function fCβ (λs, z) is via the t’ Hooft anomaly polynomial

of the (0, 4) theory on the string [55, 56, 59]. In section 3.3 we will show how to determine

7The factor of (2π)2 reflects our conventions that λs and z are quasi-periodic as in (C.3) or (C.12).
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the index m related to the U(1) symmetry in terms of the height pairing of a rational

section on the elliptic fibration Y3.

An analysis of the pole structure of the elliptic genus suggests that it can be written

in terms of a ratio of weak Jacobi forms, with an explicit expression for the denominator.

Specifically, for the special case of a single string associated to a curve Cβ corresponding

to one of the generators of the Mori cone, the elliptic genus takes the form [41, 53]

ZCβ (τ, λs, z) =

(
1

η2(τ)

)6Cβ ·K̄ ΦW,L,m(τ, λs, z)

ϕ−2,1(τ, λs)
. (3.13)

Here ϕ−2,1(τ, λs) is the unique weak Jacobi form of weight −2 and index 1 with respect

to λs, see eq. (C.14). The numerator is then a Jacobi form whose weight W is determined

by the requirement that ZCβ (τ, λs, z) has total weight zero, where we recall that η2(τ)

transforms like a modular form of weight 1. The total index m− of ZCβ (τ, λs, z) with

respect to the elliptic parameter λs is determined by the modular anomaly equation (3.12)

to be

m− =
1

2
Cβ · (Cβ +K). (3.14)

Altogether this leads to

W = 6Cβ · K̄ − 2, L =
1

2
Cβ · (Cβ +K) + 1 = g(Cβ) , (3.15)

where g(Cβ) is the genus of Cβ , and K the canonical bundle of B2. The index m of Φ with

respect to the U(1) fugacity agrees with that of ZCβ (τ, λs, z), because the denominator does

not involve z. The reason is that the only modes charged under the global symmetries are

the half-Fermi multiplets in the last line of table 1, which are purely fermionic and whose

contribution therefore appears only in the numerator of the elliptic genus.

More generally, suppose that the curve Cβ is a linear combination

Cβ =

k∑
i=1

βiCi (3.16)

of some Mori cone generators, Ci. Then the pole structure is slightly more complicated

and the total elliptic genus takes the form (see e.g. [41])

ZCβ (τ, λs, z) =

(
1

η2(τ)

)6Cβ ·K̄ ΦW,L,m(τ, λs, z)∏k
i=1

∏βi

si=1 ϕ−2,1(τ, siλs)
. (3.17)

The weight W and index L of the numerator now change accordingly, such that ZCβ (τ, λs, z)

is still of weight zero and of SU(2)− fugacity index as given in (3.14).

Once modular indices and weight are given, the elliptic genus ZCβ (τ, λs, z) is fixed up

to a finite number of parameters. This well-known feature is a consequence of the fact

that the ring of weak Jacobi forms is finitely generated [104]. So all one needs to do is to

fix these parameters by matching the general ansatz for ZCβ (τ, λs, z), with given modular

indices and weight, to some extra physical input.
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3) Relation to the topological string on Y3. The elliptic genus ZCβ (τ, λs, z), as given

in (3.7), is closely related to the topological string partition function Ztop on the elliptically

fibered Calabi-Yau Y3, via a chain of dualities [50, 52]. This was already used in the original

work [48] in the context of non-critical E-strings. More generally, the topological string

partition function on elliptic Calabi-Yau 3-folds has been studied in detail in [49, 53, 103].

Specifically, it is known by F/M-theory duality that the 6d effective action of F-theory

on Y3 reduced on S1 coincides with the 5d effective action of M-theory on Y3. A critical

or non-critical string from a D3-brane on Cβ can either wrap the S1 or not. If it does,

it produces a BPS particle in 5d. In the dual M-theory description, the 5d BPS particle

arises from an M2-brane wrapping some curve on Y3. If we consider for simplicity a generic

Weierstrass model Y3, then the string with wrapping number κ = 1 along S1 and Kaluza-

Klein momentum level n maps to a 5d BPS particle that arises from the M2-brane wrapping

the curve

Cβ + nCE . (3.18)

Here CE is the class of the elliptic fiber while Cβ is the curve in the base. Indeed, the

Kaluza-Klein U(1) symmetry of the S1 reduction is generated by the divisor [71]

S̃0 = S0 +
1

2
π−1K̄ , (3.19)

where S0 is the zero-section of the elliptic fibration Y3 and K̄ the anti-canonical divisor of

the base. Hence an M2-brane along Cβ + nCE has KK charge

S̃0 ·Y3 (Cβ + nCE) = −1

2
K̄ ·B2 Cβ + n = E0 + n , (3.20)

where we used the relation S0·S0 = −S0·π−1(K̄) for the zero-section of an elliptic fibration.8

Note that the shift by −1
2K̄ · Cβ beautifully coincides with the shift of the energy of the

wrapped string in (3.10), which is due to the Casimir energy E0.

To describe the precise relation between the elliptic genus and Ztop, we introduce the

following notation. A basis of H2(Y3,Z) can be split into a basis {Cb
i } of base curve classes

and a basis {CE , C f
a} of fibral curves, where in the latter we have singled out CE as the

class of the generic elliptic fiber. To these basis elements we assign the Kähler parameters

t = {ti}, τ and z = {za}, respectively. Given a base curve Cβ ∈ H2(B2,Z) with expansion

Cβ = βiCb
i , its complexified Kähler volume can then be expanded as tβ = βiti, and likewise

for a fibral curve nCE + raC f
a, the volume is given as nτ + raza. Hereafter, we will restrict

ourselves to the geometries with exactly one independent non-zero section, i.e., to those

effective theories with a single U(1), and the subscripts in C f
a and za, etc. will thus be

removed. Furthermore, we will assume w.l.o.g. that an appropriate basis for the fibral

curves {CE , C f} has been chosen such that the M2-brane wrapped on C f has U(1) charge

q = 1 and KK charge 0.

8More precisely, for a curve Cβ ∈ H2(B2) in the base, the corresponding base curve Cβ ∈ H2(Y3) we

consider in Y3 is given as Cβ := S0 ·Y3 π
−1(Cβ). By abuse of notation, we often denote this also by Cβ . Then,

S0 ·Y3 Cβ = S0 ·Y3 S0 ·Y3 π
−1(Cβ) = −S0 ·Y3 π

−1(K̄) ·Y3 π
−1(Cβ) = −K̄ ·B2 Cβ . Furthermore S0 ·Y3 CE = 1

because the fiber intersects the zero-section once.
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In this notation, the topological string partition function on Y3 takes the form

Ztop = exp (F(λs, τ, t, z)) = exp

∑
g≥0

F (g)(τ, t, z)λ2g−2
s

 . (3.21)

Here F(λs, τ, t, z) denotes the topological string free energy, which enjoys a perturbation

series in contributions of genus g maps, where the expansion parameter λs plays the role

of the string coupling. Each genus g free energy, F (g)(τ, t, z), can in turn be expanded in

terms of the exponentiated Kähler parameters of Y3,

q = e2πiτ , Qβ = e2πitβ , ξ = e2πiz , (3.22)

as

F (g)(τ, t, z) =
∑

Cβ∈H2(B2,Z)

F (g)
Cβ

(τ, z)Qβ . (3.23)

Here, the object

F (g)
Cβ

(τ, z) =
∑
n,γ

N
(g)
Cβ

(n, r) qn ξr (3.24)

gives an expansion in terms of the genus g Gromov-Witten invariants, which are a priori

rational numbers. However, for a single wrapped curve classe these agree with the integral

Gopakumar-Vafa BPS invariants. In the present context, single wrapping refers to the

class Cβ not being a multiple of some other curve class.

Now we are ready to write the relation between the topological partition function on

Y3, Ztop, and the elliptic genus, ZCβ (τ, λs, z), of the 6d, (1, 0) supersymmetric string theory

obtained by compactification of F-theory on Y3 [50, 52]:

Ztop = Z0(τ, λs, z)

1 +
∑
Cβ

ZCβ (τ, λs, z) Q̂β

 . (3.25)

The overall factor Z0(τ, λs, z) is the contribution to the 5d index from 5d BPS states due

to the 6d supergravity modes and their Kaluza-Klein tower. The expansion parameter

in (3.23) is shifted as [53, 56]

Q̂β = σ(τ, z)Qβ . (3.26)

This shift has been motivated in [53] by requiring that F (g)
Cβ

(τ, z) enjoys good modular

properties. Specifically, if the base curve Cβ is not contained in the discriminant, the shift

is given as σ(τ, z) = eπi(Cβ ·K̄)τ , that is,

Q̂β = q
1
2
Cβ ·K̄ Qβ = e2πi(tβ+ 1

2
(Cβ ·K̄)τ) . (3.27)

Observe, importantly, that by virtue of the duality, τ can be viewed as either the

modular parameter of the elliptic genus, or as the Kähler parameter of the elliptic fiber of

Y3. Similarly, λs can be interpreted as either the elliptic parameter with respect to SU(2)−,

or as the topological string coupling; moreover z as either the elliptic parameter with respect

to the global U(1) symmetry of the string, or as the fibral Kähler parameter of Y3.
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We can elucidate the relation between the free energy of the topological string and the

elliptic genus by taking the logarithm of (3.21) and expanding

∑
g≥0

F (g)(τ, t, z)λ2g−2
s = logZ0(τ, λs, z) + log

(
1 +

∑
β

ZCβ (τ, λs, z) Q̂β

)
(3.28)

= logZ0(τ, λs, z) +
∑
β

ZCβ (τ, λs, z) Q̂β

−1

2

∑
Cβ′ ,Cβ′′

ZCβ′ZCβ′′ Q̂β′Q̂β′′ + . . . .

A considerable simplification occurs if Cβ corresponds to one of the generators of the Mori

cone and therefore cannot be written as the sum of two effective curves Cβ′ and Cβ′′ . In

this case, the elliptic genus obeys the simpler form (3.13). Furthermore, in view of (3.23)

we can identify

∑
g≥0

F (g)
Cβ

(τ, z)λ2g−2
s = q

1
2
Cβ ·K̄ ZCβ (τ, λs, z) =

(
q

1
2
Cβ ·K̄

η(τ)12Cβ ·K̄

)
ΦW,L,m(τ, λs, z)

ϕ−2,1(τ, λs)
. (3.29)

The important factor of q
1
2
Cβ ·K̄ is due to the shift in Q̂β . In view of (3.10) and (3.11) it

precisely cancels the overall factor qE0 in ZCβ (τ, λs, z), as is necessary for the match with

the topological string prepotential to work. Due to this extra factor, while ZCβ (τ, λs, z)

is a weak Jacobi form of weight zero, the l.h.s. and r.h.s. of (3.29) do not have good

modular properties.

One may wonder what this implies for the modular behaviour of the F (g)(τ, z), viewed

as expansion coefficients of the free energy with regard to the elliptic parameter λs. For

this, note that a weak Jacobi form of weight w and index m has the expansion

ϕw,m(τ, z) =

∞∑
j=0

φj(τ)zj , (3.30)

where φj(τ) are in general only quasi-modular9 forms of weight j + w. As explained at

the end of appendix C, this means that in general the φj(τ) must lie in the ring generated

by the modular Eisenstein functions E4(τ) and E6(τ), as well as the quasi-modular Eisen-

stein function E2(τ); the quasi-modular transformation behaviour of E2(τ) can be found

in (C.10). In the same spirit, we may expand the numerator on the r.h.s. of eq. (3.29),

ΦW,L,m(τ, λs, z) = ΦW,m(τ, z) +O(λs) , (3.31)

as well as use the expansion (C.19) of the denominator,

ϕ−2,1(τ, λs) = −λ2
s (1 +O(λ2

s)) . (3.32)

9See, e.g., page 16 of [57] for a review of this fact. The same conclusion has been obtained in [49, 53, 103]

without making use of the duality, solely based on properties of the topological string partition function for

elliptic fibrations.
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Comparing the terms of order λ−2
s of both sides of (3.29) finally identifies the genus-zero

prepotential with the elliptic genus as

F (0)
Cβ

(τ, z) = − q
1
2
Cβ ·K̄

η(τ)12Cβ ·K̄
ΦW,m(τ, z) . (3.33)

Note that the expansion (3.31) has higher order terms only if the index L (as given

in (3.15)) is non-zero. In this case, the function ΦW,m(τ, z) will be generically only a quasi-

modular form, which follows from the remarks above. This fits with the fact that the genus-

zero prepotential satisfies an in general non-trivial modular anomaly equation [49, 53, 103].

On the other hand, if Cβ is a genus-zero curve corresponding to a Mori cone generator,

then L = 0 and hence ΦW,m(τ, z) gives the complete numerator of eq. (3.29), because

ΦW,L=0,m(τ, λs, z) is independent of λs. In this case q−
1
2
Cβ ·K̄F (0)

Cβ
(τ, z) is by itself a good

modular Jacobi form and fully determines the elliptic genus. Recall, however, that to arrive

at this result, we have had to make the assumption that Cβ corresponds to a Mori cone

generator as otherwise (3.13) would not hold. In this case, the relation between ZCβ (τ, λs, z)

and the genus-zero prepotential is more complicated, as will be explained below; what is

still correct, even in this more general situation, is the ansatz (3.33) for F (0)
Cβ

(τ, z), with

ΦW,m(τ, z) now being only quasi-modular.

4) Relation to N = (0, 4) elliptic genus ZK. After these preparations we are ready

to apply the formalism reviewed above to our object of interest, namely the elliptic genus

ZK(τ, z) of the heterotic sting on the K3 geometry K. There are two cases to distinguish.

Recall from section 2.4 that if the self-intersection-zero rational curve C0 is the fiber of a

Hirzebruch surface Fa, there exists a perturbative heterotic dual, and in the tensionless limit

under consideration the heterotic string becomes weakly coupled. As will be explained in

more detail in section 4.1, the fiber of a Hirzebruch surface is indeed a generator of the Mori

cone and therefore the spin-refined elliptic genus ZC0(τ, λs, z) takes the simple form (3.13).

Furthermore, the elliptic genus without the spin refinement is the leading term in a λs
expansion of ZC0(τ, λs, z) around λs = 0. According to the discussion around (3.33) this

coincides up to a sign and a factor of q with the genus-zero prepotential of the topological

string on Y3. That is, we can identify:

ZK(τ, z) = −q−1F (0)
C0

(τ, z) = −q−1
∑

N
(0)
C0

(n, r) qn ξr . (3.34)

This fits perfectly with the fact that, up to the factor of q, the genus-zero prepotential is

by itself a modular form of precisely the correct weight to furnish the elliptic genus (3.5)

for the perturbative heterotic string.10

More generally, suppose that C0 lies in a non-Hirzebruch surface. In this case, it

will generically not be one of the Mori cone generators. Assume for definiteness that

C0 = C1 + C2 for two Mori cone generators C1 and C2. The general relation (3.28) now

allows us to write

ZC0(τ, λs, z) = FC0(τ, λs, z) +
1

2
FC1(τ, λs, z)FC2(τ, λs, z) , (3.35)

10Note that for this be true, the GW invariants N
(0)
C0

(n, r) must be integers, which is the case for the

expansion (3.23) where we consider only terms linear in Q0.
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where FCi(τ, λs, z) =
∑

g≥0 λ
2g−2
s F (g)

Ci
(τ, λs, z) is the all-genus prepotential that multiplies

QCi in the expansion of the topological string free energy. From (3.17) we see that the

denominator of ZC0 contains the product ϕ2
−2,1(τ, λs). The leading term in the λs expansion

(3.32) hence goes as 1/λ4
s. This term must equal the 1/λ4

s contribution from 1
2FC1FC2 . The

next term is of order 1/λ2
s and receives contributions from both the single string prepotential

FC0 and the 2-string prepotential FC1FC2 . The ‘1-string irreducible’ contribution is only

due to the leading piece in FC0 , which again coincides with the genus-zero prepotential.

Hence it is natural to identify this with the non-spin-refined elliptic genus describing the

dual, non-perturbative heterotic string. This reasoning leads to the same expression (3.34).

The genus-zero free energy has to have the correct modular properties for this to be possible:

up to the same factor of q, it must be quasi-modular in accordance with the modular

anomaly equation [49, 53, 103], which under the present assumptions takes the form

∂F (0)
C0

∂E2
=

1

24

∑
C1+C2=C0

(C1 · C2)F (0)
C1
F (0)
C2

. (3.36)

This generically leads to a dependence on the quasi-modular Eisenstein series E2(τ) for the

non-spin-refined elliptic genus advertised in section 3.2. We will exemplify this behaviour

for an F-theory base dP2 in section 4.2. In particular we will verify that the genus-zero

prepotential associated with C0 correctly encodes the massless spectrum as expected from

the geometry.

5) Multi-wrappings. As a side remark, it is also instructive to consider the situation

where the D3-brane is wrapped not just once, but k times on C0. This can be investigated

by computing via mirror symmetry the terms with higher powers of Q0 of the prepotential

F (0)(Q0, q, ξ) = F (0)
class +

∑
n

(0)
k·C0

(n, r) Li3(Q0
kqnξr) . (3.37)

Here n
(0)
k·C0

(n, r) denotes the (integral) Gopakumar-Vafa invariants. In fact, multi-wrapped

heterotic strings are expected [41, 48, 76] not to form bound states, so that the elliptic genus

for multiple heterotic strings should be given [51, 105] in terms of the elliptic genus of the

k-fold symmetric product of K. Taking multi-coverings into account, this translates into

F (0)
k·C0

(q, ξ) = −qkZSymkK(q, ξ)− qkF (0)(Q0, q, ξ)
∣∣
Q0

k , k > 1 , (3.38)

where for simplicity we assumed k to be prime. Above,

ZSymkK(q, ξ) = T
(−2)
k (ZK(τ, z)) , (3.39)

where the Hecke transform of a Jacobi form ϕ of modular weight w is defined by [104]

T
(w)
k ϕ(τ, z) = kw−1

∑
ad=k

b mod d

d−wϕ

(
aτ + b

d
, a z

)
. (3.40)

We have checked for the examples we will consider later that (3.38) is indeed satisfied,

to some low orders of expansions in Q0, q, ξ. This implies for the relevant Gopakumar-

Vafa BPS invariants that n
(0)
k·C0

= 0 for k > 1, which in turn means that the heterotic
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strings do not form bound states, as expected. While this fact has been known since

long for perturbative heterotic strings [48, 76], it may appear slightly less trivial for non-

perturbative heterotic strings. This is why we will re-address this point for the example in

section 4.2.

3.3 Global Mordell-Weil U(1) symmetries

It is well-known [37, 70–72] that U(1) gauge symmetries arise in F-theory when the elliptic

3-fold Y3 exhibits a non-trivial Mordell-Weil group of rational sections. The U(1) gauge

symmetries translate into global symmetries of the tensionless string. Although we will

consider geometries with just one independent non-zero section, and hence models with

a single U(1) factor, the generalization to multiple U(1) factors is immediate. We now

explain how the index m of the elliptic genus ZCβ (τ, λs, z),(3.13) or (3.17), with respect

to the background field z is determined by the geometry of the Mordell-Weil group of the

elliptic fibration.11

As already pointed out, this index is given by the terms of fCβ (λs, z) in (3.12) which

are quadratic in z as a consequence of the general relation (C.24). The function fCβ (λs, z)

in turn can be identified with the ’t Hooft anomaly potential of the world-sheet theory of

the string [55, 56, 59, 107].

The anomaly polynomial of a single N = (0, 4) world-sheet supersymmetric string

has been already computed in [42, 54, 108–110], however for situations in which the the

F-theory gauge group only contains non-abelian factors. In our notation it takes the form

I4 = − 1

4
(K̄ · Cβ) p1(T )− 1

2

∑
I

TrF 2
I ([ΣI ] · Cβ) +

1

2
trF 2

R

+
1

2
trF 2

+

(
1

2
Cβ · Cβ +

1

2
K̄ · Cβ

)
+

1

2
trF 2

−

(
−1

2
Cβ · Cβ +

1

2
K̄ · Cβ

)
.

(3.41)

Here F− and F+ refer to the field strengths associated with the global symmetries SU(2)−
and SU(2)+ in (2.41), and FR denotes the SU(2) R-symmetry of the 6d N = (1, 0) theory

that is inherited by the string.12 Finally FI is the field strength associated with a non-

abelian gauge algebra gI of a 7-brane wrapping the divisor component ΣI . The trace is

normalised with respect to the trace in the fundamental representation via TrF 2
I = 1

λI
trF 2

I ,

where λI is the Dynkin index (in particular, λI = 1 for su(N)).

To read off the index with respect to the global symmetry SU(2)−, one identifies I4

with fCβ (λs, z) upon replacing

1

2
trF 2

− → −λ2
s, p1(T )→ 0,

1

2
trF 2

I → 0,
1

2
trF 2

+ → 0 . (3.42)

This reproduces the result (3.14) for the value of the index with respect to λs. Similarly

one can obtain the index with respect to non-abelian global symmetries of the string from

the term −1
2

∑
I TrF 2

I ([ΣI ] · Cβ) in the anomaly polynomial.

11Already in [48, 106] BPS numbers for examples of elliptic fibrations with extra rational sections have

been computed and a refinement with respect to the associated U(1) charges has been observed. Our results

hold very generally for any type of rational section generating an abelian gauge symmetry in F-theory.
12In table 1, the fermions of the twisted hypermultiplet transform as a 2 of this symmetry, while all other

fermions are singlets. This explains why the ’t Hooft anomaly coefficient is a universal constant.
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We now come to the case of interest for us where we have a single U(1) gauge symmetry.

The ’t Hooft anomaly polynomial of the stringy world-sheet contains an additional term

I4|U(1) = −1

2
F 2 (b · Cβ) , (3.43)

where b = −π∗(σ(S) · σ(S)) is the height pairing of the section S as introduced in

section 2.1. The precise form of this term including its normalization has been derived

from first principles in [111]. The normalization is in conventions where the lowest charge

with respect to U(1) is given by qmin = 1. Note that, on the other hand, the index m

of a weak Jacobi form is defined in a normalization where the weight lattice is Z/
√

2, or

equivalently, that the smallest co-weight has norm 2, see appendix C. Since the charges are

determined by intersection numbers of the Shioda map σ(S) with suitable fibral curves of

Y3, we must rescale the section by 1√
2

and hence the height pairing b by 1
2 . Taking this

into account, and making the replacement

1

2
F 2 → −z2, (3.44)

in analogy to (3.42), we conclude that the index with respect to the U(1) fugacity z is

m = −1

2
π∗(σ(S) · σ(S)) · Cβ =

1

2
b · Cβ . (3.45)

Note that this quantity is guaranteed to be integer because b is an even divisor as can be

seen from (2.13).

3.4 Synopsis: determining the maximal charge per excitation level

We now combine the arguments of the foregoing sections and outline how to practically

determine (a subset of) the U(1) charge spectrum of the nearly tensionless heterotic string

we consider. Recall that the string arises from a wrapped D3-brane on a shrinking curve

C0 in the base of an elliptic 3-fold, Y3. As a first step one makes a general ansatz for the

quasi-modular form ΦW,m(τ, z) in eq. (3.33) of weight W = 6C0 · K̄ − 2 = 10 and U(1)

fugacity index m = 1
2C0 · b. The ansatz consists of a linear combination of all monomials

in the generators of the ring of quasi-modular Jacobi forms (see appendix C), i.e.,

Φ10,m(τ, z) =
∑

ca0,a1,a2,a3,a4E
a0
2 (τ)Ea14 (τ)Ea26 (τ)ϕa30,1(τ, z)ϕa4−2,1(τ, z) (3.46)

with

2a0 + 4a1 + 6a2 − 2a4 = 6C0 · K̄ − 2 = 10, a3 + a4 =
1

2
C0 · b = m. (3.47)

As furthermore explained in appendix C, the only source of quasi-modularity in Φ
(0)
10,m(τ, z)

are possible factors of E2(τ). We have discussed in section 3.2 that if C0 is a Mori

cone generator and of genus zero, there cannot be an explicit dependence on E2(τ), as in

this case the prepotential is modular, not quasi-modular. This immediately implies that

Φ10,m(τ, 0) = E4(τ)E6(τ), which is a classic result for perturbative heterotic strings on

K3 [61]. This is in particular the case where Y3 is a fibration over a Hirzebruch surface, Fa.
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For non-perturbative heterotic strings, however, Φ10,m(τ, 0) may not reduce to E4(τ)E6(τ)

due to the possible appearance of extra terms involving E2(τ); this reflects the fact that

there can be a variable number of extra massless tensor fields which contribute to the gauge

and gravitational anomalies in six dimensions.

In any concrete model, the ansatz (3.46) leaves us with a finite number of free param-

eters, which can be fixed by comparison with the genus-zero prepotential via eq. (3.33).

Specifically, for the geometry we consider we have

F (0)
C0

(τ, z) ≡
∑

N
(0)
C0

(n, r) qn ξr (3.48)

= − q

η(τ)24
Φ10,m(τ, z) ≡ −q ZK(τ, z) .

It suffices to consider a small number of Gromow-Witten invariants N
(0)
C0

(n, r) of Y3, which

can be straightforwardly computed by using mirror symmetry. Having obtained in this

way an exact, analytic expression for the U(1)-graded elliptic genus ZK(τ, z), one can then

go on and analyze the charge-versus-mass spectrum in order to investigate various weak

gravity conjectures. This will be done explicitly for a number of examples in the following

section 4 and in appendix E.

However, even without analyzing concrete models, one can deduce important general

properties of the U(1) charges of the string excitations that are encoded in the elliptic

genus. These properties follow from the modular properties of Jacobi forms. One way to

make use of these is to note that the generators ϕ0,1(τ, z) and ϕ−2,1(τ, z) that appear in

the ansatz (3.46), can be rewritten in terms of the Eisenstein-Jacobi series Ew,l(τ, z) via

the identities (C.15). This property of the Eisenstein-Jacobi series allows us to establish a

lower bound for the maximal charge of the states at any given mass level n, as discussed in

detail in appendix D. The result of this analysis is the general behaviour that we mentioned

already in section 2.5: namely, in a model with U(1) index m = 1
2C0 ·b, the maximal charge

per excitation level n is bounded as follows:

q2
max(n) ≥ (1− ε)4mn =: βε n ∀n ≥ N(ε) . (3.49)

This part of the analysis is completely general and does not rely on any explicit evaluation

of the elliptic genus for a given model. On the other hand, in order to find the actual value

of N(ε) for given ε, we must explicitly analyze the elliptic genus by following the steps

outlined above. In particular, this will lead to lower, universal bounds for q2
max(n) valid

for all values of n and not just for n above a certain limit, N(ε).

In a similar vein one can make use of the fact that any weak Jacobi form, and thus in

particular the elliptic genus, can be expanded as [104]13

ϕw,m(τ, z) =
∑

`∈Zmod 2m

h`(τ)Θm,`(τ, z) . (3.50)

13Correspondingly one may describe the U(1) sector of the theory in terms of a free periodic boson H

that is associated with a Kac-Moody current of level m of the form J = i
√
m∂H. Its winding states are

then counted by the theta functions below. This is analogous to the familiar U(1) current that is part of

an N = 2 superconformal algebra on the world-sheet.
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Here

Θm,`(τ, z) =
∑
k∈Z

q(`+2mk)2/4mξ`+2mk (3.51)

is the standard theta function of index m and characteristic `, and the coefficient functions

h`(τ) are certain vector-valued modular forms of weight w−1/2. A particular distinguished

subset of states is defined by ` = 0, for which we can read off

n(k) = mk2 , qk = 2mk , k ∈ Z . (3.52)

These are extremal in the sense that they saturate the bound (3.49)

qk
2 = 4mn(k) , (3.53)

which amounts to a vanishing “discriminant”, D ≡ 4mn − q2 = 0. Note that they form

a sublattice with spacing ∆q = 2m. Obviously, all these charges strictly satisfy the weak

gravity bound (2.60), which translates to

q(n)2 ≥ 4m (n− 1) . (3.54)

The other states with ` 6= 0 decompose into conjugacy classes of charge lattices shifted by

` and will generically not saturate the bound (3.53). Which precise subset of these states

satisfies the weak gravity bound (3.54) depends on the model and may be determined by

a case-by-case analysis. Recall, however, that given that the ` = 0 states already satisfy

the gravity bound, the ` 6= 0 states are irrelevant for consistency of the theory with the

Sublattice Weak Gravity Conjecture.

4 Examples of F -theory models with U(1) symmetry

In this section we explore various explicit 6-dimensional F-theory compactifications with a

single U(1) gauge group. Our main purpose is to explicitly compute the elliptic genus of

heterotic strings that arise from wrapped D3-branes on shrinking rational curves, C0, of

self-intersection zero on the base B2 of an elliptic 3-fold Y3. The results of this section serve

as concrete examples for the advertised general properties of the massive, U(1) charged

string excitations, in the limit of vanishing tension and global U(1) symmetry.

We will start in section 4.1 by analyzing two explicit models on the Hirzebruch surface

B2 = F1. In this case the string associated with the vanishing curve C0 is the perturbative,

critical heterotic string. We will see that indeed, starting from the geometry and applying

mirror symmetry, the correct U(1) refinement of the elliptic genus is obtained for the

perturbative heterotic string theory on the K3-surface K, defined in (2.44). Exactly the

same method can systematically be applied to models for more general toric bases B2, e.g.,

any other Hirzebruch surfaces Fa and the toric del Pezzo surfaces, dPr (r ≤ 3). For more

Hirzebruch examples, the results for F2 are collected in appendix E.

For a further illustration, a fibration over B2 = dP2 will be analyzed in section 4.2.

On this non-Hirzebruch base the string associated with C0 does not become a perturbative
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heterotic string, and correspondingly we will observe that the elliptic genus is different

from the familiar elliptic genus of the perturbative heterotic string.

In all these examples the type of U(1) gauge symmetry is engineered by realising the

fiber of the elliptic 3-folds Y3 as a most general hypersurface of degree 4 within the space

Bl1P2
112. Such an elliptic fibration has a Mordell-Weil group of rational sections of rank

one [72]. It is cut out by the hypersurface

P̂ = sw2 + b0s
2u2w + b1suvw + b2v

2w + c0s
3u4 + c1s

2u3v + c2su
2v2 + c3uv

3 , (4.1)

where [u : v : w : s] are the homogeneous coordinates of the toric fibral ambient space

Bl1P1
112. The bi and ci are sections of certain bundles on B2, the associated cohomology

classes of which take the form

[b0] = β , [b1] = K̄ , [b2] = 2K̄ − β , [c0] = 2β ,

[c1] = β + K̄ , [c2] = 2K̄ , [c3] = 3K̄ − β , [c4] = 4K̄ − 2β .
(4.2)

Apart from the concrete choice of base space B2, the fibration is therefore specified by a

class β ∈ H2(B2,Z). It must satisfy the condition

0 ≤ β ≤ 2K̄ (4.3)

in order for all bi and ci to be realisable as holomorphic polynomials on B2. Here, an

inequality between two divisor classes indicates that the difference of the divisors is effective.

The class β also defines the transformation behaviour of the fiber coordinates, which are

sections of the bundles

u ∈ H0(Y3,Lu) , v ∈ H0(Y3,Lu ⊗ Ls ⊗O(β − K̄)) , w ∈ H0(Y3,L2
u ⊗ Ls ⊗O(β)) ,

s ∈ H0(Y3,Ls) . (4.4)

Let us denote by

S0 = {u = 0} , S = {s = 0} (4.5)

the divisor classes associated with the zero-section and an extra independent rational sec-

tion, respectively. The extra section S is responsible for the U(1) gauge symmetry whose

global limit we investigate. Since π∗(S0 · S) = b2, the Shioda homomorphism (2.9) takes

the form14

σ(S) = S − S0 − π−1(K̄ + b2) , (4.6)

where the last term is computed via (2.10) as

D = π−1(π∗(S − S0) · S0) = π−1(b2 + K̄) . (4.7)

This divisor can be seen to generate the U(1) gauge symmetry in the 6d F-theory effective

action. Of special importance for us is the height-pairing

b = −π∗(σ(S) · σ(S)) = 2K̄ + 2[b2] = 6K̄ − 2β . (4.8)

14By slight abuse of notation, we denote by b2 also the divisor associated with b2 = 0 on B2.
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As reviewed in section 2.1, we can define a holomorphic curve C with class [C] = b such

that its volume determines the gauge coupling of U(1) as in (2.11).

The fibration Y3 over B2 contains two types of curve classes: first, as recalled in

section 3.2, the classes in Cβ ∈ H2(B2) can be used to define the base curve classes

S0 · π−1(Cβ) ∈ H2(Y3,Z), both of which will be denoted by Cβ by abuse of notation. The

fibral curve classes, on the other hand, are given by the full fiber class CE and one more

fibral curve class C f with the respective properties

S0 · CE = 1 , S · CE = 1 =⇒ σ(S) · CE = 0 (4.9)

S0 · C f = 0 , S · C f = 1 =⇒ σ(S) · C f = 1 . (4.10)

There are two types of massless, charged hypermultiplets in the 6d F-theory compact-

ification, which are localised in the fiber over the following two loci on B2 [72],

CI = {b2 = 0} ∩ {c3 = 0} : qI = 2

CII = V (f1, f2) \ CI : qII = 1 ,
(4.11)

where V (f1, f2) denotes the vanishing ideal of the functions

f1 = −c1b
4
2 + b1b

3
2c2 + b0b

3
2c3 − b21b22c3 − 2b22c2c3 + 3b1b2c

2
3 − 2c3

3

f2 = −c2
3b

2
0 + b1b2b

2
0c3 − b1b22b0c1 + b22c

2
1 + b21b

2
2c0 − 4b1b2c0c3 + 4c0c

2
3 .

(4.12)

Both CI and CII represent a set of isolated points on B2. Over each of these points, the

elliptic fiber factorises into two components. One of the two fibral components over the

locus CI is a rational curve in class 2C f , and one of the components over CII is the rational

curve in class C f . M2-branes wrapping these isolated rational curves give rise to states of

charge qI = 2 and qII = 1, respectively. These become massless in the F-theory limit and

furnish the advertised charged hypermultiplets. Note that for the special value β = 2K̄,

the class [b2] = 0 and hence the charge-two state locus CI is absent.

4.1 Hirzebruch surface base B2 = F1 with extra section

Let us first recall some topological properties of the Hirzebruch surfaces Fa. A Hirzebruch

surface can be viewed as a P1 bundle over P1 of the form (2.42), i.e. as the total space of

the projectivisation of the bundle OP1 ⊕ OP1(−a) over a base curve of genus zero. The

space H2(Fa,Z) of its divisor classes is spanned by the class h of the base P1
b and the class

f of the fiber P1
f with intersection numbers

h · h = −a , f · f = 0 , h · f = 1 , (4.13)

and the anti-canonical divisor has the class

K̄ = 2h+ (2 + a)f . (4.14)

The Mori cone M and (the closure of) the Kähler cone K, both viewed as a cone in

H2(Fa,R), are then described, respectively, as

M(Fa) = Span 〈f, h〉 , (4.15)

K(Fa) = Span 〈f, h+ af〉 , (4.16)
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νz1 νz2 νz3 νz4 νu νv νw νs

U(1)h 0 1 0 1 0 x− 2 x 0

U(1)f 1 a 1 0 0 y − (2 + a) y 0

U(1)U 0 0 0 0 1 1 2 0

U(1)S 0 0 0 0 0 1 1 1

Table 2. GLSM charges of the toric coordinates of the Bl1P2
112 fibration over Fa.

where Span 〈·〉 denotes the set of non-negative linear combinations of the indicated divi-

sor classes.

Let us begin by specifying the toric data for the Bl1P2
112[4] fibrations with base B2 = Fa

in terms of the abelian GLSM charges. The divisor class β ∈ H2(Fa,Z) introduced above

is parametrized as

β(x, y) = xh+ y f . (4.17)

The constraint (4.3) implies that β(x, y) has to take values within the finite range

0 ≤ x ≤ 4 , 0 ≤ y ≤ 4 + 2a . (4.18)

If we introduce toric coordinates νzi for the base space and νu, νv, νw, νs for the fiber,

then (4.4) translates into the GLSM charges shown in table 2.

The inverse gauge coupling of the gauge group U(1) is controlled by the volume of

the curve

C = b = 6K̄ − 2β = (12− 2x)h+ (12 + 6a− 2y)f . (4.19)

We are interested in the limit (2.17) in Kähler moduli space, where the volume of C goes to

infinity. For a base with h1,1(B2) = 2 this limit is conveniently parametrized as in (2.36).

We therefore need to identify a boundary ray J0 of K(Fa) such that
∫
Fa J0 ∧ J0 = 0 and∫

C J0 6= 0. Since the two boundary rays f and h+ af have self-intersection numbers 0 and

a, respectively, the only possibility to satisfy the first requirement is to take J0 = f (when

a = 0 both f and h can be taken as J0, but in this case the fibration is trivial so that f

and h may be treated on an equal footing). This choice also satisfies the second constraint,

that is, ∫
C
J0 = 12− 2x ≥ 4 (4.20)

within the range (4.18) so that
∫
C J0 6= 0. Altogether we are therefore interested in the limit

J =
1√

1
2 + a

8t̃2

(
t̃ f +

1

2t̃
(h+ af)

)
, (4.21)

for t := t̃(1
2 + a

8t̃2
)−1/2 → ∞. In agreement with the general discussion of section 2.2, the

class J0 = f is the class of a holomorphic curve

C0 = f . (4.22)
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This is, in fact, the only curve class (modulo integer multiples) whose volume with respect

to J0 vanishes as t→∞.

With this preparation, the elliptic genus ZC0 of the nearly tensionless heterotic string

associated with C0 can be determined by following the procedure that was outlined in

section 3.4:

• For a Hirzebruch surface Fa an important simplification occurs, as we recall from

section 3.2: since C0 is a Mori cone generator, the full elliptic genus ZC0 is given

by (3.13). Since L = g(C0) = 0, the numerator is a weak Jacobi form of weight

W = 6C0 · K̄ − 2 = 10 and U(1) fugacity index

m =
1

2
C0 · b = 6− x , (4.23)

so in total we have:

ZC0(τ, λs, z) =
1

η24(τ)

Φ10,6−x(τ, z)

ϕ−2,1(τ, λs)
. (4.24)

• Since C0 is a Mori cone generator and thus the numerator does not depend on λs,

the genus-zero topological string partition function FC0 is given by

F (0)
C0

(τ, z) = − q

η24(τ)
Φ10,6−x(τ, z) (4.25)

= −qZK(τ, z) , (4.26)

where ZK(τ, z) is the U(1)-refined heterotic elliptic genus associated to the elliptically

fibered K3 surface K defined in eq. (2.44). The minus sign in (4.25) originates from

the minus sign of the leading term in the expansion ϕ−2,1(τ, λs) = −λ2
s (1 +O(λ2

s)),

which is needed for matching the r.h.s. of (4.24) to the genus-zero free energy.

• As per (3.46), we can now make an ansatz for Φ10,6−x(τ, z) as a sum of products of

E4(τ), E6(τ), ϕ0,1(τ, z), ϕ−2,1(τ, z) of total weight 10 and fugacity index 6 − x. To

fix the finite number of coefficients in this ansatz, we compare it with a finite number

of genus-zero Gromov-Witten invariants of curve classes of the form

ΓC0(n, r) := C0 + nCE + rC f , n = 0, 1 . . . , (4.27)

for a small number of choices of n. The fibral classes CE and C f have the proper-

ties (4.9) and (4.10). The expansion (3.24) of the generating function

F (0)
C0

(τ, z) =
∑
n≥0

∑
|r|≤qmax(n)

N
(0)
C0

(n, r)qnξr with q = e2πiτ , ξ = e2πiz (4.28)

can then be obtained to the chosen finite order, where qmax(n) denotes the maximal

power of ξ appearing in the expansion at a given level n in q. By computing a sufficient

number of low-degree Gromov-Witten invariants N
(0)
C0

(n, r), one can proceed to fix

the coefficients in the ansatz for Φ10,6−x. This provides an analytic expression for

F (0)
C0

and thus for ZK(τ, z), as well as for its spin-refined cousin, ZC0(τ, λs, z).
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In the remainder of this subsection we will consider a = 1, that is B2 = F1. Although

one may in principle analyze all possible choices of β within the range (4.18), we will focus

here on the two models with (x, y) = (4, 4) and (4, 6), respectively. Some further models

over F2 can be found in appendix E.

Model 1: Hirzebruch base F1 with extra section, for (x, y) = (4, 4). Some results

for the Hirzebruch base F1 with (x, y) = (4, 4) have already been presented in section 2.5 to

exemplify the general behaviour of the charge spectrum of the nearly tensionless heterotic

string. Using the toric data as summarized in appendix E.1, we can compute via mirror

symmetry a collection of low order genus-zero Gromov-Witten invariants. These assemble

into the expansion (4.28) as follows:

F (0)
C0

(τ, z) ≡
∑

N
(0)
C0

(n, r) qnξr

= −2 +
(
216 + 128ξ±1 + 4ξ±2

)
q (4.29)

+
(
121964 + 70528ξ±1 + 9808ξ±2 + 128ξ±3 − 2ξ±4

)
q2

+O(q3) .

Here and in the sequel we use the abbreviation

ξ±n := ξn + ξ−n . (4.30)

These Gromov-Witten invariants are more than enough to determine the unknown

coefficients in the ansatz (3.46), and this yields:

F (0)
C0

(τ, z) = −q ZK(τ, z)

=
q

η24

(
1

54
E3

4ϕ−2,1ϕ0,1 +
1

108
E2

6ϕ−2,1ϕ0,1 −
1

72
E2

4E6ϕ
2
−2,1 −

1

72
E4E6ϕ

2
0,1

)
.

(4.31)

As a non-trivial consistency check, we have confirmed that the Gromov-Witten invariants

N
(0)
C0

(2, r) at order n = 2 in q are correctly reproduced. Moreover, in the un-refined limit

z = 0, for which ϕ−2,1 = 0 and ϕ0,1 = 12, the well-known expression (3.4) for the conformal

field theoretic elliptic genus ZK3(τ) is recovered.

Based on the analytic expression for F (0)
C0

(τ, z), the maximal charge per excitation level,

qmax(n), can easily be extracted at a given order n in q. See figure 1. We confirm the general

behaviour as announced already in section 2.5, namely that there exist superextremal states

whose charges lie on a sublattice of the charge lattice and satisfy the Sublattice Weak

Gravity bound.

Let us now interpret the expansion coefficients in (4.29) in terms of a nearly tensionless,

weakly coupled heterotic string. The left-moving excitation number n = 0 is associated with

the tachyonic mode of the heterotic string, which is not physical because of lack of level-

matching. The sector at n = 1 is therefore the first physical sector and corresponds to the

U(1)-refined index of the massless modes. This sector must reproduce the massless sector

of the heterotic string, which in turn has to agree with the massless sector of the F-theory
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model itself. More specifically, at the massless level, the U(1)-refined elliptic genus must

reproduce the chiral index which counts the difference of anti-chiral and chiral fermions,

(n− − n+)q = 2(nV + 3 + nT − nH)q . (4.32)

Here nV , nT and nH denote the numbers of vector multiplets, tensor multiplets, and

hypermultiplets, respectively. The universal contribution of +3 comes from the gravitino.

The subscript indicates that we must distinguish the states according to the U(1) charges

q. Of course, the gravitino and the tensor multiplets are always uncharged under the U(1)

symmetry we consider.

The coefficients of the term q, qξ and qξ2 in (4.29) therefore represent, up to the overall

sign flip and the shift of q-power in (4.26), the piece in the heterotic elliptic genus counting

such massless states with U(1) charge 0, 1 and 2, respectively. Indeed, these numbers

agree precisely with our expectations based on F-theory/heterotic duality. Consider first

the uncharged sector. In the dual F-theory, the relevant combination of uncharged massless

fields adds up to

2 (nV + 3 + nT − nH)0 = 2 (h1,1(Y3)− h2,1(Y3)) = χ(Y3) , (4.33)

where χ(Y3) is the topological Euler characteristic of Y3. This follows from the general

relations between the Hodge numbers of the elliptic fibration and the massless uncharged

spectrum of F-theory on Y3 [112],

h1,1(Y3) = 1 + rk(G) + h1,1(B2) = 1 + nV0 + nT + 1 , h2,1(Y3) = nH0 − 1 . (4.34)

The first equation uses that the uncharged vectors correspond to the Cartan generators

of the gauge group G, whose number agrees with the rank of the gauge group, and the

second equation follows from the fact that the uncharged moduli are given by the complex

structure moduli plus one universal modulus. Explicit computation via PALP using the

toric data listed in appendix E.1 gives the Hodge numbers

h1,1(Y3) = 4 h2,1(Y3) = 112 , χ(Y3) = −216 . (4.35)

In particular, the Euler number agrees with (4.29) if we take into account the overall sign.

Furthermore, the expansion coefficients in front q ξ and q ξ2 equal the number of points in

the set CII and CI introduced in (4.11), which count the number of half-hypermultiplets

of charge 1 and 2, respectively. Taking into account also the half-hypermultiplets of charge

−1 and −2, encoded in the coefficients of q ξ−1 and q ξ−2, gives the number of charged

hypermultiplets. Since the gauge group is abelian, these are the only charged states. This

fact has the following geometrical meaning: by mirror symmetry, the expansion coefficients

represent the BPS numbers for M2-branes wrapping the curves

q ξ : ΓC0(1, 1) := C0 + CE + C f (4.36)

q ξ2 : ΓC0(1, 2) := C0 + CE + 2C f (4.37)

in the dual 5d M-theory compactification. As mentioned around (4.11), the classes C f and

2C f are associated with isolated rational curves localised in the fiber over the base loci CII

– 47 –



J
H
E
P
1
0
(
2
0
1
8
)
1
6
4

and CI . The number of isolated curves in these two classes hence equals the number of

points in the sets CII and CI . These numbers coincide exactly with the BPS numbers for

the curves CE+2C f and CE+C f combined with the base curve C0, i.e. the Gromov-Witten

invariants for the two classes ΓC0(1, 2) and ΓC0(1, 1), respectively.

In summary, we confirm that the U(1)-refined elliptic genus at level n = 1 precisely

counts the index (4.32) of massless multiplets in F-theory, which agrees, by duality, with

the corresponding index in the massless sector of the perturbative heterotic string on the

K3 surface K. Extrapolating this to higher excitation levels we obtain information about

the tower of charged excitations, at least in the tensionless, perturbative limit.

Model 2: Hirzebruch base F1 with extra section, for (x, y) = (4, 6). This choice

of parameters is special in that the class [b2] in the defining equation (4.1) is now trivial.

From the discussion after (4.11) this means that the 6d F-theory model has only one type

of massless charged hypermultiplets, of charge qII = 1, localised over the point set CII .

We will see that this has interesting consequences also for the excitation numbers of the

tensionless heterotic string. Using the toric data given in in appendix E.2, the generating

function (4.28) for low-lying Gromov-Witten invariants can be explicit computed as follows:

F (0)
C0

(τ, z) ≡
∑

N
(0)
C0

(n, r) qnξr (4.38)

= −2 +
(
288 + 96ξ±1

)
q

+
(
123756 + 69280ξ±1 + 10192ξ±2 + 96ξ±3 − 2ξ±4

)
q2 +O(q3) ,

where we recall the notation (4.30). As expected, the expansion coefficient for q ξ±2 van-

ishes, because for (x, y) = (4, 6) there are no rational curves in the class 2C f . The absence

of these excitations hints at a non-trivial cancellation, which can indeed occur only for

special linear combinations of the Jacobi forms in the ansatz which we will now determine.

Since the U(1) fugacity index for the model with (x, y) = (4, 6) continues to be given

by m = 6− x = 2, we make the same ansatz for the elliptic genus in terms of weak Jacobi

forms as before. Comparison with (4.38) at levels n = 0, 1 in q fixes the ansatz uniquely

as follows:

F (0)
C0

(τ, z) = −q ZK(τ, z) (4.39)

=
q

η(τ)24

(
− 1

72
E4(τ)2E6(τ)ϕ−2,1(τ, z)2 +

7

432
E4(τ)3ϕ−2,1(τ, z)ϕ0,1(τ, z)

+
5

432
E2

6(τ)ϕ−2,1(τ, z)ϕ0,1(τ, z)− 1

72
E4(τ)E6(τ)ϕ2

0,1(τ, z)

)
.

The Gromov-Witten invariants N
(0)
C0

(2, r) at level n = 2 in q can be confirmed to be correctly

reproduced. As before, the elliptic genus ZK3(τ) in (3.4) is recovered in the limit z = 0.

The maximal charge qmax(n) can easily be determined at a given level n in q. See

figure 3 for a plot.. Evidently it displays the same rough features as for the first example,

in particular a sub-lattice of charges formed by the isolated points peeking above the solid

line associated with extremal black holes.
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Figure 3. Maximal charge qmax(n) for a Bl1P2
112[4] fibration over F1 with (x, y) = (4, 6). Again

we oberve that maximally superextremal excitations exist whose charges form a sublattice of index

2m = 4. However, in contrast to the previous example, the set of all superextremal states does not

populate the full charge lattice.

Furthermore, the elliptic genus as encoded in the Gromov-Witten invariants at order

q correctly reproduces the massless spectrum of the nearly tensionless heterotic string as

defined via the geometry in F-theory. For the uncharged states this follows from

h1,1(Y3) = 4 h2,1(Y3) = 148 , χ(Y3) = −288 , (4.40)

while the expansion coefficients of qξ and qξ−1 correctly count the number of half-

hypermultiplets of charges q = +1 and q = −1, respectively. Hence the number of charged

massless hypermultiplets with |q| = 1 is 96.

4.2 Del Pezzo surface base B2 = dP2 with extra section

We will now discuss an example of a U(1) fibration over the base dP2. Since this base is not

rationally fibered, the structure of the nearly tensionless heterotic string is more subtle, as

explained in detail in section 2.4. In particular the string won’t be perturbative due to the

appearance of small instantons which lead to an extra massless tensor field.

Let us first recall some topological properties of the del Pezzo surfaces dPr. They are

constructed by blowing up a P2 at r generic points (r = 0, · · · , 8). The space H2(dPr,Z)

of its divisor classes is spanned by the hyperplane class l and the blow-up classes ei (i =

1, . . . , r). Their non-zero intersection numbers are given as

l · l = 1 , ei · ei = −1 (i = 1, · · · , r) , (4.41)

and the anti-canonical divisor is

K̄ = 3l −
r∑
i=1

ei . (4.42)
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νz1 νz2 νz3 νz4 νz5 νu νv νw νs

U(1)l 1 1 1 0 0 0 x− 3 x 0

U(1)l+e1 0 1 0 1 0 0 x− y1 − 2 x− y1 0

U(1)l+e2 1 0 0 0 1 0 x− y2 − 2 x− y2 0

U(1)U 0 0 0 0 0 1 1 2 0

U(1)S 0 0 0 0 0 0 1 1 1

Table 3. GLSM data for Bl1P2
112 fibration over dP2.

The generators for the Mori cone M and (the closure of) the Kähler cone K look rather

different for different values of r. Suffice it here to state them for the case of r = 2,

M(dP2) = Span 〈l − e1 − e2, e1, e2〉 , (4.43)

K(dP2) = Span 〈l, l − e1, l − e2〉 . (4.44)

Let us now move on to the toric data for Bl1P2
112[4] fibrations over dP2 in terms of the

abelian GLSM charges. The class β appearing in (4.2) is parameterized as

β(x, y1, y2) = xl − y1e1 − y2e2 (4.45)

and enters the divisor classes of the toric coordinates as displayed in table 3. Both β and

2K̄−β have to be effective, which implies that β(x, y1, y2) must take values in the following

finite range,

0 ≤ x ≤ 6 , x− 4 ≤ yi ≤ x , for i = 1, 2 . (4.46)

We are interested in taking the limit in Kähler cone where the volume of the height

pairing

C = b = 6K̄ − 2β = (18− 2x)l − (6− 2y1)e1 − (6− 2y2)e2 (4.47)

associated with the U(1) gauge theory becomes infinite. To realize the limiting base Kähler

form (2.17), we need to take a boundary ray J0 of K(dP2) such that
∫
dP2

J0 ∧ J0 = 0 and

J0 · C 6= 0. Given the most general ansatz for J0 in terms of the Kähler cone generators,

J0 = al +
∑
i=1,2

ai(l − ei) , a, ai ≥ 0 , (4.48)

we have ∫
dP2

J0 ∧ J0 = (a+ a1 + a2)2 − a2
1 − a2

2 (4.49)

= a2 + 2a(a1 + a2) + 2a1a2 , (4.50)

which only vanishes if a = 0 and one of the two ai vanishes. Without loss of generality we

may thus take

J0 = l − e1 . (4.51)
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Since (l− e1) · b = 24− 2x− 2y1, this ray has non-zero intersection with the height-pairing

unless x = y1 = 6, in which case it is not possible to take a limit with vol(C) → ∞ while

keeping vol(B2) = 1.

With the choice (4.48) fixed as (4.51), let us now find the curves of volume zero.

These correspond to those curves that do not intersect J0. Given an effective curve of the

general form

C0 = c(l − e1 − e2) +
2∑
i=1

ciei , c, ci ≥ 0 , (4.52)

its volume, with respect to J0, follows as

C0 · (l − e1) = c1 . (4.53)

The vanishing volume curves in the limit in Kähler cone are therefore in the class C0 =

c(l− e1− e2) + c2e2, with self-intersection number C0 ·C0 = −(c− c2)2. In agreement with

the general theory of section 2.2, there exists precisely one self-intersection zero curve class

C0 (up to multiple wrapping), corresponding to c = c2, and the lowest wrapping number

is associated with the curve

C0 ≡ J0 = l − e1 . (4.54)

It is, however, interesting to keep in mind that there may be additional massless charged

states from D3 branes wrapping the other possible curves of negative self-intersection ob-

tained by choosing c 6= c2 in the ansatz for C0. This realizes the third point in section 2.2.

The U(1) fugacity index m is parameterised as

m =
1

2
C0 · b = 6− x + y1 . (4.55)

In the sequel we focus on the particular example of a fibration corresponding to the pa-

rameters (x, y1, y2) = (6, 2, 2), such that the U(1) fugacity index is m = 2.

By a mirror symmetry computation similar to the one of the previous section, the

expansion of the generating function for the U(1)-refined genus-zero Gromov-Witten in-

variants up to order n = 3 in q reads

F (0)
C0

= −2 +
(
252 + 84ξ±1

)
q (4.56)

+
(
116580 + 65164ξ±1 + 9448ξ±2 + 84ξ±3 − 2ξ±4

)
q2

+
(
6238536 + 3986964ξ±1 + 965232ξ±2 + 65164ξ±3 + 252ξ±4

)
q3

+O(q4) .

Unlike for the models on the Hirzebruch surfaces, the genus-zero prepotential is expected

to be not a modular function by itself, but only a quasi-modular function. This is in line

with the general discussion of the modular properties of the topological string prepotential

in section 3. The failure of F (0)
C0

to be modular is measured by the modular anomaly

equation [49, 53, 103],

∂F (0)
C0

∂E2
=

1

24

∑
C1+C2=C0

(C1 · C2)F (0)
C1
F (0)
C2

, (4.57)
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where the non-trivial E2-dependence appears due to possible splits of C0 into two effective

pieces. Given the Mori cone (4.43), it is straightforward to see that C0 = l − e1 can

only split into the sum of C1 = l − e1 − e2 and C2 = e2. Interestingly, both C1 and C2

have self-intersection number −1 and hence correspond to an E-string, of which F (0) is

known not to depend on E2. Alternatively, since both C1 and C2 are Mori cone generators,

they cannot split into two non-trivial effective pieces. Therefore, F (0)
Ci=1,2

cannot have a

non-trivial modular anomaly. This means that the r.h.s. of (4.57) does not involve E2

and hence that F (0)
C0

can depend on E2 at worst linearly. This considerably simplifies the

ansatz (3.46) for F (0)
C0

.

Upon requiring that the Gromov-Witten invariants in (4.56) match the ansatz (3.46),

the coefficients are uniquely fixed and the following generating function is found:

F (0)
C0

(τ, z) = −q ZK(τ, z) (4.58)

=
q

η24

(
− 23

1728
E2

4E6ϕ
2
−2,1 +

1

64
E3

4ϕ−2,1ϕ0,1 +
19

1728
E2

6ϕ−2,1ϕ0,1 −
23

1728
E4E6ϕ

2
0,1

+E2

(
− 1

1728
E2

6ϕ
2
−2,1 +

1

864
E4E6ϕ−2,1ϕ0,1 −

1

1728
E2

4ϕ
2
0,1

))
.

As expected, when switching off the U(1) background field, z = 0, the familiar, conformal

field theoretic elliptic genus ZK3(τ) in (3.4) is not reproduced, but rather we arrive at15

ZK(τ, 0) = ZK3(τ) +
1

η24

(
1

12
E2E4

2 − 1

12
E4E6

)
=

2

q
− 420− 265968q + . . . (4.59)

This makes it evident that, unlike for models on a Hirzebruch base, we do not obtain

a perturbative heterotic dual. However, due to existence of a K3 fibration of Y3, as argued

in point 4 of section 2.2, we can still invoke Type IIA-heterotic duality, albeit with a more

complicated heterotic side. In particular, the heterotic dual involves one more tensor mul-

tiplet, which is associated with a heterotic 5-brane defect which defies a fully perturbative

description. As we see, this leaves its imprint in the spectrum of the heterotic theory. In

fact, we observe that the genus-zero contribution to the elliptic genus correctly reproduces

the chiral index of the F-theory model at the massless level: the expansion coefficient in

eq. (4.56) at level qξ0 again agrees with the Euler characteristic of the F-theory 3-fold

Y3 because

h1,1(Y3) = 5 h2,1(Y3) = 131 , χ(Y3) = −252 . (4.60)

Furthermore, the expansion coefficient of q ξ and q ξ−1 agrees with the number of q = 1

and q = −1 half-hypermultiplets, respectively. These are the only massless charged states

of the F-theory model. This is because the fibration we are considering does not contain

any charge-two loci CI , like for the Hirzebruch model with (x, y) = (4, 6) discussed before.

Summing over all massless states gives the chiral index at the massless level,∑
q

(n− − n+)q = 2(nV + nT + 3− nH) = −420 , (4.61)

15Note that in this case, the full spin-refined elliptic genus ZC0(τ, λs, z) is not completely fixed by the

genus-zero prepotential, but this is not of interest in the present context.
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Figure 4. Maximal charge qmax(n) for a Bl1P2
112[4] fibration over dP2, with (x, y1, y2) = (6, 2, 2).

The general features of this strongly coupled theory are completely in line with the findings of the

previous examples, which correspond to weakly coupled strings.

which reproduces the constant term in eq. (4.59), so all is consistent. As stressed, this result

differs from the value −480 which pertains to the perturbative heterotic string on K3 in

eq. (3.4). Indeed, the model on dP2 under consideration is related by a non-perturbative

tensor transition [38, 43, 113] with the model with (x, y) = (4, 6) on F1 = dP1. Starting

from dP1 we obtain dP2 by a single blowup, which increases the number of tensors by

one. At the same time, the number of vector multiplets is nV = 1 in both cases. The 6d

gravitational anomaly relation

nH − nV + 29nT = 273 (4.62)

requires that the total number of hypermultiplets in going from the dP1 to the dP2 model

decreases by 29. In total this indeed leads to the correct shift of the index by

2(∆nT −∆nH) = 2(1− (−29)) = 60 . (4.63)

We view the fact that the elliptic genus (4.58) correctly reproduces the index of the massless

states as evidence that it has been computed correctly, and thus that it also encodes

the proper charge-to-mass spectrum. See figure 4 for a plot, which confirms again our

expectations based on the Weak Gravity Conjecture. This is reassuring as we lack a

completely perturbative description on the heterotic side, due to the tensor transition

induced by the putative heterotic 5-brane.

In a similar vein, we have checked whether this non-perturbative heterotic string forms

bound states when wrapped multiple times. Certainly the perturbative ones do not [48, 76],

and we confirm the same behaviour also for the non-perturbative heterotic string discussed
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in this section. Concretely, we compute via mirror symmetry the following sequence:

F (0)
2C0

=
(
252 + 84ξ±1

)
q2 (4.64)

+
(
6238536 + 3986964ξ±1 + 965232ξ±2 + 65164ξ±3 + 252ξ±4

)
q3 +O(q4) ,

F (0)
3C0

=
(
252 + 84ξ±1

)
q3 (4.65)

+
(
161704980 + 110586648ξ±1 + 33904224ξ±2

+3986964ξ±3 + 116580ξ±4 + 84ξ±5
)
q4 +O(q5) .

This pattern reproduces the r.h.s. of eq. (3.38), which means that all terms above arise

from multi-covers of the basic invariants, N
(0)
C0

. In other words, the Gopakumar-Vafa

BPS invariants associated with the higher wrappings vanish, N
(0)
k·C0

= 0 for k > 1, and

consequently there are no bound states.

5 Discussion and outlook

Our analysis has revealed an intricate interplay between various conjectured properties of

quantum gravity and the geometric realisation of gauge symmetries in string compactifica-

tions. We have demonstrated that whenever a gauge symmetry — abelian or non-abelian

— becomes asymptotically a global symmetry in 6d F-theory compactifications on some

threefold Y3, while gravity is being kept dynamical, there appears a nearly tensionless, crit-

ical heterotic string in the theory. At the level of algebraic geometry, this is because there

must exist a rational curve C0 of self-intersection zero in the base of the elliptic 3-fold Y3

whose volume tends to zero in the limit. Wrapping a D3-brane on this curve gives rise to

an effective string which becomes tensionless when C0 shrinks to zero volume. This leads

to a breakdown of the effective field theory near the point where the global symmetry is

reached. Such behaviour is in agreement with by now familiar arguments on the proper-

ties of quantum gravity [3–5], and similar phenomena have been observed in various other

corners of the landscape such as [7, 8, 30, 31].

Our analysis directly addresses the question of having a weakly coupled gauge symme-

try in the ‘open-string’ sector. Somewhat ironically maybe, the crucial ingredient respon-

sible for consistency with quantum gravity is nonetheless a closed string in disguise: the

string which becomes tensionless is dual to the critical heterotic string compactified to six

dimensions. We have shown that the tensionless limit can be taken only if the elliptic 3-fold

Y3 admits a K3 fibration, whose fiber class is the pullback of C0 to Y3. Even though in

general this fibration is not compatible with the elliptic fibration of Y3, Type IIA/heterotic

duality still allows us to infer the appearance of a nearly tensionless heterotic dual.

Our approach to analyze the nearly tensionless string has been to compute its elliptic

genus, making use of a number of beautiful results in the literature, pioneered in [48]

and reviewed e.g. in [45]; especially concerning the relation between the elliptic genus and

the topological string partition function on an elliptically fibered 3-fold Y3 [50, 51]. At

a technical level, we have extended the general techniques to situations in which the 3-

fold has general extra rational sections, which translate into global U(1) symmetries of

the string.
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While the elliptic genus as such does not directly represent a partition function of

physical excitations of the string in six dimensions, it describes a small, moduli-independent

sub-sector of left-moving string excitations that can be paired with appropriate right-

moving oscillators such as to provide a subset of the physical spectrum. The charges of

these states are encoded entirely in the left-moving sector and can therefore be read off

from the suitably refined elliptic genus as such. Our working assumption is that at least

in the limit of very weak coupling, we can rely on the perturbative mass relation for the

states at given excitation level. Fortunately, the heterotic weak coupling limit coincides

with the limit where the gauge symmetry becomes global. This way we arrive at an

intriguing relation between the charges and masses of the states that become light as the

gauge group becomes global. We argue that, under certain assumptions, the charge-to-

mass ratio in particular asymptotically satisfies the (Sub)Lattice Weak Gravity Conjecture

bound [5, 17, 39].

Further away from the tensionless limit we cannot a priori trust the formula for the

masses of the states. However, it is tempting to speculate that the states remain in the

spectrum. This is plausible as they are apparently needed to satisfy the Completeness

Hypothesis [40], according to which every site in the charge lattice should be populated by

a physical state. The ‘perturbative’ open string spectrum in (Type IIB language) by itself

does not contain arbitrarily high charges, not even at the massive higher excitation levels,

because the charges are encoded entirely in the Chan-Paton factors, and this fact remains

true taking into account also multi-pronged strings in F-theory.

One of our key results is the quantitative confirmation of the Sublattice Weak Gravity

Conjecture for six-dimensional heterotic strings, at least for the tensionless limit. The

relevant bound with which we need to compare the charge/mass ratio of the excitations

corresponds to certain extremal Reissner-Nordström black holes, where we additionally

take the effect of massless scalar field fluctuations [17, 25, 83] into account. Indeed we

observe the existence of superextremal string excitations that just minimally lie above this

bound and whose charges populate at least a sublattice of the full charge lattice.

As far as the heterotic string is concerned, our findings are completely in line with

the original discussion in ref. [5]. There the heterotic string was compactified on T 6, while

here we consider compactification on K3 with a single unbroken U(1) gauge symmetry. As

we have argued in section 3.4, the modular properties of the elliptic genus guarantee that

this U(1) gauge symmetry can formally be associated with a single boson compactified

on an S1. It is precisely the charge/mass properties of the winding states in this sector

that ultimately forms the common ground between our work and that of ref. [5] (as well

as [17, 39]).

As far as extremal black holes are concerned, we find it quite remarkable that the

balance of gravitational and scalar forces [25] conspires, in a narrowly consistent manner,

with the charge pattern of the heterotic string, which is encoded in the number theoretical

properties of weak Jacobi forms.

Our focus in this work has been on the role of the particle excitations of the nearly

tensionless string in the context of Quantum Gravity conjectures. At the same time, it

is natural to wonder about the implications of the nearly tensionless BPS string as such.
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First, to argue for a breakdown of the effective field theory in the limit where the gauge

symmetry becomes global, it probably suffices to consider the tensionless string. This

string is a priori charged with respect to the 2-form gauge symmetries associated with

the tensor multiplets of the 6d N = (1, 0) supergravity; however, due to the 6d Green-

Schwarz mechanism the shift symmetry of the tensors is gauged with respect to the 1-form

U(1) symmetry which becomes global in the limit we are considering. This implies an

effective charge also of the string itself. Microscopically this charge can be attributed to

the appearance of charged fermionic zero-modes propagating on its world-sheet.

Concerning the Weak Gravity Conjecture, one might alternatively wish to consider

not the non-BPS black holes charged under the abelian gauge symmetry, but rather black

string solutions of the 6d N = (1, 0) supergravity. In this case one would have to check for

the appearance of super-extremal strings with respect to the charge-to-tension ratio of the

black strings. Given that the BPS strings which become tensionless in our limit carry net

charge also under the 1-form U(1) symmetry via the Green-Schwarz mechanism, as noted

above, it would be interesting to quantify this relation further.

As far as the Completeness Conjecture is concerned, it is rather obvious that the lattice

of string charges is indeed realized explicitly by physical states due to the appearance of

BPS saturated strings from wrapped D3-branes. In this sense the Completeness Conjecture

with respect to the 1-form U(1) gauge symmetry for the particle-type excitations is far more

non-trivial to check, along the lines spelled out in this paper.

On the formal side, one of the outcomes of this article is the determination of the quasi-

modular elliptic genus of certain non-perturbative K3 compactifications of the heterotic

string, which involve extra massless tensor multiplets. This is the situation in which the

K3 fibration of the F-theory 3-fold is not compatible with the elliptic fibration. Such

configurations are related by a tensor transition to F-theory on Hirzebruch surfaces [38],

which has a more conventional perturbative heterotic dual. We have verified that the

proposed elliptic genus of the dual non-perturbative heterotic string correctly captures the

chiral index of F-theory massless modes, for the example of F-theory on a dP2 base. It

would be interesting to analyze this relation further.

Another direction to take would be to relate the 6d F-theory compactifications studied

in this work to various other dual setups. Compactification on an extra torus takes us

to a 4d N = 2 compactification of the Type IIA string on the same Calabi-Yau Y3. The

‘open string U(1)’ in the F-theory frame becomes a U(1) gauge symmetry in the Ramond-

Ramond sector of the 4d theory. The wrapped string states become 4d BPS particles

associated with wrapped D2 (and D4) branes in Type IIA. Mirror symmetry then relates

this to Type IIB string theory with a U(1) gauge symmetry due to the Ramond-Ramond

4-form C4 with charged BPS states from the sector of wrapped D3-branes. This is exactly

the duality frame analyzed in [8]. It might be illuminating to work out the mirror map in

detail and compare our results to the behaviour of this Type IIB theory in the vicinity of

infinite distance points in complex structure moduli space.

Let us end with a few more speculations: the nearly tensionless critical 6d heterotic

string that has been the star of the present analysis, appears to behave very differently

from the non-critical 6d strings which are associated with 6d superconformal field theories
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without gravity. These non-critical strings are due to D3-branes wrapping contractible

curves of strictly negative self-intersection on the base. Shrinking such curves to zero

volume, while keeping the volume of the base fixed, is possible at finite distance in moduli

space. This is to be contrasted with the critical heterotic string, which is associated with

a non-contractible curve of self-intersection zero: as we have seen, shrinking its volume

to zero while keeping the base volume fixed is possible only if we take a drastic limit in

which another curve approaches infinite volume, and this limit lies at infinite distance in

moduli space.

From the perspective of Swampland Distance Conjecture [6], the fact that this limit

is at infinite distance seems to be successfully explained by the appearance of a tower of

infinitely many critical string excitations coupling to gravity which become light. This

raises the obvious question why the tensionless point of the non-critical string lies at finite

distance in moduli space. A priori, of course, the Swampland Distance Conjecture does

not need to hold in the reverse, i.e. it does not postulate that every tower of infinitely

many states which becomes massless at a point in moduli space requires this point to be

at infinite distance.

Nonetheless, it is not immediately clear how to reconcile the existence of such a tower

of charged states e.g. with the following fact: if the curve associated with a critical or non-

critical string transversally intersects a 7-brane curve, the 7-brane gauge group becomes

a flavour symmetry of the string, and its excitations, if present, would be charged with

respect to this symmetry. The limit of shrinking the non-critical string curve is compatible

with keeping the transverse 7-brane curve at finite volume. If the string gives rise to a

tower of infinitely many massless charged states in the limit, the running of these states

should affect the gauge coupling of the 7-brane theory [7, 8, 31]. As argued at the end of

section 2.6 this is exactly the situation for the critical heterotic string; by contrast this is

apparently not the case for the non-critical strings as the gauge coupling associated with

the transverse 7-brane stays finite if we contract the curve associated with the string.

A bold resolution would be that the non-critical string does not give rise to infinitely

many massless physical particle states in six dimensions as we approach the tensionless

limit. To the best of our understanding this seems to be consistent with all we know about

these mysterious strings: as the curve contracts, the 6d BPS string becomes tensionless,

which is a BPS protected statement. While the wrapped string does give rise to 5d BPS

particles, the 6d particle excitations are non-BPS, as stressed several times, and hence

are a priori not protected against large corrections to their mass. In the case of the

critical heterotic string we have invoked an explicit duality with a weakly coupled heterotic

string to argue for the appearance of massless particle excitations in the tensionless limit,

but for non-critical strings no such arguments are immediately available at first sight. If

correct, this argument would suggest that (all but possibly a finite number of) the particle

excitations of the non-critical string sit at non-zero mass even in the tensionless limit due

to non-trivial interaction effects, while the BPS string as such becomes tensionless. In the

SCFT limit this mass must of course be infinite as otherwise there would be a scale in

the theory. A less radical resolution would be that the asymptotically massless excitations

couple both to gravity and to the gauge theories of the other branes in a fundamentally
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different manner even infinitesimally away from the tensionless point. It would be very

desirable to understand this point better.
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A Conventions for dimensional reduction

Here we collect our conventions for the effective action of 7-branes and D3-branes. Our

starting point is the 10d string frame Einstein-Hilbert action together with the Dirac-Born-

Infeld (DBI) action for the 7-branes and 3-branes, whose relevant terms are

S =
2π

`8s

∫
R1,9

d10x e−2φ
√
−detg R +

2π

`8s

∫
D7
d8x e−φ

√
−det(g + 2πα′F )

+
2π

`4s

∫
D3
d4x e−φ

√
−det(g + . . .) + . . . . (A.1)

In the sequel we will set the string length to unity,

`s = 2π
√
α′ ≡ 1 . (A.2)

We dimensionally reduce the Einstein-Hilbert action on the 2-complex dimensional space

B2, which serves as base of the elliptic threefold, Y3. Moreover, we reduce the DBI actions

on the curves C and C0 that are wrapped by the 7-brane and the 3-brane, respectively.

This produces an effective action whose relevant terms read

S = 2π vol(B2)

∫
R1,5

d6x
√
−det g e−2φR +

vol(C)

2π

∫
R1,5

d6x
√
−det g e−φ

1

4
FµνF

µν

+2π vol(C0)

∫
R1,1

d2x e−φ
√
−det g + . . . . (A.3)

After rescaling the metric g → e
φ
2 g we obtain the Einstein-Hilbert action in the 6d Einstein

frame. The dilaton dependence both of the 7-brane gauge kinetic term and of the D3-brane

tension term is removed by this rescaling. We can therefore rewrite the relevant part of

the effective action as

S =

∫
d6x
√
−det g

(
M4

Pl

2
R+

1

4g2
YM

FµνF
µν

)
+ T

∫
R1,1

√
−det g + . . . (A.4)
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and identify

M4
Pl = 4π vol(B2) (A.5)

1

g2
YM

=
1

2π
vol(C) (A.6)

T = 2π vol(C0) . (A.7)

Here T denotes the tension of the string obtained by wrapping the D3-brane along C0.

B The geometric limit with gYM �M−1
Pl

In this appendix we derive the four key facts characterizing the limit (2.16) of the Kähler

form J of a compact Kähler surface presented in section 2.2.

B.1 The degenerate limit

As stated already in the main text, the general limiting behaviour of the Kähler form J

can be summarized in

Assertion 1. For (2.3) and (2.15) to be satisfied simultaneously, the Kähler form J on

B2 must be chosen to lie infinitesimally close to a boundary ray of the Kähler cone. To be

more specific, the Kähler form must asymptote to

J = tJ0 +
∑
ν

sνIν , as t→∞ . (B.1)

Here J0 ∈ H1,1(B2,Z) is a Kähler cone generator satisfying

J0 · J0 = 0 ,

∫
C
J0 ≥ 1 . (B.2)

The remaining Kähler cone generators Iν ∈ H1,1(B2,Z) have the property that

∑
ν

nνsν ≤
1

t
, (B.3)

where

nν = J0 · Iν (B.4)

and at least one nν 6= 0. In fact

∑
ν

nνsν →
1

t
as t→∞ . (B.5)

The non-negative expansion parameters sν stay finite as t → ∞ and are chosen such that

volJ(B2) = 1.
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The first relation in (B.2) implies in particular that J0 must lie on the boundary

∂K(B2) of the Kähler cone of B2. The volume of C, which governs the inverse gauge

coupling, obeys

volJ(C) = t

∫
C
J0 +

∑
ν

sν

∫
C
Iν (B.6)

= 2mt+ s ,

where

2m :=

∫
C
J0 (B.7)

is a positive integer fixed by the topology and

s :=
∑
ν

sν

∫
C
Iν (B.8)

is a non-negative real number that remains finite in our geometric limit.

To derive this, note first that the Kähler form J of any compact Kähler surface B2 can

be expanded as

J =
∑
a

taJa +
∑
ν

sνIν , ta, sν ≥ 0 , (B.9)

where Ja and Iν are the Kähler cone generators in H1,1(B2,Z). We have split the set of

Kähler parameters into ta, which go to infinity in the limit (2.16) we are considering, and

sν , which remain finite in the limit. Being Kähler cone generators, the Ja and Iν have the

important property that

Ja · Jb ≥ 0 , Ja · Iν ≥ 0 , Iν · Iµ ≥ 0 . (B.10)

Here, for notational simplicity, the integration of forms over the base has been expressed

in terms of intersection products. By assumption, at least one of the Ja has a non-zero

integral over C so that
∫
C J →∞ as ta →∞, as intended.

Let us now start imposing various constraints on J . First in order to have

volJ(B2) =
1

2
J · J = 1 (B.11)

in the limit ta →∞, the Ja must obey a trivial intersection form,

Ja · Jb = 0 . (B.12)

This follows from the fact that all ta and sν are non-negative, together with (B.10), which

makes cancellations between infinite terms impossible.

Now, (B.12) implies that there can be only one Kähler cone generator Ja which appears

with a coefficient ta →∞ in the ansatz (B.9), i.e. we can write

J = tJ0 +
∑
ν

sνIν (B.13)
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with J0 ∈ H1,1(B2,Z) a Kähler cone generator satisfying

J0 · J0 = 0 ,

∫
C
J0 ≥ 1 . (B.14)

In (B.13) the index ν runs over the remaining generators of the Kähler cone different

from J0.

The reason why only one Kähler cone generator can appear with a large Kähler pa-

rameter is that in order for any two elements Ja and Jb to satisfy

Ja · Ja = 0 , Jb · Jb = 0 , Ja · Jb = 0 (B.15)

on a compact Kähler surface, we must have Jb = λJa for some λ ∈ R as will be shown

below. Hence there is only one choice of Kähler cone generators which can appear with a

coefficient ta which goes to infinity. To see this, recall that on any compact Kähler surface

we can consider a basis {ω0, ωi} of H1,1(B2) with intersection form

ω0 · ω0 = +1 , ω0 · ωi = 0 , ωi · ωj = −δij (B.16)

because the intersection form is known to have signature (+1,−1, . . . ,−1). Let us expand

Ja = aω0 + ai ωi , Jb = b ω0 + bi ωi (B.17)

and introduce a vector notation (~a)i = ai and (~b)i = bi. Then (B.15) is equivalent to

requiring that

a2 = ~a · ~a , b2 = ~b ·~b , ab = ~a ·~b . (B.18)

Hence

|ab|2 = |~a ·~b|2 ≤ |~a2||~b2| = a2b2 (B.19)

with equality only for ~b = λ~a. The only possibility to satisfy (B.18) is then to take also

b = λ a and hence Ja = λJb, which proves the claim.

Having established the parametrization (B.13) of the Kähler form, we note that the

argument after Assertion 2 below establishes that there exists a holomorphic curve C0 with

class [C0] = J0. Being a holomorphic curve, its volume must be strictly positive inside the

Kähler cone of B2, i.e. away from the asymptotic limit t→∞ for the Kähler form (B.13).

Since
∫
C0
J0 = J0 ·J0 = 0, this requires that there must exist at least one Iν with a non-zero

intersection nν := J0 · Iν . Then, the volume of B2 is given as

volJ(B2) = t
∑
ν

sν(J0 · Iν) +
1

2

∑
ν,µ

sνsµ(Iν · Iµ) ≥ t
∑
ν

nνsν , (B.20)

where in the last step the non-negative terms that do not involve t have been dropped.

Requiring that volJ(B2) = 1 implies the bound∑
ν

nνsν ≤
1

t
(B.21)

on the parameters sν in the ansatz (B.13), and in fact
∑

ν nνsν →
1
t as t→∞.
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It is important to note that
∑

ν nνsν has to asymptote precisely to 1
t . In particular

it cannot become parametrically smaller than 1/t. For this to happen, we would need

sν0sµ0(Iν0 · Iµ0) to be of order one (so that volJ(B2) can stay finite) for at least one pair

of generators Iν0 and Iµ0 with ν0 6= µ0, or that at least one s2
ν0(Iν0 · Iν0) is of order one.

Since all sν remain finite as t→∞, as proved above, this requires both sν0 and sµ0 to be

of order one, which in turn implies that J0 · Iν0 and J0 · Iµ0 must both vanish in order for

volJ(B2) to stay finite. The last requirement, however, is not possible for the same reason

as given in the proof of Assertion 3 in section B.3.

B.2 Existence of the curve C0

The second observation we make is summarized in

Assertion 2. Modulo the technical assumption (B.33), as the Kähler form asymptotes

to (B.1), the base B2 necessarily contains a rational curve C0 with

C0 · C0 = 0 , C0 · K̄ = 2 , C0 · C 6= 0 (B.22)

whose volume vanishes in the limit,

limt→∞volJ(C0) = 0 as limt→∞volJ(C) =∞ . (B.23)

The curve class C0 coincides with the class J0 in (B.1),

C0 = J0 . (B.24)

Indeed, if there exists an effective curve C0 in this class, then by (B.2)

C0 · C0 = 0 , C0 · C 6= 0 , (B.25)

and it is clear that its volume vanishes for t→∞ as

volJ(C0) = C0 · J = J0 · J =
∑
ν

nνsν →
1

t
. (B.26)

For later purposes note that this implies the following behaviour for the product of the

two volumes:

volJ(C) volJ(C0)→ 2m+
s

t
. (B.27)

The question is then if an effective curve exists in the class J0. By construction, the

asymptotic Kähler form is in the closure of the Kähler cone, J0 ∈ K(B2). For a surface B2,

the latter is contained in NE(B2), the closure of the Mori cone NE(B2) of effective curves

on B2. According to Mori’s cone theorem, when applied to B2, there exist countably many

rational curves Ci satisfying 0 < K̄ · Ci ≤ 3 such that

NE(B2) = NE(B2)K̄≤0 +
∑
i

R≥0 [Ci] . (B.28)

The second term on the r.h.s. of (B.28) is manifestly in the Mori cone, i.e. describes effective

curves, while the first term may not be effective (since it is a priori only in the closure of
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the Mori cone). It is the subset of NE(B2) with non-positive intersection number with the

anti-canonical class K̄ of B2.

Now, recall that the anti-canonical divisor must be effective for there to exist a Calabi-

Yau Weierstrass model on B2, K̄ ∈ NE(B2), and the asymptotic Kähler form is by con-

struction in the closure of the Kähler cone, J0 ∈ K(B2). Therefore

J0 · K̄ ≥ 0 . (B.29)

This leaves two possibilities: either J0 · K̄ = 0 and J0 ∈ NE(B2)K̄≤0, or J0 · K̄ > 0 and

J0 ∈
∑

iR≥0 [Ci]. In the latter case, J0 is an effective curve class itself, and the genus of

the associated holomorphic curve C0 can be computed by the Hirzebruch-Riemann-Roch

theorem as

2g(C0)− 2 = C0 · (C0 +K) = J0 · (J0 +K) = −J0 · K̄ < 0 . (B.30)

The only possibility is

g(C0) = 0 , i.e. C0 · K̄ = 2 . (B.31)

Together with (B.25), C0 hence has all properties advertised in (B.22).

The question is now whether the other scenario, J0 · K̄ = 0, is possible. To address it,

let us first assume that the curve C whose volume goes to infinity as t→∞ supports a non-

abelian gauge algebra gI , corresponding to the first case in (2.12). In view of (2.8) and (2.7),

this means that the class of the discriminant of the fibration must satisfy the relation

12K̄ = [Σ] = C + [Σ′] , (B.32)

where both C and [Σ′] are effective curve classes. If J0 · K̄ = 0, while at the same time J0 ·
C > 0 (which is required by the assumption that volJ(C)→∞ as t→∞), then necessarily

J0 · [Σ′] < 0. But this is not possible because Σ′ is an effective curve corresponding to the

residual components of the discriminant locus.

It remains to exclude J0 ·K̄ = 0 also for the second case in (2.12), where C corresponds

to the height pairing b = −π∗(σ(S)·σ(S)) of a rational section. Consider an F-theory model

with a single abelian gauge group factor, and suppose that there exists n > 0 such that

n K̄ = b+ δ , δ effective. (B.33)

Then the same argument as above shows that J0 · K̄ = 0 requires J0 · δ < 0, in clash

with the effectiveness of δ. The question is then if for every Y3 with a rational section,

such an n can be found. While we cannot present a general proof for arbitrary B2, this

property is realized in all models we know with abelian gauge symmetries in F-theory.

Consider first the so-called Morrison-Park model [72], which is a rather general (though

not the most general [114–116]) type of an elliptic fibration with a Mordell-Weil group of

rank one. In this case, b = 6K̄ − 2β with β an effective class such that 2K̄ − β is also

effective. Hence (B.33) is true with n = 6 and δ = 2β. In the presence of additional

non-abelian gauge algebras, b changes by the subtraction of multiples of the divisor classes

ΣI associated with gI from b, so that δ becomes even more effective.
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On the other hand, more general U(1) models are known to exist in which the height

pairing does exceed the specific bound b ≤ 6K̄. This comes with the inclusion of higher

charges beyond q = 1 and q = 2. As shown in [115], all of these models are related to a

non-generic Weierstrass model of the form [72], which is however not Calabi-Yau because

the class of f and g is 4K̄ + 4D and 6K̄ + 6D, respectively, with D a priori an effective

class. The elliptic Calabi-Yau 3-fold describing the U(1) is related to this model by a non-

minimal transformation which changes the class of f and g to 4K̄ and 6K̄, as required for

an elliptic Calabi-Yau. The height pairing of the section is in this case

b = 6K̄ + 4D . (B.34)

However, extra constraints on D may arise by requiring that the Weierstrass model has a

smooth birational resolution. Explicit examples of this type were constructed in [114, 116]

with charged matter with q = 1, 2, 3, and in all these types of fibrations (B.33) is satisfied

for some higher value of n.

For favorable examples of base spaces, on the other hand, (B.33) is readily proved to

hold for any conceivable rational section and associated height pairing: indeed, for any

base B2 where the effective divisor K̄ lies strictly inside the Mori cone (as opposed to

merely on its boundary), given any effective divisor b we can find an integer n > 0 such

that nK̄−b is effective. This is simply because by assumption n K̄ has a nontrivial positive

component along each generator of the Mori cone, which can be made arbitrarily large by

scaling up n. This is in particular the case for all Hirzebruch surfaces Fa and del Pezzo

surfaces dPr (r ≤ 8).

In the sequel we are making the technical assumption that (B.33) indeed holds. In

this case, we have proved rigorously that in the limit where an abelian gauge symmetry

becomes global, a rational curve C0 with C2
0 = 0 attains zero volume. Note that for

non-abelian gauge symmetries, we have proved the analogous statement even without any

further assumptions. Importantly, the curve C0 has non-trivial intersection with the curve

C supporting the non-abelian or abelian gauge symmetry.

B.3 Uniqueness of C0 and K3-fibration

If h1,1(B2) ≥ 3 one might wonder if there are more curves on B2 whose volume tend to zero

in the limit t → ∞. The answer is that C0 is the only curve class of self-intersection zero

with this property, and every additional curve class with asymptotically vanishing volume

must have negative self-intersection. This is summarized in

Assertion 3. Every curve class C̃ with asymptotically vanishing volume in the limit (2.17)

must satisfy C̃ · C̃ ≤ 0, and such curve satisfies C̃ · C̃ = 0 if and only if C̃ = C0 up to a

muliplicative factor.

This is a simple consequence of the well-known lightcone-like structure of the intersec-

tion form on the compact Kähler surface B2. On B2 we can always find a basis

{ω0, ωi} , i = 1, . . . nT (B.35)
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of H1,1(B2) with diagonal intersection form

ω0 · ω0 = 1 ωi · ωj = −δij ω0 · ωi = 0 . (B.36)

We can use the freedom to define the basis in order to set w.l.o.g. J0 = j(ω0 + ω1). The

condition that volJ(C̃) → 0 in the limit t → ∞ for (2.17) requires J0 · C̃ = 0. Expanding

C̃ = a0ω0 +
∑nT

i=1 aiωi, this implies a0 = a1 so that C̃ = a0(ω0 + ω1) +
∑nT

i=2 aiωi. We

therefore have

C̃ · C̃ = −
nT∑
i=2

a2
i ≤ 0 , (B.37)

where the equality, C̃ · C̃ = 0, holds if and only if C̃ = a0(ω0 +ω1) = a0
j J0. Hence the class

of C̃ is proportional to that of C0, as claimed.

The curve C0 has the following important property: if we restrict the elliptic fibration

π : Y3 → B2 to C0, we obtain an elliptically fibered surface

Ĉ0 = π−1(C0) ∈ H4(Y3) , (B.38)

which is an elliptic K3 surface. To see this, note that the curve C0 intersects the discrim-

inant divisor Σ of the elliptic fibration Y3 in isolated points whose numbers is computed,

via (B.31), to be

C0 · Σ = 12C0 · K̄ = 24 . (B.39)

The elliptically fibered surface Ĉ0 therefore has generically 24 I1-fibers at the location of

the 24 intersection points of C0 with the discriminant. This uniquely identifies Ĉ0 as a K3

surface. This surface plays an important role because of our final

Assertion 4. If the base B2 is compatible with a limit of the form (2.17), the Calabi-Yau

3-fold Y3 admits not only an elliptic fibration (2.1) over B2, but in addition a K3 fibration

ρ : K3 → Y3

↓
C ′ (B.40)

over a curve C ′, where the class of the K3-fiber is Ĉ0 ∈ H4(Y3). In general, this K3

fibration is not compatible with the elliptic fibration (2.1).

For the proof we recall the criterion of Ooguiso [117] in order for a given Calabi-Yau

3-fold to be K3 fibered. The criterion states that this is the case if Y3 possesses a nef

(numerically effective) divisor D with the property that D ·D = 0 and c2(Y3) ·D > 0. The

class of the nef divisor D then serves as the class of the generic K3 fiber of Y3 (up to a

multiplicative factor). In the present case we would like to identify the class of D with the

class of the divisor Ĉ0.

First, note that manifestly Ĉ0 · Ĉ0 = 0: since Ĉ0 is the pullback under π of C0 to Y3,

the only possible non-zero intersection is with a section S, but Ĉ0 · Ĉ0 · S = C0 ·B2 C0 = 0.

To check if Ĉ0 is nef, recall that a divisor is nef if and only if it lies in the dual cone to

NE(Y3), the closure of the Mori cone of effective curves on Y3. This dual cone is precisely
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K(Y3), the closure of the Kähler cone. In the present case we are interested in the divisor

given by the pullback of C0 = J0, with J0 one of the generators of the Kähler cone of the

base. Its pullback to Y3 must then lie in the Kähler cone of Y3, and hence Ĉ0 is nef.

It remains to check for strict positivity of the product

Ĉ0 ·Y3 c2(Y3) = C0 ·B2 π∗(c2(Y3))
?
> 0 . (B.41)

Let us first consider a smooth Weierstrass model over a base B2, assuming that it exists.

By standard computation,

c2(Y3) = 11c2
1(B2) + c2(B2) + 12S0 · c1(B2) , (B.42)

where S0 is the zero-section. Hence we confirm

Ĉ0 ·Y3 c2(Y3) = 12Ĉ0 · S0 · c1(B2) = 12C0 ·B2 K̄ > 0 (B.43)

and therefore Y3 is K3 fibered. This makes use of the fact Ĉ0 is the pullback of a base

divisor, whence the first two terms in (B.42) do not contribute, and the last step relies

on the important property (B.22) of C0. In presence of an extra abelian or non-abelian

gauge symmetry, we are not to consider a smooth Weierstrass model Y3, but a singular

Weierstrass model and its resolution Ŷ3. In this case, Theorem 2.1 in [118] applies to all

crepant smooth resolutions of a singular Weierstrass model, which ensures that

Ĉ0 ·Y3 c2(Ŷ3) = 12C0 ·B2 K̄ > 0 (B.44)

still holds. The only possible complication can occur if no such crepant resolution exists,

i.e. if the partially resolved space Ŷ3 is left with Q-factorial terminal singularities in the

elliptic fiber over codimension-two points on B2 [119, 120]. Since these are localised at

isolated points on the base B2, however, they cannot affect the result for the intersection

of the divisor C0 with c2(Ŷ3).

C The ring of weak Jacobi forms

In this appendix we collect a few well-known and useful properties of weak Jacobi forms.

These have been introduced in [104] and are reviewed e.g. in [121]. The relation between

Jacobi forms and the topological string prepotential has been noticed as early as in ref. [98],

which also includes a review of many of their properties.

Weyl invariant Jacobi forms. Given a Lie algebra g with Cartan subalgebra h, a Weyl

invariant Jacobi form ϕw,m(τ, z) with weight w ∈ N and index m ∈ N is a holomorphic

function
ϕw,m : H× hC → C

(τ, z) 7→ ϕw,m(τ, z)
(C.1)

which satisfies the following four properties [122]:
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• It transforms under an SL(2,Z) transformation of the modular parameter τ as

ϕw,m

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)we2πi m c

cτ+d
(z,z)
2 ϕw,m(τ, z) . (C.2)

Here (z, z) is the invariant bilinear form on hC, which is normalised in such a way

that the norm square of the smallest co-root is 2.

• It is quasi-periodic in shifts of the elliptic parameter by elements of the λ, µ in the

co-weight lattice of g,

ϕw,m (τ, z + λτ + µ) = e−2πim(
(z,z)
2
τ+2

(λ,z)
2

)ϕw,m(τ, z) . (C.3)

• It is invariant under the action of the Weyl group Wg of g,

ϕw,m(τ, sz) = ϕw,m(τ, z) , s ∈Wg . (C.4)

• The form ϕw,m(τ, z) can be expanded as

ϕw,m(τ, z) =
∑

c(n, r)qnyr , q = e2πiτ , y = e2πiz , (C.5)

where the quasi-periodicity (C.3) implies that

c(n, r) = C(4nm− r2, r) (C.6)

for some function C.

The ring of Weyl invariant Jacobi forms associated with Lie algebra g is usually denoted by

J∗,∗(g) = ⊕l,mJl,m(g) . (C.7)

For even weight it is a freely generated (for g 6= e8) polynomial ring over the ring of modular

forms. A modular form of weight w is a holomorphic function on H transforming under an

SL(2,Z) transformation as

f

(
aτ + b

cτ + d

)
= (cτ + d)wf(τ) . (C.8)

An important role for us is played by the Eisenstein series E2k(τ) for k ≥ 1, which is

defined as

E2k(τ) = 1 +
2

ζ(1− 2k)

∞∑
n=1

n2k−1qn

1− qn
. (C.9)

For k ≥ 2, E2k(τ) is a modular form of weight w = 2k, and E4(τ) and E6(τ) generate

the space of modular forms. On the other hand, E2(τ) is only a quasi-modular modular

form of weight 2 because it suffers a modular anomaly

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6c

πi
(cτ + d) . (C.10)
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Jacobi forms. For the special case g = su(2), the elliptic parameter of a Weyl invariant

Jacobi form takes values in hC ' C. Taking into account the normalization of the invariant

bilinear form a Weyl invariant Jacobi form for g = su(2) hence reduces to a weak Jacobi

form. Indeed, by definition a Jacobi form of weight w and index m is a holomorphic

function from H× C to C with the analogous transformation behaviour

ϕw,m

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)we2πi mc

cτ+d
z2ϕw,m(τ, z) , (C.11)

ϕw,m (τ, z + λτ + µ) = e−2πim(z2τ+2λz))ϕw,m(τ, z) λ, µ ∈ Z . (C.12)

A Jacobi form ϕw,m(τ, z) is called

• holomorphic Jacobi form if c(n, r) = 0 unless 4mn ≥ r2,

• Jacobi cusp form if c(n, r) = 0 unless 4mn > r2,

• weak Jacobi form if c(n, r) = 0 unless n ≥ 0 .

One furthermore defines a weakly (or nearly) holormorphic Jacobi form with similar prop-

erties except that c(n, r) = 0 unless n ≥ n0 for negative integer n0. More information can

also be found for instance in [98, 121].

The ring J2k,∗(su(2)) is freely generated by the Weyl invariant Jacobi forms ϕ0,1(τ, z)

and ϕ−2,1(τ, z) with coefficients being polynomials in E4(τ) and E6(τ) [104] (see also e.g.

the appendix A.2 of [57] or section 4.3 of [121]). Here ϕ0,1(τ, z) and ϕ−2,1(τ, z) can be

defined in terms of the Dedekind function η(τ) = q
1
24
∏∞
n=1(1 − qn) and the Jacobi theta

functions as

ϕ0,1(τ, z) = 4

(
ϑ2(τ, z)2

ϑ2(τ, 0)2
+
ϑ3(τ, z)2

ϑ3(τ, 0)2
+
ϑ4(τ, z)2

ϑ4(τ, 0)2

)
(C.13)

ϕ−2,1(τ, z) =
ϑ1(τ, z)2

η6(τ)
. (C.14)

For given weight and elliptic index, only a finite number of coefficients need to be fixed in

the expansion in terms of this generating system.

An alternative presentation is

ϕ−2,1(τ, z) =
ϕ10,1(τ, z)

∆
, ϕ0,1(τ, z) =

ϕ12,1(τ, z)

∆
(C.15)

where the discriminant function, given in terms of the the Dedekind eta-function,

∆(τ) = η24(τ) , (C.16)

is a modular function of weight 12. The specific Jacobi functions ϕ10,1(τ, z) and ϕ12,1(τ, z)

can be expressed in terms of the Eisenstein-Jacobi series E4,1(τ, z) and E6,1(τ, z) as [104]

ϕ10,1(τ, z) =
1

144
(E6(τ)E4,1(τ, z)− E4(τ)E6,1(τ, z)) (C.17)

ϕ12,1(τ, z) =
1

144

(
E2

4(τ)E4,1(τ, z)− E6(τ)E6,1(τ, z)
)
. (C.18)

We will discuss the Eisenstein-Jacobi series in more detail in appendix D.
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Finally, note that ϕ0,1(τ, z) and ϕ−2,1(τ, z) have a polynomial expansion in terms of z

whose coefficient functions are polynomials in E2(τ), E4(τ) and E6(τ) [57]:

ϕ−2,1(τ, z) = −z2 +
E2(τ)

12
z4 +

E4(τ)− 5E2(τ)2

1440
z6 + . . . (C.19)

ϕ0,1(τ, z) = 12− E2(τ)z2 +
E2(τ)2 + E4(τ)

24
z4 + . . . . (C.20)

Modular anomalies and quasi-modularity. A weak Jacobi form of weight w and

index m can in general be expanded as a power series in the elliptic parameter [104]

ϕw,m(τ, z) =
∞∑
j=0

φj(τ)zj , (C.21)

where the coefficient functions φj(τ) are quasi-modular functions of weight j + w. As

pointed out e.g. in [57], as a consequence of the quasi-modularity (C.10) of E2(τ) the

product

Φw,0(τ, z) = e
π2

3
mz2E2(τ)ϕw,m(τ, z) (C.22)

behaves like a modular function, i.e. like a Jacobi form of weight w and index 0. Since

Φw,0(τ, z) is modular in τ , the deviation from modularity in the quasi-modular expansion

coefficients φj(τ) of ϕw,m(τ, z) is therefore cancelled by the E2(τ) dependent prefactor

in Φw,0(τ, z). It follows that the only source of quasi-modularity in φj(τ) can be due to

monomials in E2(τ), which are cancelled term by term in Φw,0(τ, z).

Another conclusion is that ϕw,m(τ, z) satisfies the differential equation [57]

0 =
∂

∂E2
Φw,0(τ, z)

=
∂

∂E2
e
π2

3
mz2E2(τ)ϕw,m(τ, z) = e

π2

3
mz2E2(τ)

(
∂

∂E2
+

(2π)2

12
mz2

)
ϕw,m(τ, z) . (C.23)

This differential equation allows us to read off the elliptic index of a weak Jacobi form. Con-

versely, a power series in z with quasi-modular expansion functions satisfying periodicity

under z → z + 1 and the equation(
∂

∂E2
+

(2π)2

12
mz2

)
ϕw,m(τ, z) = 0 (C.24)

is a weak Jacobi form of index m.

D Maximal charges via Eisenstein-Jacobi forms

In this appendix we prove the key fact that the maximal charge per excitation level n as

encoded in the elliptic genus obeys a bound of the form (2.54). This makes use of various

properties of the Eisenstein-Jacobi forms that we will collect below. The relevance of the

Eisenstein-Jacobi forms is that, as described in section 3.4, the elliptic genus can always be

expressed via an ansatz of the form (3.46). The charge dependence of the states is encoded
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in the weak Jacobi forms ϕ−2,1(τ, z) and ϕ0,1(τ, z) introduced in appendix C, which in turn

have an expression in terms of the Eisenstein-Jacobi series as given in (C.15).

The Eisenstein-Jacobi forms E4,m(τ, z) and E6,m(τ, z) are holomorphic Jacobi forms

of index m. The coefficients c(n, r) in the series

Ew,m(τ, z) =
∑
n,r

c(n, r) qn ξr , q = e2πiτ, ξ = e2πiz, (D.1)

have the property that [104]

c(n, r) 6= 0 for r2 < 4mn

c(n, r) =

{
1 if r ≡ 0 (mod 2m)

0 otherwise
for r2 = 4mn

(D.2)

An analytic expression for the c(n, r) can be found in [104] in terms of Cohen’s function.

Since the Eisenstein-Jacobi forms are invariant under ξ ↔ ξ−1, we will mostly focus on

non-negative powers of ξ.

Eq. (D.2) implies that the maximal ξ-power rmax(n) which appears in the expansion

multiplying a term qn is

rmax(n) =
⌊√

4mn
⌋

if 4mn is not a perfect square

rmax(n) =

{√
4mn if n = ml2 for l ∈ N0√
4mn− 1 otherwise

if 4mn is a perfect square
(D.3)

In other words, the maximal ξ-power is

rmax(n) =
⌊√

4mn
⌋
− a(n) , (D.4)

where the shift function a is generically zero. To be precise, a(n) is given as

a(n) =

{
1 if 4mn is a perfect square and n

m is not a square of an integer

0 otherwise
(D.5)

Note first that rmax(n) is a non-decreasing function of n even in the presence of a non-

generic shift by −1. Furthermore, one can immediately observe that rmax(n) continues to

have a plateau-like structure as n increases. An intuition for the latter property is gained

from the fact that rmax(n) is generically given as
⌊√

4mn
⌋
. Since the values of

√
4mn at

n+ ∆n and n differ by

√
4m (n+ ∆n)−

√
4mn =

√
4mn

(√
1 +

∆n

n
− 1

)
=

√
m

∆n

n

(
1 +O

(
∆n

n

))
, (D.6)

which can be made arbitrarily small for a small ∆n
n , it follows that rmax(n) stays constant

in the interval [n, n+ ∆n] if ∆n
n is small enough.

Now, given the expressions (D.4) and (D.5), we have the following lower bound

for rmax(n),

rmax(n) =
⌊√

4mn
⌋
− a(n) ≥

√
4mn− 1 . (D.7)
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We will then use the symbol “&” to denote an “approximate” asymptotic inequality,

rmax(n) &
√

4mn , (D.8)

in the sense that for any small ε̂ > 0 there exists a finite n0 = n0(ε̂) such that16

rmax(n) >
√

(4m− ε̂)n if n > n0(ε̂) . (D.9)

Let us now consider the product of two Eisenstein-Jacobi series Ew1,m1Ew2,m2 , which

is itself a Jacobi form of weight w1 + w2 and index m1 +m2 with expansion

Ew1,m1Ew2,m2 =
∑
n1,r1

c1(n1, r1) qn1 ξr1
∑
n2,r2

c2(n2, r2) qn2 ξr2 =
∑
n,r

c(n, r)qnξr . (D.10)

For the series expansions of Ew1,m1 and Ew2,m2 , we will denote by r
(1)
max(n) and r

(2)
max(n),

respectively, the maximal ξ-powers which appear in the expansions multiplying a term qn.

Then, for a given n, there is a non-trivial contribution to c(n, r) from the product of the

following two terms,

qnξr
(1)
max(n) , q0ξ0 , (D.11)

in the two expansions, respectively. This implies that the maximal ξ-power for the series

expansion of the product obeys

rmax(n) ≥ r(1)
max(n) ≥

√
4m1 n− 1 . (D.12)

Similarly, we also have

rmax(n) ≥ r(2)
max(n) ≥

√
4m2 n− 1 , (D.13)

and hence, eventually, the following inequality holds,

rmax(n) ≥ max(r(1)
max(n), r(2)

max(n)) ≥
√

4 (max{m1,m2})n− 1 . (D.14)

In formulating these bounds, we are assuming that no complete cancellations can occur

amongst the maximal ξ-power terms at given n, arising from multiplying two monomials

qn1ξr1 and qn2ξr2 with n1 +n2 = n, for the case where more than one maximal term exists.

Such cancellations could in principle occur for specific values of n, spoiling the bound (D.14)

for the rmax(n) of the product. However, explicit analysis of the behaviour for various

examples suggests that this coincidence does not happen in generic situations. On the

other hand, we are aware of at least one instance where such a cancellation does happen

for a specific model at a specific value of n, namely the model described by (x, y) = (4, 6)

in section 4.1, at n = 1, as explained in more detail in the main text.

In general, given a generic linear combination of various products of Eisenstein-Jacobi

and Eisenstein series of the form∑
I

cI
∏
i

EwI,i,mI,i
∏
i′

Ew′
I,i′
, (D.15)

16The small parameter ε̂ is related to the small parameter ε used in (2.55) and the following discussion

in the main text via ε̂ = 4mε.
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we must have

rmax(n) ≥
√

4 (maxI{maxi{mI,i}})n− 1 , (D.16)

where mI,i denote the indices of the EwI,i,mI,i appearing in each product summand. In

particular, the following very conservative bound holds,

rmax(n) ≥
√

4n− 1 , (D.17)

where we have used the fact that the indices of the Eisenstein-Jacobi series obey mI,i ≥ 1.

Again, all of this is true as long as there is no complete cancellation amongst individual

contributions to the term qnξr.

Now, it is interesting to observe that the bound (D.16) can be hugely improved in the

asymptotic regime as

rmax(n) &
√

4mn , (D.18)

where m =
∑

imI,i is the index of any product of Eisenstein-Jacobi series. Once again,

the symbol “&” denotes an approximate asymptotic inequality in the sense defined in

eqs. (D.8) and (D.9), where the asymptotic bound (D.18) is now claimed for a generic

linear combination (D.15). To see how this improved bound arises, let us first note that

the shift of −1 may be ignored in the asymptotic regime. Then, we have the obvious bound

rmax(n) & max
{∑

i

√
4mi ni

∣∣∣ ∑
i

ni = n, 0 ≤ ni ≤ n, ni ∈ N0

}
, (D.19)

provided that there are no cancellations of the aforementioned kind. Note that we are

denoting mI,i by mi for simplicity. To estimate the r.h.s. of (D.19) we first consider the

function

f({ρi}) =
∑
i

√
miρi , (D.20)

and find that the maximum of f in the region 0 ≤ ρi ≤ 1 under the constraint
∑

i ρi = 1 is

fmax =

√∑
i

mi =
√
m. (D.21)

One can see this by demanding that all the partial derivatives of f with respect to ρi>1

vanish upon taking ρ1 = 1−
∑

i>1 ρi, that is,

0 =
∂f

∂ρi
= −

√
m1

2
√
ρ1

+

√
mi

2
√
ρi
, i > 1 . (D.22)

This means that an extremum, which turns out to be the maximum, occurs at ρi = mi
m

with the extremal value

fmax =
∑
i

√
m2
i

m
=

∑
imi√
m

=
√
m, (D.23)
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as claimed. Since
∑

i

√
4mi ni =

√
4n
∑

i

√
mi

ni
n =

√
4nf({nin }), we may in turn ex-

press (D.19) as

rmax(n) & max

{√
4nf({ρi})

∣∣∣∣ ∑
i

ρi = 1, 0 ≤ ρi ≤ 1, ρin ∈ N0

}
&
√

4nfmax =
√

4mn .

(D.24)

In the first step eq. (D.19) has been rewritten and in the second step we have neglected the

fact that ρin ∈ N0, thereby obtaining an approximate asymptotic inequality. The latter

inequality actually saturates for n’s that are an integer multiple of m but in general, it

only works as an asymptotic bound.

Note finally that when we multiply a (product or linear combination of products of)

Eisenstein-Jacobi series by a modular function f(τ) = anq
n, the conservative bounds (D.16)

and (D.17), as well as the improved, asymptotic bound (D.24), continue to hold as long

as a0 6= 0. If the expansion of the function f(τ) starts with a value of −n0 < 0, then the

bounds get even more improved. For example, for the conservative bound (D.16) we have

the following improvement,

rmax(n) &
√

4 (maxI{maxi{mI,i}})(n+ n0)− 1 ≥
√

4 (maxI{maxi{mI,i}})n− 1 , (D.25)

because of a shift of all levels by n0 > 0, and similarly, the other bounds also get improved.

All of this again assumes that no cancellations happen at a given level, n.

E Analysis of U(1) models with elliptic bases F1 and F2

In this appendix we collect some mathematical details that are needed for the computation

of the Gromow-Witten invariants via mirror symmetry, which in turn will determine the

U(1)-refined elliptic genera for the bases B2 = Fa with a = 1, 2. The actual computations

proceed along the steps described in section 4.1.

E.1 Hirzebruch base F1 with extra section, for (x, y) = (4, 4)

We begin by providing the geometric details underlying the results (4.29) for the computa-

tion of the lowest-lying Gromov-Witten invariants of the U(1) fibration with (x, y) = (4, 4)

over the base space F1.

To compute the Gromov-Witten invariants N
(0)
C0

(n, r) for some low values of n, we

employ the machinery of mirror symmetry for Calabi-Yau three-folds in the framework of

toric geometry [123, 124]. The required input are the Mori cone generators and the triple

intersection numbers, both of which can easily be obtained via PALP [125, 126]. Based on

the toric data in table 2 one finds three possible triangulations, one of which is compatible

with a flat elliptic fibration.17 The Mori cone and the intersection numbers associated with

17A necessary condition for this is that there must exist a 2 × 4 block of zeros in the 4 × 8 Mori cone

matrix since the two fibral curves should not intersect with the four toric divisors that are pulled back from

the four base toric divisors. This criterion singles out the phase presented here.
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this phase are as follows:

l(1) = ( 0, 0, −1, 0, 0, 0, 1, 1)

l(2) = ( 1, 0, 0, 1, 0, 0, 0, −2)

l(3) = ( 0, 1, 0, −1, −1, 1, 0, 0)

l(4) = ( 0, 0, 2, 0, 1, 0, 0, −1)

(E.1)

I = −3J2
1J3 + 3J1J2J3 + 3J1J

2
3 + 14J2J

2
3 + 80J3

3 − J2
1J4 (E.2)

+J1J2J4 − J1J
2
4 − 2J2J

2
4 + 8J3

4 .

Here, the Mori cone generators l(i) are described in terms of their intersection numbers

with the 8 toric divisors di = {νi = 0}, with the classes of νi given in table 2. The toric

divisors are in turn expressible via the 4 basis elements Ji of H1,1(X,Z) as

d1 = J1 + J2 , d2 = J2 , d3 = −4J1 − 4J2 + J3 − 2J4 , d4 = J1 ,

d5 = −2J1 − 3J2 + J3 − J4 , d6 = J2 , d7 = J3 , d8 = J4 .
(E.3)

This data is sufficient to obtain [123, 124] the low-degree Gromov-Witten invariants in

the basis of curves l(i). In order to extract the relevant invariants N
(0)
C0

(n, r) from them, we

need to express ΓC0(n, r) = C0 + nCE + rC f in terms of l(i). The correct identification is

C0 = l(2) , CE = 3l(1) + 2l(4) , C f = l(1) + l(4) , (E.4)

leading to

ΓC0(n, r) = (3n+ r)l(1) + l(2) + (2n+ r)l(4) . (E.5)

Using standard methods of mirror symmetry, the lowest expansion terms of the genus-zero

prepotential (4.28) can then be computed with the result as given in (4.29).

E.2 Hirzebruch base F1 with extra section, for (x, y) = (4, 6)

The elliptic fibration with (x, y) = (4, 6) over F1 admits two inequivalent triangulations,

one of which is compatible with the existence of a flat fibration. The Mori cone and the

intersection numbers of this topological phase are

l(1) = ( 0, −1, +0, +0, +0, +0, +1, +1)

l(2) = ( 1, 0, −1, 1, 0, 0, 0, −1)

l(3) = ( 0, 0, 1, 0, 1, 0, 0, −2)

l(4) = ( 0, 2, 0, 0, 0, 1, 0, −1)

(E.6)

I = 2J2
1J2 + 6J1J

2
2 + 16J3

2 + 3J2
1J3 + 12J1J2J3 + 32J2

2J3 (E.7)

+ 21J1J
2
3 + 64J2J

2
3 + 120J3

3 + J2
1J4 − 3J1J

2
4 + 8J3

4 .

The Mori cone generators l(i) are described in terms of their intersection numbers with the

8 toric divisors di = {νi = 0}

d1 = −2J1 − J2 + J3 − J4 , d2 = 2J2 − J3 ,

d3 = 3J1 + J2 − J3 + J4 , d4 = −2J1 − J2 + J3 − J4 ,

d5 = J1 , d6 = J2 ,

d7 = J3 , d8 = J4 .

(E.8)
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Figure 5. Maximal charge qmax(n) per excitation level for Bl1P2
112[4] fibration over F2 with (x, y) =

(2, 4). The maximally superextremal states form a sublattice of spacing 2m = 8.

The correct identification with the base curve C0 as well as the fibral curves (4.9)

and (4.10) is

C0 = l(3) , CE = 3l(1) + 2l(4) , C f = l(1) + l(4) , (E.9)

leading to

ΓC0(n, r) = (3n+ r)l(1) + l(3) + (2n+ r)l(4) . (E.10)

This data in turn determines the lowest order Gromov-Witten invariants as given in (4.38).

E.3 Hirzebruch base F2 with extra section, for (x, y) = (2, 4)

Following the analogous procedure as in sections E.1 and E.2, we obtain the following

expansion of the genus-zero generation function for an U(1) elliptic fibration with (x, y) =

(2, 4) over F2:

F (0)
C0

= −2 +
(
192 + 128ξ±1 + 16ξ±2

)
q (E.11)

+
(
87360 + 65664ξ±1 + 26880ξ±2 + 4992ξ±3 + 228ξ±4

)
q2 +O(q3) .

The fugacity index of the generating function is computed as

m = 6− x = 4 , (E.12)

so that the general ansatz for F (0)
C0

is

F (0)
C0

= − q

η24
Φ10,4 , (E.13)

where Φ10,4 is a weak Jacobi form of weight 10 and index 4. It is thus expanded as a general

linear combination of suitable monomials Ea14 Ea26 ϕa30,1ϕ
a4
−2,1 with 4a1 + 6a2 − 2a4 = 10 and

a3 + a4 = 4 for ai ≥ 0. Upon requiring that the GW invariants in (E.11) be obtained for
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order n = 0, 1 in q, the coefficients in the linear combination ansatz are fixed and the full

generating function is found as follows:

F (0)
C0

= −q ZK(τ, z) (E.14)

=
q

η24

(
− 1

31104
E3

4E6ϕ
4
−2,1 −

1

15552
E3

6ϕ
4
−2,1 +

1

10368
E4

4ϕ
3
−2,1ϕ0,1

+
1

3456
E4E

2
6ϕ

3
−2,1ϕ0,1 −

1

1728
E2

4E6ϕ
2
−2,1ϕ

2
0,1 +

7

31104
E3

4ϕ−2,1ϕ
3
0,1

+
5

31104
E2

6ϕ−2,1ϕ
3
0,1 −

1

10368
E4E6ϕ

4
0,1

)
.

The maximal charges per excitation level are plotted in figure 5, which again confirms the

expectations based on the Sublattice Weak Gravity Conjecture.

E.4 Hirzebruch base F2 with extra section, for (x, y) = (4, 8)

The fibration with (x, y) = (4, 8) over F2 gives rise to a non-generic model in which [b2] = 0

and hence cancellations at the level of states with n = 1, q = 2 are expected, in line with

the general discussion of section 4.1. Indeed, the expansion of the generation function up

to order n0 = 2 in q is found as follows:

F (0)
C0

= −2 +
(
288 + 96ξ±1

)
q (E.15)

+
(
123756 + 69280ξ±1 + 10192ξ±2 + 96ξ±3 − 2ξ±4

)
q2 +O(q3) ,

exhibiting, as expected, no states at n = 1, q = 2. This is exactly the same expression as for

the model with (x, y) = (4, 6) on F1 presented in section 4.1, so the same conclusions apply.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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