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Abstract

The prompt production of Λ+
c baryons is studied in proton-lead collisions collected

with the LHCb detector at the LHC. The data sample corresponds to an integrated
luminosity of 1.58 nb−1 recorded at a nucleon-nucleon centre-of-mass energy of√
sNN = 5.02 TeV. Measurements of the differential cross-section and the forward-

backward production ratio are reported for Λ+
c baryons with transverse momenta

in the range 2 < pT < 10 GeV/c and rapidities in the ranges 1.5 < y∗ < 4.0 and
−4.5 < y∗ < −2.5 in the nucleon-nucleon centre-of-mass system. The ratio of cross-
sections of Λ+

c baryons and D0 mesons is also reported. The results are compared
with next-to-leading order calculations that use nuclear parton distribution functions.
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1 Introduction

The ultimate goal of relativistic heavy-ion collision experiments at the SPS, RHIC and the
LHC accelerators is to learn about the properties of a new state of matter, the quark-gluon
plasma (QGP). The QGP consists of deconfined quarks and gluons and it is generally
accepted that such a hot and dense state of matter can be produced in high-energy
heavy-ion collisions [1]. Heavy quarks are particularly important probes of the properties
of the QGP. According to theoretical models, heavy quarks are created in pairs in the
early stage of the space-time evolution of heavy-ion collisions, and undergo rescattering or
energy loss in the QGP. Measurements of heavy-flavour production can shed light on the
transport properties of the medium and the heavy-quark energy-loss mechanisms. Multiple
experimental measurements of D-meson production in heavy-ion collisions at RHIC [2]
and the LHC [3] already show clear signs of strong interactions between charm quarks and
the medium in these collisions. However, heavy quarks can be affected by both hot and
cold nuclear matter, since cold nuclear matter effects are also present in nucleus-nucleus
interactions. Possible cold nuclear matter effects that affect heavy-flavour production
in heavy-ion collisions include: (a) the modification of the parton distribution function
in bound nucleons in the initial state, namely the nuclear PDF (nPDF) effects [4, 5];
(b) initial-state radiation or energy loss due to soft collisions [6–8]; and (c) final-state
hadronic rescatterings and absorption [9]. To further study heavy-quark energy loss or
collective phenomena in QGP, the cold nuclear matter effects must be quantitatively
disentangled from hot nuclear matter effects.

LHCb measurements can play an important role in understanding cold nuclear matter
effects, thanks to LHCb detector’s outstanding capability in heavy-flavour measurements.
The precise tracking system allows the separation of “prompt” charm hadrons, which
are directly produced in pPb collisions, from “nonprompt” charm hadrons coming from
decays of b hadrons. The excellent particle identification capabilities of the LHCb detector
allow measurements of various species of charmed hadrons. Finally, prompt open-charm
hadrons can be measured down to low transverse momentum (pT) at forward rapidity (y)
owning to the LHCb’s geometric coverage. These measurements provide sensitive probes
of the nPDF in the low parton fractional longitudinal momentum (x) region down to
x ≈ 10−6–10−5, where the nPDF is largely unconstrained by experimental data.

Prompt D0 meson production has been measured by the LHCb collaboration in pPb
collisions at

√
sNN = 5.02 TeV with data recorded in 2013 [10]. In the present study, the

production of the charmed baryon Λ+
c is measured with the same 2013 data sample.1

The forward-backward asymmetry is measured using prompt Λ+
c candidates, in order

to study cold nuclear matter effects. In addition, the baryon-to-meson cross-section
ratios are measured in order to probe the charm-hadron formation mechanism [11, 12]
using D0 production cross-sections measured by the LHCb collaboration in Ref. [10].
Measurements of the baryon-to-meson cross-section ratios for light and strange hadrons
have shown significant baryon enhancement at intermediate pT in the most central heavy-
ion collisions [13, 14]. This enhancement can be explained by coalescence models [11,
15–18], which assume that all hadrons are formed through recombination of partons
during hadronisation. Recently, the STAR experiment has measured the production of
Λ+
c baryons in AuAu collisions at

√
sNN = 200 GeV [19]. These measurements show a

1 Charge conjugation states and processes are implied throughout the paper.
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significant enhancement in the Λ+
c to D0 yield ratio for pT from 3 to 6 GeV/c. A similar

enhancement in PbPb collisions is also observed by the ALICE experiment [20]. The
measurement of Λ+

c production in pPb collisions provides complementary information
to help understand the implications of the STAR and ALICE observations. In addition,
the ALICE collaboration has recently measured Λ+

c production in pPb collisions at√
sNN = 5.02 TeV for 2 < pT < 12 GeV/c and −0.96 < y < 0.04, and in pp collisions at√
s = 7 TeV for 1 < pT < 8 GeV/c and −0.5 < y < 0.5 [21]. The LHCb collaboration has

also published results on the production cross-section of prompt Λ+
c bayrons in pp collisions

at
√
s = 7 TeV [22].

2 Detector and data

The LHCb detector [23, 24] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c
quarks. The detector includes a high-precision tracking system consisting of a silicon-strip
vertex detector surrounding the pp interaction region (VELO), a large-area silicon-strip
detector located upstream of a dipole magnet with a bending power of about 4 Tm, and
three stations of silicon-strip detectors and straw drift tubes placed downstream of the
magnet. The tracking system provides a measurement of the momentum of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0%
at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact
parameter, is measured with a resolution of (15 + 29/pT)µm in GeV/c. Different types of
charged hadrons are distinguished using information from two ring-imaging Cherenkov
detectors. The average efficiency for kaon identification for momenta between 2 and
100 GeV/c is about 95%, with a corresponding average pion misidentification rate around
5%. Photons, electrons and hadrons are identified by a calorimeter system consisting of
scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic
calorimeter. Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers. The online event selection is performed by a trigger,
which consists of a hardware stage, based on information from the calorimeter and muon
systems, followed by a software stage, which applies a full event reconstruction.

This analysis uses the data sample of pPb collisions at
√
sNN = 5.02 TeV taken with

the LHCb detector in 2013, with a proton beam energy of 4 TeV and lead beam energy
of 1.58 TeV per nucleon in the laboratory frame. Since the LHCb detector covers only
one direction of the full rapidity acceptance, two distinctive beam configurations were
used. In the ‘forward’ (‘backward’) configuration, the proton (lead) beam travels from
the VELO detector to the muon chambers. The rapidity y in the laboratory rest frame is
shifted to y∗ = y− 0.4645 in the proton-nucleon rest frame. Here, y∗ is the rapidity of the
Λ+
c baryon defined in the centre-of-mass system of the colliding nucleons, and it is defined

with respect to a polar axis in the direction of the proton beam. During data taking, the
hardware trigger operated in a ‘pass-through’ mode that accepted all bunch crossings,
regardless of the inputs from the calorimeter and muon systems. The software trigger
accepted all events with a minimum activity in the VELO. The integrated luminosity
of the sample was determined in Ref. [25], and is 1.06± 0.02 nb−1 (0.52± 0.01 nb−1) for
the forward (backward) collisions, respectively. Due to the low beam intensity, multiple
interactions in the bunch crossings are very rare, and only a single PV is reconstructed
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for each event.
Simulated pPb collisions at 5 TeV at both configurations with full event reconstruction

are used in the analysis to evaluate the detector efficiency. In the simulation, Λ+
c baryons

are generated with Pythia [26] and embedded into minimum-bias pPb collisions from
the EPOS event generator [27], which is tuned with LHC data [28]. Decays of hadronic
particles are described by EvtGen [29], in which final-state radiation is generated using
Photos [30]. The interaction of the generated particles with the detector, and its response,
are implemented using the Geant4 toolkit [31, 32] as described in Ref. [33].

3 Cross-section determination

The differential production cross-section of Λ+
c baryons is measured in bins of the Λ+

c

transverse momentum and rapidity in the kinematic range 2 < pT < 10 GeV/c with
1.5 < y∗ < 4.0 for the forward sample and −4.5 < y∗ < −2.5 for the backward sample.
The double-differential cross-section is obtained using

d2σ

dy∗dpT
=

N(Λ+
c → pK−π+)

L × εtot × B(Λ+
c → pK−π+)×∆y∗ ×∆pT

, (1)

where N(Λ+
c → pK−π+) is the prompt Λ+

c signal yield reconstructed in the Λ+
c → pK−π+

decay channel in each (pT, y
∗) bin, L is the integrated luminosity, εtot is the total efficiency

determined in each (pT, y
∗) bin, B(Λ+

c → pK−π+) = (6.35 ± 0.33)% is the branching
fraction of the decay Λ+

c → pK−π+ [34]. The signal yields and efficiencies are determined
independently for each pT and y∗ bin of width ∆pT = 1 GeV/c and ∆y∗ = 0.5. The total
cross-section is calculated by integrating the double differential cross-section over a given
kinematic range.

The forward-backward ratio RFB measures the Λ+
c production asymmetry in the

forward and backward rapidity regions. It is defined as

RFB(y∗, pT) ≡ d2σ(y∗, pT; y∗ > 0)/dy∗dpT
d2σ(y∗, pT; y∗ < 0)/dy∗dpT

, (2)

where σ(y∗, pT; y∗ > 0) and σ(y∗, pT; y∗ < 0) correspond to the cross-sections of the
forward and backward rapidity regions symmetric around y∗ = 0, respectively. The
RFB ratio is measured in the common rapidity region of the forward and backward data
2.5 < |y∗| < 4.0.

The baryon-to-meson cross-section ratio RΛ+
c /D0 ≡ σ(Λ+

c )/σ(D0) is calculated as the

ratio of Λ+
c and D0 production cross-sections

RΛ+
c /D0(y∗, pT) =

d2σΛ+
c

(y∗, pT)/dy∗dpT

d2σD0(y∗, pT)/dy∗dpT
, (3)

where σΛ+
c

and σD0 are cross-sections of Λ+
c and D0 hadrons in pPb collisions at√

sNN = 5.02 TeV, respectively. The D0 production cross-section in the kinematic region
0 < pT < 10 GeV/c with 1.5 < y∗ < 4.0 for the forward sample and −5.0 < y∗ < −2.5 for
the backward sample has been measured by the LHCb collaboration and is documented
in Ref. [10]. As the D0 meson sample is significantly larger and has a better signal purity
than that of Λ+

c baryons, the D0 production cross-section can be measured in a wider
rapidity range in the backward sample.
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3.1 Event selection

Proton, kaon and pion candidates are selected with particle identification (PID) [35]
criteria, and are required to be inconsistent with originating from any PV. Random
combinations of charged particles form a larger background in the backward sample
than in the forward sample, due to a larger number of tracks per event. Each possible
combination of the selected decay products undergoes further selection to reject false
Λ+
c candidates from such random combinations. The requirements applied to select a

reconstructed Λ+
c candidate include: (a) its reconstructed invariant mass is in the range

[MΛ+
c
− 75 MeV/c2,MΛ+

c
+ 75 MeV/c2], which corresponds to around 25 times the mass

resolution around the measured Λ+
c mass MΛ+

c
= 2288.7 MeV/c2, which is 2.2 MeV/c2 larger

than the known Λ+
c mass 2286.46 MeV/c2 [34]; (b) the angle between the reconstructed Λ+

c

momentum and the vector pointing from the PV to the decay vertex is close to zero. (c) the
proper decay time of the Λ+

c candidate is in the range [0.1, 1.2] ps; (d) the p, K− and π+

candidates form a good-quality vertex; and (e) the decay vertex is significantly separated
from the PV. After the selection, about 1% of the events are found to contain multiple
candidates. All candidates are kept. Few Λ+

c baryons are observed with pT < 2 GeV/c due
to low efficiencies, while the combinatorial background is large. Therefore the measurement
is restricted to pT > 2 GeV/c.

3.2 Prompt Λ+
c yield and efficiencies

The Λ+
c signal includes both prompt and nonprompt components. The nonprompt Λ+

c

candidates originate from b-hadron decays, denoted Λ+
c -from-b hereafter. The number of

prompt Λ+
c candidates, N(Λ+

c → pK−π+), in Eq. 1 is estimated following the strategy
developed in previous LHCb charm analyses in pp collisions at

√
s = 7 TeV [22] and in

pPb collisions at
√
sNN = 5.02 TeV [10]. The invariant-mass distribution, m(pK−π+), is

first fitted to determine the yield of inclusive Λ+
c candidates in the sample. The prompt

Λ+
c fraction is then determined from a fit to the distribution of the χ2 of the impact

parameter of the Λ+
c candidates (χ2

IP(Λ+
c )), which is defined as the difference in the vertex

fit χ2 of a given PV when it is reconstructed with and without the Λ+
c candidate.

Figure 1 shows the fit result of an extended unbinned maximum-likelihood fit to the
m(pK−π+) distribution of the full dataset, which contains 11.6 × 103 (4.0 × 103) Λ+

c

baryons for the forward (backward) sample. A Gaussian function is used to describe
the shape of the Λ+

c signal, while the combinatorial background is modelled by a linear
function. Although Fig. 1 corresponds to the full dataset, independent fits are performed
in each (pT, y

∗) bin. The width and peak position of the Gaussian function depends on
the kinematics of the Λ+

c baryons, due to the imperfect detector alignment, and both are
therefore left as free parameters in the fits. The peak position varies between 2284 and
2294 MeV/c2, and the width is found to be between 4 and 10 MeV/c2.

Unlike prompt Λ+
c baryons, which originate from the PV, Λ+

c -from-b baryons are
created away from the PV due to the relatively long lifetime of b hadrons. Decay products
of Λ+

c -from-b candidates tend to have larger impact parameter with respect to the PV
and a larger χ2

IP, compared to the prompt Λ+
c candidates. Consequently, the fraction of

prompt Λ+
c baryons is determined from a fit to the distribution of log10 χ

2
IP(Λ+

c ) using the
different χ2

IP distributions describing the prompt Λ+
c , the Λ+

c -from-b, and the combinatorial
background contributions.
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Figure 1: Distributions of the invariant mass, m(pK−π+), in the range 2 < pT < 10 GeV/c
for (a) the forward data sample with 1.5 < y∗ < 4.0 and (b) the backward data sample with
−4.5 < y∗ < −2.5. The red dotted line is the inclusive Λ+

c candidates, the grey shaded area is
the combinatorial background and the blue solid line is the sum of the two.

The fit is performed to the log10 χ
2
IP(Λ+

c ) distribution of candidates within the
mass interval [MΛ+

c
− 30 MeV/c2,MΛ+

c
+ 30 MeV/c2]. The log10 χ

2
IP(Λ+

c ) distribution
of the combinatorial background is constructed from the sideband regions in data
[MΛ+

c
− 50 MeV/c2,MΛ+

c
− 30 MeV/c2] and [MΛ+

c
+ 30 MeV/c2,MΛ+

c
+ 50 MeV/c2]. Fol-

lowing LHCb charm cross-section measurements in pp collisions at
√
s = 7 TeV [22],

the prompt Λ+
c and Λ+

c -from-b components are modelled independently with a Bukin
function [36], which is defined as

fBukin(x;µ, σ, ξ, ρL, ρR)

∝



exp

(
− ln 2

[
ln
(
1+2ξ
√
ξ2+1 x−µ

σ
√
2 ln 2

)
ln
(
1+2ξ2−2ξ

√
ξ2+1

)
]2)

xL < x < xR,

exp

(
ξ
√
ξ2+1(x−xL)

√
2 ln 2

σ
(√

ξ2+1−ξ
)2

ln
(√

ξ2+1+ξ
) − ρL

(
x−xL
µ−xL

)2
− ln 2

)
x < xL,

exp

(
− ξ

√
ξ2+1(x−xR)

√
2 ln 2

σ
(√

ξ2+1+ξ
)2

ln
(√

ξ2+1+ξ
) − ρR

(
x−xR
µ−xR

)2
− ln 2

)
x > xR,

(4)

where

xL,R = µ+ σ
√

2 ln 2

(
ξ√
ξ2 + 1

∓ 1

)
. (5)

The parameters µ and σ are the position and width of the peak, ρL and ρR are left and
right tail exponential coefficients and ξ parameterises the asymmetry of the peak. The
log10 χ

2
IP(Λ+

c ) distribution in the simulation is compared to that in the data, where the
signal log10 χ

2
IP(Λ+

c ) distribution is obtained using the sPlot technique [37]. The simulated
sample gives a good description of the shape of the prompt log10 χ

2
IP(Λ+

c ) distribution, while
slightly underestimating the prompt peak position µ. For the Λ+

c -from-b component, both
µ and σ depend on pT and y∗. The µ value in the data varies between 1.3 and 2.0, which is
0.3–0.5 larger than that in the simulation. The parameter µ in the prompt Bukin function
and the parameters µ and σ in the Λ+

c -from-b Bukin function are determined from a fit to
the data. The sum of the prompt and Λ+

c -from-b distributions of log10 χ
2
IP(Λ+

c ) is obtained
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Figure 2: Distributions of log10 χ
2
IP(Λ+

c ) in the range 2 < pT < 10 GeV/c with the fit results
overlaid for (a) the forward data sample with 1.5 < y∗ < 4.0, and (b) the backward data
sample with −4.5 < y∗ < −2.5. The solid blue curve is the sum. The red dotted line is the
prompt component, the green is the Λ+

c -from-b component and the grey shaded area denotes
the combinatorial background.

with the sPlot technique using the invariant mass m(pK−π+) as the discriminating
variable, and is fitted with two Bukin functions. The correlation between the invariant
mass m(pK−π+) and log10 χ

2
IP(Λ+

c ) is found to be negligible. For the prompt Bukin
function, the parameter µ is a floating variable, while σ, ρL, ρR and ξ are fixed to the
values determined from a fit to the simulation sample. For the Λ+

c -from-b Bukin function,
the parameters µ and σ vary freely, while ρL, ρR and ξ are estimated from the simulation
and can vary within their uncertainties.

Finally, the log10 χ
2
IP(Λ+

c ) distribution is fitted with three components, two Bukin
functions for the prompt Λ+

c and Λ+
c -from-b components respectively, where the parameters

are determined as described above, and a background component derived from the sideband
regions. The prompt fraction is determined independently in two-dimensional (pT, y

∗) bins
and tends to decrease with increasing pT and y∗, with an average value of ∼ 90% for both
rapidity regions. The log10 χ

2
IP(Λ+

c ) distributions of Λ+
c candidates with 2 < pT < 10 GeV/c

and in the full rapidity region, together with the fits, are displayed in Fig. 2 (a) and (b),
for the forward and backward samples, respectively. The statistical uncertainty of the
prompt fraction is considered to be partially correlated with the statistical uncertainty
of the inclusive Λ+

c yield. The correlation factor in each (pT, y
∗) bin is derived from a

simultaneous two-dimensional fit to the m(pK−π+)-log10 χ
2
IP(Λ+

c ) distribution.
The total efficiency, εtot, in Eq. 1 is decomposed into three components: the geometrical

acceptance, the reconstruction and selection efficiency, and the PID efficiency. The
geometrical acceptance efficiency is the fraction of Λ+

c baryons within the LHCb geometrical
acceptance, and is determined from simulation. For most bins this efficiency is above 90%.
The reconstruction and selection efficiencies are calculated with simulated pPb events at√
sNN = 5 TeV. The simulated samples are validated by comparing the distributions of

kinematic variables with those obtained from the data using the sPlot technique. The
reconstruction efficiency is affected by the track multiplicity of the event, which is not well
reproduced in the simulation. Following the method developed in Ref. [10], the efficiency
is evaluated as a function of track multiplicity and a correction factor is derived. The
simulated samples do not model well Λ+

c decays through intermediate resonances Λ(1520)
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and K∗(892)0, which can result in local distortions of the m(pK−) and m(K−π+) invariant-
mass distributions. A method that uses m(pK−)−m(K−π+) as a two-dimensional weight
to calculate the efficiencies is implemented [38] to take into account the effect of resonant
structures in the Λ+

c decay, where the signal kinematics in the data are gained with the
sPlot technique. The final reconstruction and selection efficiency in general increases with
pT. The efficiency is below 1% for the lowest pT values and reaches 4–5% at pT > 8 GeV/c.

The PID efficiencies of the Λ+
c decay products are assessed separately with a data-driven

method [24] using high-purity samples of D0 mesons from D∗(2010)+ decays for kaons
and pions, and Λ baryons for protons. The samples are taken from the same pPb data set
as used in the present analysis. The single-track PID efficiencies are mostly above 80%
(90%) for protons (pions and kaons) for track momenta in the range of 3 < p < 100 GeV/c
and pseudorapidities in the range of 2 < η < 5, although the efficiencies at the edge
of the acceptance are generally lower. The single-track PID efficiencies are convolved
with Λ+

c → pK−π+ decay kinematic distributions obtained from simulation to produce
the total PID efficiency for Λ+

c baryons in each (pT, y
∗) bin. The PID efficiency for Λ+

c

baryons are 45–89% (46–74%) for the forward (backward) sample. The total efficiency is
estimated to be 0.04–4.53% (0.07–2.87%) for the forward (backward) configuration.

3.3 Systematic uncertainties

The systematic uncertainties are evaluated separately for the forward and backward
samples, unless otherwise specified. Sources of systematic uncertainty arising from the
inclusive Λ+

c invariant-mass fit, the determination of the prompt Λ+
c fraction from the

log10 χ
2
IP(Λ+

c ) fit and the efficiency evaluations are studied independently for each (pT, y
∗)

bin.
The systematic uncertainty of the inclusive Λ+

c invariant-mass fit is studied by re-
placing the fitting functions with a double Gaussian function with a common mean
for the Λ+

c signal and an exponential function for the background. The relative
uncertainty on the inclusive Λ+

c signals are 0.2–13.2% for the forward sample and
0.1–16.1% for the backward sample. The larger uncertainties are found in a few
bins at the edge of acceptance where the yields are low. The uncertainty on the
prompt fraction is evaluated by varying the width of the mass range used for the
log10 χ

2
IP(Λ+

c ) distribution to a wider ([MΛ+
c
− 35 MeV/c2,MΛ+

c
+ 35 MeV/c2]) and a nar-

rower ([MΛ+
c
− 20 MeV/c2,MΛ+

c
+ 20 MeV/c2]) mass range. The uncertainty is estimated

as the difference in the prompt fraction derived from the normal mass range and the alter-
native mass ranges. The uncertainties on the prompt fractions are 0.6–4.2% (0.7–19.0%)
for the forward (backward) sample. The bins with the lowest pT and largest |y∗| have
large uncertainties due to the high level of combinatorial background.

The relative uncertainty for the measured luminosity is 2.3% and 2.5% for
the forward and backward samples [39], respectively. The branching fraction
B(Λ+

c → pK−π+) = (6.35± 0.33)% [34] yields a relative uncertainty of 5.2%.
The uncertainty on the efficiency correction originates from several sources: (1) the

uncertainty in correcting the track multiplicity distributions in the simulation (5.6% in
the forward region and 5.8% in the backward region); (2) the uncertainty arising from
the simulation description of Λ+

c → pK−π+ decay resonant structures (forward: 3.0%,
backward: 4.0%); (3) the uncertainty in the PID efficiency (forward: 0.5–4.3%, backward:
0.5–10.4%); and (4) the limited size of the simulated sample (forward: 4.2–27.0%, backward:
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4.3–26.0%).
All the systematic uncertainties considered for the differential cross-sections are listed

in Table 1. For the total cross-section, the uncertainties due to the simulated sample size
are considered to be fully uncorrelated for each (pT, y

∗) bin and are summed in quadrature.
The uncertainties on the luminosity and the Λ+

c → pK−π+ branching fraction are fully
correlated among (pT, y

∗) bins. The other systematic uncertainties are found to be almost
fully correlated across the bins and are summed linearly.

For the RFB ratio, the common uncertainty on B(Λ+
c → pK−π+) cancels out. The

systematic uncertainty on the raw Λ+
c yields is considered uncorrelated because of different

levels of background in the forward and backward data samples. The systematic uncer-
tainties on the reconstruction and selection efficiency are assumed to be fully correlated
except for the uncertainty due to the Λ+

c decay resonant structures, which is uncorrelated.
The uncertainty on the PID efficiency is assumed to be 90% correlated. The luminosity un-
certainties are considered uncorrelated. For the RΛ+

c /D0 ratio, all systematic uncertainties
are uncorrelated except for the luminosity uncertainty which cancels out.

Table 1: Systematic and statistical uncertainties for the differential cross-sections. The ranges
indicate the variation over the (pT, y

∗) bins.

Source Relative uncertainty (%)
Correlated between bins Forward Backward

Invariant mass fit 0.2–13.2 0.1–16.1
Prompt fraction 0.6–4.2 0.7–19.0
Luminosity 2.3 2.5
B(Λ+

c → pK−π+) 5.2 5.2
Multiplicity correction 5.6 5.8
Λ+
c decay resonant structures 3.0 4.0

PID efficiency 0.5–4.3 0.5–10.4
Uncorrelated between bins

Simulation sample size 4.2–27.0 4.3–26.0
Statistical uncertainty 3.6–42.5 6.2–44.3

4 Results

4.1 Prompt Λ+
c cross-section

The double-differential cross-section of prompt Λ+
c production in pPb collisions at 5.02 TeV

is measured as a function of the pT and y∗ of the Λ+
c baryon. The results are displayed in

Fig. 3, and the corresponding numerical values are shown in Table 4 of Appendix A.
The double-differential cross-section is integrated over pT between 2 and 10 GeV/c to

obtain the differential cross-section as a function of y∗. Likewise, integrating over y∗ in
regions 2.5 < |y∗| < 4.0 (the common |y∗| region of the forward and backward data),
1.5 < y∗ < 4.0 (for the forward data) and −4.5 < y∗ < −2.5 (for the backward data)
yields the differential cross-section as a function of pT. The differential cross-sections
dσ/dy∗ versus y∗ and dσ/dpT versus pT are shown in Fig. 4. The corresponding values
are shown in Appendix A.
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Figure 3: Double-differential cross-section of prompt Λ+
c baryons in pPb collisions in the

(a) forward and (b) backward collision samples. The uncertainty represents the quadratic sum
of the statistical and the systematic uncertainties.
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Figure 4: Differential cross-section of prompt Λ+
c baryons in pPb collisions as a function of

(a) pT and (b) y∗ in the forward and backward samples. The forward and backward differential
cross-sections dσ/dpT in the common rapidity region 2.5 < |y∗| < 4.0 are scaled by 0.1 to
improve the visibility. The box on each point represents the systematic uncertainty and the
error bar represents the sum in quadrature of the statistical and the systematic uncertainties.

For the full kinematic range, the total cross-section is determined to be

σ(2 < pT < 10 GeV/c, 1.5 < y∗ < 4.0) = 32.1± 1.1± 3.2 mb,

σ(2 < pT < 10 GeV/c,−4.5 < y∗ < −2.5) = 27.7± 1.8± 3.9 mb.

where the first uncertainties are statistical and the second systematic. The correlated
components in the systematic uncertainties are 2.7 mb and 2.6 mb for the forward and
backward data, respectively.

4.2 RFB ratio

The total cross-section in the common rapidity region between the forward and backward
samples is also obtained to calculate the prompt Λ+

c RFB ratio,

σ(2 < pT < 10 GeV/c, 2.5 < y∗ < 4.0) = 13.9± 0.8± 1.5 mb,

σ(2 < pT < 10 GeV/c,−4.0 < y∗ < −2.5) = 21.7± 1.2± 2.8 mb.
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Figure 5: (a) Forward-backward production ratios RFB as a function of pT integrated over
2.5 < |y∗| < 4.0 for pT less than 7 GeV/c and 2.5 < |y∗| < 3.5 for pT greater than 7 GeV/c, and
(b) RFB as a function of y∗ integrated over 2 < pT < 10 GeV/c. The box on each point represents
the systematic uncertainty and the error bar represents the sum in quadrature of the statistical
and the systematic uncertainties.

Figure 5(a) shows the prompt Λ+
c RFB ratio as a function of pT in the region common to

both forward and backward samples, 2.5 < |y∗| < 4.0. In the rapidity region 3.5 < y∗ < 4.0,
the forward data have no measurement for pT > 7.0 GeV/c. For pT beyond 7 GeV/c, the
RFB ratio is therefore calculated with both forward and backward cross-sections in the
region 2.5 < |y∗| < 3.5. Figure 5(b) shows the RFB ratio as a function of |y∗| in the
region 2 < pT < 10 GeV/c. The measurement is in agreement with calculations using
the HELAC-Onia generator [40–42], which incorporates the parton distribution functions
of EPS09LO, EPS09NL0 [43] and nCTEQ15 [44]. The numerical values are given in
Appendix B.

4.3 Λ+
c to D0 cross-section ratio, RΛ+

c /D
0

The ratio of the production cross-sections between prompt Λ+
c baryons and D0 mesons is

calculated as a function of the pT and y∗ of the hadrons using the previous measurement
of D0 production cross-section [10]. The results are compared to the HELAC-Onia
calculations [40–42], which are based on a data-driven modelling of parton scattering. The
theory prediction is calculated with HELAC-Onia, where the Λ+

c production cross-section
is parameterised by fitting the LHCb pp data [22]. The nuclear matter effects in pPb
collisions are incorporated using the nPDFs EPS09LO/NLO [43], nCTEQ15 nPDFs [44].
The effects of the nPDFs tend to cancel in the ratio RΛ+

c /D0 , leading to similar ratios
between the different nPDFs. The calculations with the three nPDFs show comparable
trends and values across pT and y∗, with nCTEQ15 slightly lower than EPS09, suggesting
small nPDF effects in the RΛ+

c /D0 ratio.
Figure 6 shows the RΛ+

c /D0 ratio as a function of pT in four different rapidity ranges.
Numerical values can be found in Table 7 in Appendix C. The RΛ+

c /D0 ratios are measured
to be around 0.3. The values are larger at lower pT (< 5 GeV/c) and tend to decrease
for pT greater than 5 GeV/c. The trend is less clear in the backward region due to larger
uncertainties. The theoretical calculations are displayed as coloured curves. They increase
slightly with increasing pT. In the backward region, the data points are consistent with the
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Figure 6: The cross-section ratio RΛ+
c /D0 between Λ+

c baryons and D0 mesons as a function
of pT integrated over four different rapidity regions. The box on each point represents the
systematic uncertainty and the error bar represents the sum in quadrature of the statistical
and the systematic uncertainties. The coloured curves represent HELAC-Onia calculations with
nPDF EPS09LO/NLO and nCTEQ15.

theoretical calculations. The forward data points are consistent with the calculations at
lower pT (< 7 GeV/c). However, they are below the theoretical predictions for pT greater
than 7 GeV/c.

Figure 7 illustrates the RΛ+
c /D0 ratio for 2 < pT < 10 GeV/c as a function of rapidity.

The numerical values are given in Appendix C. The theoretical calculations are made for
the rapidity range −4.0 < y∗ < 4.0, and show a relatively uniform distribution. Both the
forward and backward data are consistent with the theoretical predictions for the full
rapidity range.

The ALICE collaboration has recently reported a measurement of the prompt Λ+
c

baryons in pPb collisions at
√
sNN = 5.02 TeV [21]. Their RΛ+

c /D0 ratio in the midrapidity

region for 2 < pT < 12 GeV/c and −0.96 < y∗ < 0.04 is measured to be 0.602 ± 0.060+0.159
−0.087,

and is shown in Fig. 7. The value is larger than the ratios shown in the solid points in
both forward and backward rapidity regions. In the forward region, the RΛ+

c /D0 ratio
tends to increase with decreasing y∗, suggesting a trend that can be compatible with the
ALICE measurement. In the backward region, however, no clear trend is observed due to
large uncertainties.
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Figure 7: The cross-section ratio RΛ+
c /D0 between Λ+

c baryons and D0 mesons as a function of y∗

integrated over 2 < pT < 10 GeV/c. The box on each point represents the systematic uncertainty
and the error bar represents the sum in quadrature of the statistical and the systematic uncertain-
ties. The coloured curves show HELAC-Onia calculations incorporating nPDFs EPS09LO/NLO
and nCTEQ15. The open circle is the value measured by the ALICE collaboration [21]. The
error bar shows the total uncertainty and the grey square the systematic.

5 Conclusion

Prompt Λ+
c production cross-sections are measured with pPb collision data collected

by the LHCb detector at
√
sNN = 5.02 TeV. The forward-backward production ratios

RFB are presented, and are compared to theoretical predictions. A larger production
rate in the backward-rapidity region compared to the forward region is observed. The
forward-backward production ratio RFB shows consistency with HELAC-Onia calculations
with the three nPDFs EPS09LO, EPS09NLO [43] and nCTEQ15 [44]. In addition, the
production cross-section ratio RΛ+

c /D0 between Λ+
c baryons and D0 mesons, which is

sensitive to the hadronisation mechanism of the charm particles, is measured. The result
is consistent with theory calculations based on pp data. The Λ+

c measurements in classes
of event multiplicity can be anticipated with the pPb dataset at

√
sNN = 8.16 TeV recorded

by the LHCb collaboration in 2016, which is about 20 times larger than the 5.02 TeV
dataset. An improvement in precision is also achievable with the increased sample size
and an improved simulation. In addition, a dataset of pp collisions at

√
s = 5.02 TeV

corresponding to a luminosity of 0.1 fb−1 was collected in 2017. The nuclear modification
factor for the Λ+

c baryons can be directly measured using this dataset.
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Appendices

A Numerical values of the Λ+
c cross-sections

Table 2: Measured differential cross-section (in mb/( GeV/c)) of prompt Λ+
c baryons as a function

of pT in pPb forward and backward data in different rapidity regions. The right column shows
the results for pT > 7 GeV/c and 2.5 < |y∗| < 3.5, which are used to compute the RFB values at
pT > 7 GeV/c. The first uncertainties are statistical and the second are systematic.

Forward ( mb/( GeV/c))
pT[ GeV/c] y∗ ∈ [1.5, 4.0] y∗ ∈ [2.5, 4.0] y∗ ∈ [2.5, 3.5]

[2, 3] 16.886 ± 1.066 ± 1.811 7.107 ± 0.812 ± 0.875 −
[3, 4] 8.402 ± 0.250 ± 0.844 3.731 ± 0.142 ± 0.401 −
[4, 5] 3.859 ± 0.113 ± 0.368 1.864 ± 0.087 ± 0.194 −
[5, 6] 1.644 ± 0.052 ± 0.165 0.724 ± 0.036 ± 0.080 −
[6, 7] 0.740 ± 0.030 ± 0.074 0.278 ± 0.020 ± 0.031 −
[7, 8] 0.274 ± 0.013 ± 0.027 − 0.096 ± 0.007 ± 0.011
[8, 9] 0.154 ± 0.010 ± 0.017 − 0.059 ± 0.006 ± 0.008
[9, 10] 0.100 ± 0.008 ± 0.013 − 0.032 ± 0.004 ± 0.006

Backward ( mb/( GeV/c))
pT[ GeV/c] y∗ ∈ [−4.5,−2.5] y∗ ∈ [−4.0,−2.5] y∗ ∈ [−3.5,−2.5]

[2, 3] 16.162 ± 1.750 ± 2.890 11.902 ± 1.180 ± 1.940 −
[3, 4] 6.248 ± 0.318 ± 0.688 5.021 ± 0.271 ± 0.546 −
[4, 5] 3.059 ± 0.132 ± 0.321 2.744 ± 0.122 ± 0.288 −
[5, 6] 1.342 ± 0.070 ± 0.143 1.192 ± 0.067 ± 0.127 −
[6, 7] 0.481 ± 0.031 ± 0.054 0.419 ± 0.029 ± 0.046 −
[7, 8] 0.207 ± 0.019 ± 0.024 0.190 ± 0.017 ± 0.021 0.048 ± 0.032 ± 0.419
[8, 9] − 0.123 ± 0.014 ± 0.016 0.019 ± 0.031 ± 0.010
[9, 10] − 0.067 ± 0.009 ± 0.010 0.046 ± 7.500 ± 0.000

Table 3: Differential cross-section (in mb) for prompt Λ+
c baryons as a function of |y∗| in pPb

forward and backward data. The first uncertainties are statistical and the second are systematic.

Forward ( mb)
|y∗| pT ∈ [2, 10] [ GeV/c ]

[1.5, 2.0] 20.517 ± 1.359 ± 2.311
[2.0, 2.5] 15.823 ± 0.511 ± 1.528
[2.5, 3.0] 12.358 ± 0.451 ± 1.240
[3.0, 3.5] 9.479 ± 0.928 ± 1.065
[3.5, 4.0] 5.943 ± 1.299 ± 0.949

Backward ( mb)
|y∗| pT ∈ [2, 10][ GeV/c ]

[2.5, 3.0] 15.283 ± 1.438 ± 1.900
[3.0, 3.5] 16.260 ± 1.024 ± 1.838
[3.5, 4.0] 11.772 ± 1.684 ± 2.356
[4.0, 4.5] 12.060 ± 2.608 ± 2.438

14



Table 4: Double-differential cross-section (in mb/( GeV/c)) for prompt Λ+
c baryons as a function of pT and y∗ in pPb forward and backward

data. The first uncertainty is statistical and the second is systematic.

Forward ( mb/( GeV/c))
pT[ GeV/c] y∗ ∈ [1.5, 2.0] y∗ ∈ [2.0, 2.5] y∗ ∈ [2.5, 3.0] y∗ ∈ [3.0, 3.5] y∗ ∈ [3.5, 4.0]

[2, 3] 11.316 ± 1.296 ± 1.634 8.241 ± 0.481 ± 0.893 6.304 ± 0.426 ± 0.716 4.721 ± 0.914 ± 0.680 3.189 ± 1.272 ± 0.667
[3, 4] 5.280 ± 0.382 ± 0.626 4.062 ± 0.150 ± 0.407 3.444 ± 0.132 ± 0.363 2.742 ± 0.142 ± 0.297 1.277 ± 0.208 ± 0.258
[4, 5] 2.009 ± 0.126 ± 0.223 1.982 ± 0.072 ± 0.194 1.412 ± 0.054 ± 0.137 1.228 ± 0.066 ± 0.133 1.087 ± 0.150 ± 0.194
[5, 6] 0.990 ± 0.066 ± 0.120 0.851 ± 0.037 ± 0.086 0.665 ± 0.033 ± 0.069 0.462 ± 0.030 ± 0.055 0.321 ± 0.057 ± 0.077
[6, 7] 0.549 ± 0.040 ± 0.067 0.375 ± 0.020 ± 0.040 0.294 ± 0.018 ± 0.032 0.192 ± 0.019 ± 0.026 0.069 ± 0.029 ± 0.021
[7, 8] 0.170 ± 0.018 ± 0.021 0.186 ± 0.012 ± 0.021 0.129 ± 0.011 ± 0.016 0.063 ± 0.009 ± 0.009 −
[8, 9] 0.117 ± 0.013 ± 0.017 0.074 ± 0.007 ± 0.010 0.070 ± 0.007 ± 0.010 0.047 ± 0.009 ± 0.009 −
[9, 10] 0.086 ± 0.013 ± 0.016 0.052 ± 0.006 ± 0.008 0.039 ± 0.006 ± 0.007 0.024 ± 0.006 ± 0.008 −

Backward ( mb/( GeV/c))
pT[ GeV/c] y∗ ∈ [−4.5,−4.0] y∗ ∈ [−4.0,−3.5] y∗ ∈ [−3.5,−3.0] y∗ ∈ [−3.0,−2.5]

[2, 3] 8.519 ± 2.585 ± 2.138 6.957 ± 1.666 ± 1.938 9.236 ± 0.977 ± 1.177 7.610 ± 1.358 ± 1.242
[3, 4] 2.453 ± 0.331 ± 0.351 2.638 ± 0.223 ± 0.318 3.902 ± 0.276 ± 0.439 3.502 ± 0.410 ± 0.421
[4, 5] 0.630 ± 0.101 ± 0.090 1.309 ± 0.091 ± 0.158 1.885 ± 0.118 ± 0.203 2.295 ± 0.194 ± 0.267
[5, 6] 0.300 ± 0.045 ± 0.047 0.501 ± 0.048 ± 0.063 0.684 ± 0.054 ± 0.076 1.199 ± 0.112 ± 0.145
[6, 7] 0.123 ± 0.025 ± 0.029 0.203 ± 0.023 ± 0.026 0.258 ± 0.026 ± 0.030 0.377 ± 0.045 ± 0.049
[7, 8] 0.034 ± 0.015 ± 0.011 0.080 ± 0.014 ± 0.013 0.146 ± 0.018 ± 0.019 0.152 ± 0.026 ± 0.021
[8, 9] − 0.049 ± 0.011 ± 0.011 0.099 ± 0.015 ± 0.015 0.097 ± 0.020 ± 0.016
[9, 10] − 0.034 ± 0.006 ± 0.009 0.049 ± 0.011 ± 0.010 0.050 ± 0.012 ± 0.009



B Numerical values of Λ+
c RFB ratios

Table 5: Forward-backward prompt Λ+
c production ratio RFB as a function of pT in the common

range 2.5 < |y∗| < 4.0. The first uncertainty is statistical and the second is systematic.

pT[ GeV/c] RFB

[2, 3] 0.60 ± 0.09 ± 0.10
[3, 4] 0.74 ± 0.05 ± 0.07
[4, 5] 0.68 ± 0.04 ± 0.06
[5, 6] 0.61 ± 0.05 ± 0.06
[6, 7] 0.66 ± 0.07 ± 0.07
[7, 8] 0.64 ± 0.08 ± 0.08
[8, 9] 0.60 ± 0.10 ± 0.09
[9, 10] 0.63 ± 0.13 ± 0.13

Table 6: RFB ratio as a function of |y∗| in the range 2 < pT < 10 GeV/c. The first uncertainty is
statistical and the second is systematic.

y∗ RFB

[2.5, 3.0] 0.81 ± 0.08 ± 0.09
[3.0, 3.5] 0.58 ± 0.07 ± 0.06
[3.5, 4.0] 0.50 ± 0.13 ± 0.11
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C Numerical values of RΛ+
c /D0 ratios

Table 7: Production ratio RΛ+
c /D0 as a function of pT in the forward and backward rapidity

regions. The first uncertainty is statistical and the second is systematic.

Forward
pT[ GeV/c] y∗ ∈ [2.5, 4.0] y∗ ∈ [1.5, 4.0]

[2, 3] 0.283 ± 0.032 ± 0.036 0.340 ± 0.021 ± 0.039
[3, 4] 0.335 ± 0.013 ± 0.039 0.367 ± 0.011 ± 0.039
[4, 5] 0.378 ± 0.018 ± 0.045 0.370 ± 0.011 ± 0.039
[5, 6] 0.327 ± 0.017 ± 0.052 0.332 ± 0.011 ± 0.040
[6, 7] 0.269 ± 0.022 ± 0.053 0.312 ± 0.014 ± 0.042
[7, 8] 0.215 ± 0.016 ± 0.037 0.228 ± 0.011 ± 0.028
[8, 9] 0.240 ± 0.025 ± 0.052 0.231 ± 0.015 ± 0.033
[9, 10] 0.268 ± 0.040 ± 0.078 0.255 ± 0.022 ± 0.043

Backward
pT[ GeV/c] y∗ ∈ [−4.0,−2.5] y∗ ∈ [−4.5,−2.5]

[2, 3] 0.314 ± 0.031 ± 0.054 0.347 ± 0.038 ± 0.065
[3, 4] 0.309 ± 0.017 ± 0.037 0.322 ± 0.016 ± 0.040
[4, 5] 0.405 ± 0.018 ± 0.047 0.388 ± 0.017 ± 0.045
[5, 6] 0.409 ± 0.023 ± 0.048 0.404 ± 0.022 ± 0.049
[6, 7] 0.293 ± 0.021 ± 0.036 0.306 ± 0.020 ± 0.040
[7, 8] 0.263 ± 0.025 ± 0.035 0.254 ± 0.024 ± 0.039
[8, 9] 0.344 ± 0.040 ± 0.053 0.344 ± 0.040 ± 0.053
[9, 10] 0.310 ± 0.042 ± 0.057 0.310 ± 0.042 ± 0.057

Table 8: Production ratio RΛ+
c /D0 as a function of y∗ for 2 < pT < 10 GeV/c. The first uncertainty

is statistical and the second is systematic.

|y∗| 2.0 < pT < 10.0 [ GeV/c ]
[−4.5,−4.0] 0.446 ± 0.096 ± 0.094
[−4.0,−3.5] 0.326 ± 0.047 ± 0.067
[−3.5,−3.0] 0.360 ± 0.023 ± 0.045
[−3.0,−2.5] 0.294 ± 0.028 ± 0.042

[1.5, 2.0] 0.413 ± 0.027 ± 0.051
[2.0, 2.5] 0.351 ± 0.011 ± 0.036
[2.5, 3.0] 0.324 ± 0.012 ± 0.034
[3.0, 3.5] 0.309 ± 0.030 ± 0.036
[3.5, 4.0] 0.274 ± 0.060 ± 0.051
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pUniversità di Pisa, Pisa, Italy
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