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Introduction

 Jets are a useful tool to represent the hadronic energy present in
a given proton-proton collision event at the LHC.

e Inelastic proton-proton collisions result in production of quarks
and gluons which undergo parton showering and hadronization, as
they cannot exist in isolation due to color confinement.

» Observed as collimated streams of particles depositing energy
in the calorimeters, reconstructed as jets.

 Jets are important to almost all analyses at ATLAS

« Reconstructed and used in order to enhance sighal selection
in an analysis either by vetoing them or by requiring their
presence

» Given their importance, it is essential to calibrate the jet
energies to the correct scale and to properly take into account
the uncertainties on these calibration procedures.

o In this talk, the different jet reconstruction and calibration

procedures and the performance of these methods will be
discussed.
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Which jet algorithm to use?

« Recommendations based on experience from CDF and DO experiments:
e Most commonly used algorithm for reconstructing jets on ATLAS is the anti-kt algorithm.

e Theoretical considerations:
e Infrared and collinear safety.
e Invariance under boost.

e Experimental considerations:
 Independent of detector technology.
« Control over pile-up effects with increasing luminosity.
« Should capture well, the decay of the initiating particle.
e Should be easy to calibrate.
e Not very computing intensive.



Types of jets used in ATLAS O

e Jets on ATLAS can be reconstructed from various inputs:
 Standard calorimeter jets built from topoclusters.

o Track jets built using the tracking information.
» pFlow and TrackCaloCluster jets are examples of jets that use both tracking and calorimeter information.

« Particle-level jets: Reference for the simulation-based jet calibration.

* Most commonly used jets are reconstructed using the anti-kt algorithm, radius parameters can be:
e R=0.4: Used in almost all analyses on ATLAS using quark/gluon-initiated jets.

e R=1.0: Used mainly to capture decay products of hadronically decaying massive particles like a top quark or
W/Z/H boson (boosted topologies).
 Variable-radius (variable-R) jets are also increasingly being used at high pT regimes where it is shown that

the hadronic decay products are contained in a smaller area than R=1.0.



topoclusters O

 Jets can be reconstructed from 3D topological clusters of calorimeter cells (topoclusters)

EM
« Calibrated or uncalibrated topoclusters (LC and EM scale). S,Ell\lfl _ Ecell
cel — _EM
» Cells are clustered together based on their signal significance or ratio of the cell signal to noise,cell

the average (expected) noise.
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https://arxiv.org/pdf/1603.02934.pdf

Cluster-level subtraction to mitigate pile up

 Constituent subtraction (CS): “ghost particles” (E = €)" added uniformly in an event and clustered alongside
cells: Number of clustered ghosts is proportional to the area.
» Topoclusters are corrected based on Nghost and event pile-up density (Rho).

Original event After SoftKiller

« Voronoi area: eta-phi area closest to each cluster: B s s
e Rho subtracted from each cluster according to voronoi area. W oy M e
o All clusters with low significance above noise are removed. | | o | |

« Softkiller (SK):
* Clusters below an event-specific pT cut after CS or VS are rejected to further remove pileup.
e CS+SK found to be the best performing one.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-065/
https://link.springer.com/article/10.1140/epjc/s10052-015-3267-2

particle-flow jets

e Tracks matched to topoclusters, removing charged energy while keeping neutral component. Subtraction of
energy is done cell-by-cell

e Reconstructed using the anti-kt algorithm with radius parameter 0.4: inputs are topo-clusters surviving the
energy subtraction step and the selected track

o Improved resolution at low pT compared to LC+JES jets due to better tracker resolution at low pT

TileBarl 1 N ATLAS Simulation
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https://link.springer.com/article/10.1140/epjc/s10052-017-5031-2

Improvements in jet mass reconstruction for R=1.0 jets O

Mass is a commonly used variable in the identification of
hadronically decaying massive particles such as top and
W/Z/H.

ATLAS Simulation Preliminary
Vs = 13 TeV, WZ — qqqq

anti-k, R = 1.0 jets, n| < 2.0

Trimmed (fcut = 0.05, Rsub =0.2)

Calorimeter mass: Resolution degrades at high pt, shower LCW + JES + JMS calibrated

size (1/pT) becomes comparable to calo granularity
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2017-002/

Track-Calo cluster (TCC) jets

» Define a jet using spatial coordinates of the tracker and the energy scale of the calorimeter: Use superior

angular resolution of tracker and energy resolution of calorimeter
e Neutral TCCs (unmatched topo-clusters) jets have a similar pile-up dependence to standard topocluster jets,

additional pile up removal techniques applied.
« Improved resolution of large-R jet mass for very high pT and substructure observables sensitive to the

substructure of a W/Z-boson jet.

ATLAS Simulation Preliminary
Vs =13 TeV

anti k; R=1.0, WZ — qqqq

n*<2.0, p*'>200 GeV
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https://cds.cern.ch/record/2275636/files/ATL-PHYS-PUB-2017-015.pdf
https://cds.cern.ch/record/2621302

variable-R (VR) jets O

ATLAS Simulation
Pythia Z'— tt, t — Wb

ATLAS Preliminary ig - VR600
Simulation, \s=13 TeV """ Bgr - VR600
1.0<p™ <1.5TeV ig - AKT10 trim.
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e For high pT jets (top jets in left plot) R < 1 is sufficient.

_ P
Ro — Rerf(pr,i) = —
e For VR jets, radius parameter scales with 1/pT PT,i

» p determines how fast the effective jet size decreases with jet pT.
e Min and max R values prevents the jets from becoming too large at low pT and from shrinking below the

detector resolution at high pT
10


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2016-013/

Calibration procedure for R=0.4 (small-R) and R=1.0 jets (large-R) O

s oo Poepree ) T Absolute MC-based' Global sequential ' Residual in situ
EM-scale jets Origin correction i ——a calibration calibration calibration

Jet finding applied to Changes the jet direction Applied as a function of Removes residual pile-up Corrects jet 4-momentum  Reduces flavor dependence A residual calibration
topological clusters at to point to the hard-scatter ~ event pile-up pr density dependence, as a to the particle-level energy  and energy leakage effects is derived using in situ
the EM scale. vertex. Does not affect E. and jet area. function of y and Npv. sca_le. B_oth the energy and using calorimeter, tragck, and mea;urements and is
eta (det) to eta direction are calibrated. muon-segment variables. applied only to data.

Calorimeter energy Large:R jet Ungroomed large-R jets Jet grooming Groomed large-R jets 2 AT Residual in situ Groomed large-R jets
clusters (LCW scale) reconstruction (LCW scale) (LCW scale) N calibration (LCW+JES+JMS scale)

Large-R jets removes pile-up and reconstructed Residual
reconstructed the underlying jet E,eta and m correction
using the anti- event corrected using applied to
kt algorithm MC to the data
with R = 1.0. particle jet

scale
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https://cds.cern.ch/record/2632341
https://arxiv.org/pdf/1703.09665.pdf

Pile-up correction for R=0.4 jets

« Particles from pile-up collisions can add additional jets that are not from the hard-scatter
e Can overlap with hard scatter jets, altering their energy
 Effect of pile-up reduced by applying per-jet corrections based on pile-up density in the event and JVT

(connects jets to pile-up vertices using tracking information) cuts for small-R jets.

2 5—*— All jets 81 <M, <101 GeV

up

—=— JVT>0.59 JETM-2017-009

ATLAS Preliminary
2017, s =13 TeV, 20.8 fb
Anti-k, R=0.4 EM+JES

p=' >20 GeV, Il <2.4

ATLAS Simulation
\'s = 13 TeV, Pythia Dijet
anti-k; R =0.4, EM scale

ATLAS Simulation
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2017-009/
https://arxiv.org/pdf/1703.09665.pdf

Pile-up correction for R=1.0 jets: “grooming” O

» Large-R jets due to a larger area are more susceptible to pile-up effects.
« Grooming techniques are applied to correct for these effects which can alter substructure features.
e The trimming procedure with parameters of fcut = 5% and Rsub = 0.2 is used on ATLAS.

» Constituents of the original anti-kt jet are reclustered using the kt algorithm with a distance parameter of
Rsub.

e Resulting kt sub-jet is removed if the pT is less than fcut of the large-R jet pT.
 Jet is rebuilt from the remaining constituents.

ATLAS Simulation —#— W-jets Ungroomed

 Soft drop grooming has also been studied and found to 1528 TeV Siope=1.9 GeVvertox

—&— Multijets (leading jet) Ungroomed

have gOOd pe I'fO rmance . |ﬂmm| <12 Slope=1.7 GeV/vertex

-¥- W-jets Groomed
350 < p. ™" < 500 GeV )
T Slope=0.1 GeV/vertex

anti—kt R=1.0 jets --A-- Multijets (leading jet) Groomed

i Slope=0.0 GeV/vert
Trimmed (f =5%,R_ =0.2) ope eV/vertex
cut sub
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1 jet . .
Initial jet ( p'T/pJ,;' < feut Trimmed jet
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Number of Reconstructed Primary Vertices

Grooming techniques can improve the reconstruction of the jet mass helping discriminate for e.g. a W-

boson initiated jet from a light quark/gluon jet, the distribution for which will peak at lower masses.
13


https://cds.cern.ch/record/2041461

Global sequential calibration (GSC) for R=0.4 jets

 Correct jet response according to jet shower depth, track variables and muon punch-through to
characterize fluctuations in the jet particle composition, distribution of energy within the jet.

 This correction applied in MC improves jet energy resolution and jet flavor dependence.

e Average JES is unchanged

ATLAS Simulation
Vs = 13 TeV, Pythia Dijet
anti-k; A=0.4, EM+JES I |<13

[e ]600 < p'T'""'<soo GeV
= ]1000 < p'"™™" <1200 GeV
1600 < p™" <2000 GeV
T

ATLAS Simulation
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[Ce] 30 s p™" <40 GeV

(= ]80= p{"‘“‘ <100 GeV
—% [[4 350 = p‘T"‘"‘<400 GeV

P, Response

p_ Response

T

O

0.
0.
.0

Fraction

Relative

Fra_qtion
Q

Relative
o

%))

2x10?

nsegments

14


https://arxiv.org/pdf/1703.09665.pdf

Simulation based energy response correction

 Average response determined from a Gaussian fit to the core of the response distribution
« JES correction factor cJES is determined as a function of the jet energy and pseudorapidity ndet.
e Large-R jet energy, mass, eta, and pT after applying the correction factor (Phi is not changed)

I'CCO

Ereco = CiES B0y Myreco = CIES MO,  Mreco = Mo + AU, = CJES IﬁOl/COSh (770 + AU)
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https://arxiv.org/pdf/1703.09665.pdf
https://cds.cern.ch/record/2632341

Simulation based mass response correction for R=1.0 jets O

« Jet mass more sensitive to soft, wide angle radiation and topocluster merging and splitting than pT. Jet mass

response measured in dijet events for different truth pT:
« Correction (cJMS) applied after Jet energy response correction, large-R jet energy kept fixed and pT allowed to
vary. cJMS varies from ~1-1.5.

_ _ _ reco _ 2 _ 2 2
Eteco = CiBS E0,  Mieco = CIES CIMS M0s  Treco =10 + A,  pp = CIES \/EO ~ CMs mO/COSh (0 + An).
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https://cds.cern.ch/record/2632341

Data-based correction: Eta-intercalibration O

e Correct for the average pT asymmetry between central (eta<0.8) reference jets and
forward (eta>0.8) probe jets with DeltaPhi > 2.5 as a function of n(probe) based on the
agreement between data and MC.

» Relative jet response with respect to the reference region is studied given that the
asymmetry is Gaussian. ¢(A)>: mean value of the Gaussian asymmetry distribution for a bin

of pTavg and ndet.

550 < pjvg <700 GeV
Vs =13 TeV, 36.2 b, dijets
Trimmed anti-k; R = 1.0 (LCW+JES+JMS)

R=1.0

1.2 ATLAS Preliminary anti-k, R = 0.4, EM+JE
's=13TeV,L=17.5fb" 85 = p™'° <115 GeV

-o— Data 2017
- Powheg+Pythia8 -+ Sherpa

Relative jet response (1/c)

-e- Data -~ Powheg+Pythia -+ Sherpa

MC / data
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2017-008/
https://cds.cern.ch/record/2632341

Data-based correction: Residual energy scale correction O

» Measure differences in average pT balance between the jet and reference object in data and MC after the MC-
based calibrations.
e Require jet to recoil against a well measured reference object
« Gamma+jet, Z+jet and Multijet have different pT reaches
e Multijet: pT balance between jet and recoiling system of calibrated small-R jets

Z boson or y

ATLAS
/s =13 TeV, 36.2 fb’
Trimmed R = 1.0 anti-k; (LCW+JES+JMS)
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https://cds.cern.ch/record/2632341

Residual energy scale correction
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https://cds.cern.ch/record/2632341

R=0.4 jet energy scale uncertainties O

e The full JES uncertainties contain in situ uncertainties and additional uncertainties for the modeling of pile-up,
flavor composition and response differences between generators, and single particle response at the highest pT.

« At low pT: the pile-up uncertainties > flavor response of gluon jets > photon energy scale > single particle
uncertainties.

« At high |eta| modeling issues of the balance between forward and central jets dominate.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2017-003/

pT resolution O

For R=0.4 jets, insitu pT resolution is studied by combining measurements in gamma-+jet, Z+jet and Dijet events.
For R=1.0 jets, dijet events are used.

| ATLAS
L Vs=13TeV, 36.2 fb™, dijet l
. Trimmed anti-k, R = 1.0, (LCW+JES+JMS) |

' L
anti-k, R=0.4, EM+JES
m <0.8

" ATLAS Preliminary 7
\s = 8 TeV
fLdt=20"fb"

T

A y-jet
o Z-jet
Dijets

Jet p_resolution
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— Total uncertainty
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MC/Data
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https://cds.cern.ch/record/2632341
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2015-037/

R=1.0 jets: Rtrack method for uncertainties on mass and pT response O

e Average calorimeter-to-track jet response is proportional to the average R = < peilo
calorimeter-to-truth jet response.
o Comparing Rtrk in simulation and data is a way to validate the modeling of large-R jets in data:
« Any deviation from 1 is taken to be a scale uncertainty in the measurement.
« This method is used to determine uncertainties on pT, mass and substructure information of R=1.0 jets.

P T
trk

ATLAS s Data Breakdown of

(s =13 TeV, 36.2 b, dijets —a Pythia uncertainties on pT

Trimmed anti-k, R = 1.0 (LCW+JES+JMS) —=— Sherpa 2.1 and mass response

gl < 20: P> 200 GeV —— Herwig7 for large-R jets with
Tracking une. values of m/pT = 0.2

using the Rtrk

method

ATLAS + Data
\s=13TeV, 36.2 fb, dijets —=— Pythia
rimmed anti-k; R =1.0 (LCW+JES+JMS) —— Sherpa 2.1

Irydetl <2.0, p_>200 GeV —— Herwig7

Tracking unc.

Calorimeter-to-track response, R
Calorimeter-to-track response, Ry,

0BF
04F-
0255,
1 .
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MC / Data
000 o

S 1
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Q1.
S~
O 0
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500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Large-R jet P, [GeV] Large-R jet P, [GeV]
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https://cds.cern.ch/record/2632341

R=1.0 jets: Forward folding method for jet mass scale and resolution O

e Produces simulation predictions of the jet mass spectrum with variable response and resolution.

« Ratio of the mass response in data and simulations (s = Rmdata/RmMC) and of the mass resolution in data and
simulations (r = omdata/omMC) are extracted from the jet mass spectrum.

» Done by folding particle-level jets with a response function.

T I ]
- ATLAS . tt — u +jets, Ir]detl <20 A
- Vs=13TeV, 36.2 b 350 GeV < p_ = 1000 GeV |
| Trimmed R =1.0 anti-k, . b-jet tag: AR(b; jet) < 1
LCW+JES+JMS ;

ATLAS Vs=13TeV, 36.2fb", ff — u +jets
Trimmed R = 1.0 anti-k; (LCW+JES+JMS)

Events / 5 GeV

—+— Data
ot
. [l Single top
1 W+jets
-\ N ! I Other
NN R\ & MC syst. error

calorimeter (stat.+syst.)

track-assisted (stat.+syst.)
| | | |

[200,250]  [250,350] [350,500] [500,1000]

Data / MC

200 250 » Large-R jet P [GeV]

Calorimeter jet mass [GeV]



https://cds.cern.ch/record/2632341

R=1.0 jets: Combined (Rtrk and fwd folding) measurement of Jet mass scale

» Forward folding provides four measurements for pT < 1 TeV.
e Rtrk method extends the measurement to ~ 2 TeV.

e Found to be consistent with one.

©
C
ko)
—
@©
e
O
»n
c
)

Q.
n
()
P -
()]
(%))
©
=

—
—

o
O ©
© O

o
o)

ATLAS

\s =13 TeV, 36.2 fb™

Trimmed R = 1.0 anti-k, (LCW+JES+JMS)
50 <M <120 GeV

— Total uncertainty " Ry,
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10° 2x10°
Large-R jet P, [GeV]

Fit in W mass range

ATLAS

Vs =13 TeV, 36.2 fb™

Trimmed R = 1.0 anti-k; (LCW+JES+JMS)
120 < m"® <300 GeV

— Total uncertainty " Ry,
[ Statistical component 4 Forward Folding

10° 2x10°
Large-R jet P, [GeV]

Fit in top mass range
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Summary O

« Jets can be used to study quark-gluon initiated jets or to reconstruct hadronic decays of massive particles like
top, W/Z and Higgs.

 Jets can be reconstructed from various inputs
« Using tracking information can improve pT or substructure resolution.
 Several in situ calibration methods are used to measure the response of the ATLAS detector to small-R and
trimmed large-R jets.
e For R=0.4 jets, the uncertainty on the jet energy scale derived from data is < 1% for 0.1 < pT < 1 TeV in the
central region
e For R=1.0 jets:
e Uncertainty on the jet energy scale derived from data is 1-2% for pT from 150 GeV to 2 TeV.
« Jet mass scale precision varies from 2% to 10% over the same pT range.
e The in situ JES calibration, derived from light quark and gluon jets, is found to fully correct the energy and

mass scales of high pT W bosons and top quarks to within the precision of the present measurement (1-3%).

 Effort continues to measure JES more precisely using the larger full Run 2 dataset.
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Backup
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flow subtraction procedure for different cases (2)
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TCC mass
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Track mass and track-assisted mass
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Calibration procedure of calorimeter signals

e Three types of calibration runs for extraction of electronic calibration constants: pedestal, ramp and delay
e Pedestal: measurement of baseline level and noise properties of the readout electronics
e ramp: measurement of readout gain
e delay: measurement of pulse shape as a function of time.

» These special calibration runs are acquired between LHC fills, in absence of collisions
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Jet triggers

Efficiencies for single R=0.4 and R=1.0 jet triggers as a function of the leading offline trimmed jet pT
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Study of jet punch-through

« nsegments: number of muon track segments ghost-associated with the jet (|eta(det)| < 2.7): targeting jets that are not fully
contained in the calorimeter (punch-through jets)
« Jets that deposit energy beyond the hadronic Tile calorimeter and in the muon system
« Systematic reduction of measured jet energy
« Can happen in any detector pseudo rapidity region
 Dijet pT balance technique:
o Asymmetry between transverse momentum of reference jet (pTreference) and punch-through jet as a function of energy
deposition of the latter jet
Cannot know apriori which jet will be affected by punch-through effect
Use missing transverse energy (ETmiss) : energy lost beyond calorimeter creates a component of missing transverse energy in the
direction of punch-through
« Jet closest to ETmiss Phi direction selected as punch-through jet
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https://arxiv.org/pdf/1112.6426.pdf
https://arxiv.org/pdf/1112.6426.pdf

Simulation based mass response correction (m=40 GeV) O

« Jet mass more sensitive to soft, wide angle radiation and topocluster merging and splitting and calorimeter
geometry than pT.
» Correction (cJMS) applied after Jet energy response correction, R jet energy kept fixed and pT allowed to vary.
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Calo transition regions
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Summary of in-situ calibration factors applied in data

Full calibration applied to jets in data impacts the reconstructed jet energy, mass, eta, and pT:

— 2 2 — —
Ereco = Cs EO + CymMs My (Cm - 1), Mreco = Cs CIMS Cm M0,  Mreco = Mo + An,

PT 0 = cCs (Eg — CJ2MS m%) cosh (n + An),

Pileup correction: 0.4 jets

pr =pr —pXA—-axX(Neyv—-1)-BXpu
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Uncertainty on R-1.0 jet fractional pT resolution
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