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A search for supersymmetry in events with large missing transverse momentum, jets, and at
least one hadronically decaying τ-lepton is presented. Two exclusive final states with either
exactly one or at least two τ-leptons are considered. The analysis is based on proton–proton
collisions at

√
s = 13 TeV corresponding to an integrated luminosity of 36.1 fb−1 delivered

by the Large Hadron Collider and recorded by the ATLAS detector in 2015 and 2016. No
significant excess is observed over the Standard Model expectation. At 95% confidence level,
model-independent upper limits on the cross section are set and exclusion limits are provided
for two signal scenarios: a simplified model of gluino pair production with τ-rich cascade
decays, and amodel with gauge-mediated supersymmetry breaking (GMSB). In the simplified
model, gluino masses up to 2000 GeV are excluded for low values of the mass of the lightest
supersymmetric particle (LSP), while LSP masses up to 1000 GeV are excluded for gluino
masses around 1400 GeV. In the GMSB model, values of the supersymmetry-breaking scale
are excluded below 110 TeV for all values of tan β in the range 2 ≤ tan β ≤ 60, and below
120 TeV for tan β > 30.
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1 Introduction

Supersymmetry (SUSY) [1–6] introduces a symmetry between fermions and bosons, resulting in a SUSY
partner (sparticle) for each Standard Model (SM) particle with identical quantum numbers except for a
difference of half a unit of spin. Squarks (q̃), gluinos (g̃), charged sleptons ( ˜̀), and sneutrinos (ν̃) are the
superpartners of the quarks, gluons, charged leptons, and neutrinos, respectively. The SUSY partners of
the gauge and Higgs bosons are called gauginos and higgsinos, respectively. The charged electroweak
gaugino and higgsino states mix to form charginos ( χ̃±i , i = 1,2), and the neutral states mix to form
neutralinos ( χ̃0

j , j = 1,2,3,4). Finally, the gravitino (G̃) is the SUSY partner of the graviton. As no
supersymmetric particle has been observed, SUSY must be a broken symmetry. To avoid large violations
of baryon- or lepton-number conservation, R-parity [7] conservation is often assumed. In this case,
sparticles are produced in pairs and decay through cascades involving SM particles and other sparticles
until the lightest sparticle (LSP), which is stable, is produced.

Final states with τ-leptons are of particular interest in SUSY searches, although they are experimentally
challenging. Light sleptons could play a role in the co-annihilation of neutralinos in the early universe, and
models with light τ-sleptons are consistent with constraints on dark matter consisting of weakly interacting
massive particles [8–10]. Furthermore, should SUSY or any other physics beyond the Standard Model
(BSM) be discovered in leptonic final states, independent studies of all three lepton flavors are necessary
to investigate the coupling structure of the new physics, especially with regard to lepton universality.

In this article, an inclusive search for squarks and gluinos produced via the strong interaction in events
with jets (collimated sprays of particles from the hadronization of quarks and gluons), at least one
hadronically decaying τ-lepton, and large missing transverse momentum is presented. Two SUSY models
are considered: a simplified model [11–13] of gluino pair production and a model of gauge-mediated
SUSY breaking (GMSB) [14–16]. If squarks and gluinos are within the reach of the Large Hadron
Collider (LHC), their production may be among the dominant SUSY processes. Final states with exactly
one τ-lepton (1τ) or at least two τ-leptons (2τ) provide complementary acceptance to SUSY signals.
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These two channels are optimized separately and the results are statistically combined. Models with a
small mass splitting between gluinos or squarks and the LSP, producing soft τ-leptons in the final state,
are best covered by the 1τ channel. Models with a heavy LSP, producing signatures with low missing
transverse momentum, are more easily probed by the 2τ channel due to the lower SM background. For
models with a large mass splitting, both channels provide sensitivity.

The analysis is performed using proton–proton (pp) collision data at a center-of-mass energy of
√

s =
13 TeV corresponding to an integrated luminosity of 36.1 fb−1, recorded with the ATLAS detector at the
LHC in 2015 and 2016. For both SUSY models, the exclusion limits obtained significantly improve upon
the previous ATLAS results. Besides the increase in the integrated luminosity, the results benefit from an
improved analysis and statistical treatment. Previous searches in the same final state have been reported
by the ATLAS [17–19] and CMS [20] collaborations.

In GMSB models, SUSY breaking is communicated from a hidden sector to the visible sector by a set
of messenger fields that share the gauge interactions of the SM. SUSY is spontaneously broken in the
messenger sector, leading to massive, non-degenerate messenger fields. The free parameters of GMSB
models are the SUSY-breaking mass scale in the messenger sector (Λ), the messenger mass scale (Mmes),
the number of messenger multiplets (N5) of the 5 + 5̄ representation of SU(5), the ratio of the two Higgs-
doublet vacuum expectation values at the electroweak scale (tan β), the sign of the Higgsino mass term
in the superpotential (sign(µ) = ±1), and a gravitino-mass scale factor (Cgrav). Details of the GMSB
scenarios studied herein can be found in Ref. [19].

As in previous ATLAS searches, the GMSB model is probed as a function of Λ and tan β, while the other
parameters are set to Mmes = 250 TeV, N5 = 3, sign(µ) = 1, and Cgrav = 1. The choice of tan β influences
the nature of the NLSP. For large values of tan β, the NLSP is the τ̃11 while for lower tan β values, the
τ̃1 and the superpartners of the right-handed electron and muon (ẽR, µ̃R) are almost degenerate in mass.
The production of squark pairs dominates at high values of Λ, with a subdominant contribution from
squark–gluino production. A typical GMSB signal process is displayed in Figure 1(a). The value of Cgrav
corresponds to prompt decays of the NLSP.

AlthoughminimalGMSBcannot easily accommodate aHiggs bosonwithmass of approximately 125GeV,
various extensions exist (see, e.g., Refs. [21, 22]) that remedy these shortcomings while preserving very
similar signatures, in particular the natures of the LSP and the NLSP.

The simplified model of gluino pair production is inspired by generic models such as the R-parity-
conserving phenomenological MSSM [23, 24] with dominant gluino pair production, light τ̃1, and a χ̃0

1
LSP. Gluinos are assumed to undergo a two-step cascade decay leading to τ-rich final states, as shown in
Figure 1(b). The two free parameters of the model are the masses of the gluino (mg̃) and the LSP (m

χ̃0
1
).

Assumptions are made about the masses of other sparticles, namely the τ̃1 and ν̃τ are mass-degenerate,
and the χ̃0

2 and χ̃±1 are also mass-degenerate, with

mχ̃±1
= m

χ̃0
2
=

1
2
(mg̃ + m

χ̃0
1
) , mτ̃1

= mν̃τ
=

1
2
(mχ̃±1

+ m
χ̃0

1
).

Gluinos are assumed to decay into χ̃±1 qq̄′ and χ̃0
2 qq̄ with equal branching ratios, where q, q′ denote generic

first- and second-generation quarks. The neutralino χ̃0
2 is assumed to decay into τ̃τ or ν̃τντ with equal

probability, while the chargino χ̃±1 is assumed to decay into ν̃ττ or τ̃ντ with equal probability. In the

1 The τ̃1 is the lighter of the two τ-slepton mass eigenstates, which results from the mixing of the superpartners of the left- and
right-handed τ-leptons (τ̃L , τ̃R).
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Figure 1: Example processes of (a) the GMSB model and (b) the simplified model of gluino pair production leading
to final states with τ-leptons, jets and missing transverse momentum.

last step of the decay chain, τ̃ and ν̃τ are assumed to decay into τ χ̃0
1 and ντ χ̃

0
1 , respectively. All other

SUSY particles are kinematically decoupled. The topology of signal events depends on the mass-splitting
between the gluino and the LSP. The sparticle decay widths are assumed to be small compared to sparticle
masses, such that they play no role in the kinematics.

2 ATLAS detector

The ATLAS experiment is described in detail in Ref. [25]. It is a multipurpose detector with a forward–
backward symmetric cylindrical geometry and a solid angle2 coverage of nearly 4π.

The inner tracking detector (ID), covering the region |η | < 2.5, consists of a silicon pixel detector, a
silicon microstrip detector, and a transition radiation tracker. The innermost layer of the pixel detector,
the insertable B-layer [26], was installed between Run 1 and Run 2 of the LHC. The inner detector is
surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by a finely segmented
lead/liquid-argon (LAr) electromagnetic calorimeter covering the region |η | < 3.2. A steel/scintillator-tile
hadronic calorimeter provides coverage in the central region |η | < 1.7. The endcap and forward regions,
covering the pseudorapidity range 1.5 < |η | < 4.9, are instrumented with electromagnetic and hadronic
LAr calorimeters, with steel, copper or tungsten as the absorber material. A muon spectrometer system
incorporating large superconducting toroidal air-core magnets surrounds the calorimeters. Three layers
of precision wire chambers provide muon tracking coverage in the range |η | < 2.7, while dedicated fast
chambers are used for triggering in the region |η | < 2.4.

The trigger system is composed of two stages [27]. The level-1 trigger, implemented with custom
hardware, uses information from calorimeters and muon chambers to reduce the event rate from 40 MHz

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and
the z-axis along the beam pipe. The x-axis points from the interaction point to the center of the LHC ring and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Rapidity is defined as y = 0.5 ln[(E+pz )/(E−pz )]
where E denotes the energy and pz represents the momentum component along the z-axis.
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to a maximum of 100 kHz. The high-level trigger reduces the data acquisition rate to about 1 kHz. It is
software based and runs reconstruction algorithms similar to those used in the offline reconstruction.

3 Data and simulated event samples

The data used in this analysis consist of pp collisions at a center-of-mass energy of
√

s = 13 TeV delivered
by the LHC with a 25 ns bunch spacing and recorded by the ATLAS detector in 2015 and 2016. The
average number of pp interactions per bunch crossing, 〈µ〉, was 13.4 in 2015 and 25.1 in 2016. Data
quality requirements are applied to ensure that all subdetectors were operating normally, and that LHC
beams were in stable collision mode. The integrated luminosity of the resulting data set is 36.1 fb−1.

Monte Carlo (MC) simulations are used to model both the SUSY signals and SM backgrounds, except
for multijet production, which is evaluated from data. Soft pp interactions (pileup) were included in the
simulation using the Pythia 8.186 [28] generator with the A2 [29] set of tuned parameters (minimum-bias
tune) and MSTW2008LO [30] parton distribution function (PDF) set. Generated events were reweighted
such that the 〈µ〉 distribution of the simulation matches the one in data. For SM background samples,
the interactions between particles and the detector material were simulated [31] using Geant4 [32] and a
detailed description of the ATLAS detector. For signal samples, a parameterized fast simulation was used
to describe the energy deposits in the calorimeters [33].

The W+jets and Z+jets (V+jets) processes were simulated with the Sherpa [34] generator using ver-
sion 2.2.1. Matrix elements (ME) were calculated for up to two partons at next-to-leading order (NLO)
and up to four additional partons at leading order (LO) in perturbative QCD using the OpenLoops [35]
and Comix [36] ME generators, respectively. The phase space merging between the Sherpa parton
shower (PS) [37] and MEs followed the ME+PS@NLO prescription [38]. The NNPDF3.0nnlo [39] PDF
set was used in conjunction with dedicated parton-shower tuning. The inclusive cross sections were
normalized to a next-to-next-to-leading-order (NNLO) calculation [40] in perturbative QCD based on the
FEWZ program [41]. An additional W(τν) sample is used for evaluating systematic uncertainties; this
was generated with MG5_aMC@NLO v2.2.3 [42] interfaced to Pythia 8.186 with the A14 tune [43] for
the modeling of the PS, hadronization, and underlying event. The ME calculation was performed at tree
level and includes the emission of up to four additional partons. The PDF set used for the generation was
NNPDF23LO [44].

For the simulation of tt̄ events, the Powheg-Box v2 [45] generator was used with the CT10 [46] PDF
set for the ME calculation. Electroweak single-top-quark production in the s-channel, t-channel and
Wt final state was generated using Powheg-Box v1. The PS, hadronization, and underlying event were
simulated using Pythia 6.428 [47] with the CTEQ6L1 [48] PDF set and the corresponding Perugia 2012
tune [49]. Cross sections were calculated at NNLO in perturbative QCD with resummation of next-to-
next-to-leading-logarithm (NNLL) soft gluon terms using the Top++ 2.0 program [50].

Diboson production was simulated using Sherpa 2.2.1 and 2.2.2 with the NNPDF3.0nnlo PDF set.
Processes with fully leptonic final states were calculated with up to one parton for the 4`, 2` + 2ν samples
or no parton for the 3` + 1ν samples at NLO and up to three additional partons at LO. Diboson processes
with one of the bosons decaying hadronically and the other leptonically were simulated with up to one
parton for the Z Z or no parton for the WW and W Z samples at NLO, and up to three additional partons
at LO. The cross section provided by the generator is used for these samples.
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The simplified-model signal samples were generated usingMG5_aMC@NLO v2.2.3 interfaced to Pythia
8.186with the A14 tune. TheME calculationwas performed at tree level and includes the emission of up to
two additional partons. The PDF set used for the generation was NNPDF23LO. TheME–PSmatching was
performed using the CKKW-L prescription, with a matching scale set to one quarter of the gluino mass.
The GMSB signal samples were generated with the Herwig++ 2.7.1 [51] generator, with CTEQ6L1 PDFs
and the UE-EE-5-CTEQ6L1 tune [52], using input files generated in the SLHA format with the SPheno
v3.1.12 [53] program. The PS evolution was performed using an algorithm described in Refs. [51, 54–56].
Signal cross sections were calculated to next-to-leading order in the strong coupling constant, adding the
resummation of soft gluon emission at next-to-leading-logarithm accuracy (NLO+NLL) [57–61]. The
nominal cross section and its uncertainty were taken from an envelope of cross-section predictions using
different PDF sets and factorization and renormalization scales, as described in Ref. [62].

4 Event reconstruction

This search is based on final states with jets, hadronically decaying τ-leptons, and missing transverse
momentum. In addition, muons and b-tagged jets are used for background modeling studies, while
electrons are only used for the missing transverse momentum calculation.

Interaction vertices are reconstructed using inner-detector tracks with transverse momentum pT >

400 MeV [63]. Primary vertex candidates are required to have at least two associated tracks, and the
candidate with the largest

∑
p2
T is defined as the primary vertex. Events without a reconstructed primary

vertex are rejected.

Jets are reconstructed using the anti-kt clustering algorithm [64, 65] with a distance parameter R = 0.4.
Clusters of calorimeter cells [66], calibrated at the electromagnetic energy scale, are used as input. The
jet energy is calibrated using a set of global sequential calibrations [67, 68]. Jets are required to have
pT > 20 GeV and |η | < 2.8. A jet-vertex-tagging algorithm [69] is used to discriminate hard-interaction
jets from pileup jets for jets with |η | < 2.4 and pT < 60 GeV. Events with jets originating from cosmic rays,
beam background or detector noise are rejected [70]. Jets containing b-hadrons (b-jets) are identified using
amultivariate algorithm exploiting the long lifetime, high decaymultiplicity, hard fragmentation, and large
mass of b-hadrons [71]. The b-tagging algorithm identifies b-jets with an efficiency of approximately 70%
in simulated tt̄ events. The rejection factors for c-jets, hadronically decaying τ-leptons, and light-quark
or gluon jets are approximately 8, 26 and 440, respectively [72].

Muon candidates are reconstructed in the region |η | < 2.5 from muon spectrometer tracks matching ID
tracks. Muons are required to have pT > 10 GeV and pass medium identification requirements [73], based
on the number of hits in the ID and muon spectrometer, and the compatibility of the charge-to-momentum
ratios measured in the two detector systems. Events containing poorly reconstructed muons or cosmic-ray
muon candidates are rejected. Details of the electron reconstruction are given in Refs. [74, 75].

Hadronically decaying τ-leptons are reconstructed [76] from anti-kt jets within |η | < 2.5 calibrated with
a local cluster weighting technique [77]. The τ-lepton candidates are built from clusters of calorimeter
cells within a cone of size ∆Rη ≡

√
(∆η)2 + (∆φ)2 = 0.2 centered on the jet axis. A boosted regression

tree is used to calibrate the energy of reconstructed τ-leptons. It exploits shower-shape information
from the calorimeter, the track multiplicity, the amount of pileup, and information from particle-flow
reconstruction [78] that aims to identify charged and neutral hadrons from the τ-lepton decay. The
τ-leptons are required to have pT > 20 GeV, and candidates reconstructed within the transition region
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between the barrel and endcap calorimeters, 1.37 < |η | < 1.52, are discarded. The τ-leptons are
required to have either one or three associated tracks, with a charge sum of ±1. A boosted-decision-tree
discriminant is used to separate jets from τ-leptons. It relies on track variables from the inner detector
as well as shower-shape variables from the calorimeters. The analysis makes use of loose and medium τ-
leptons, corresponding to identification efficiencies of 60% and 55%, respectively, for one-track τ-leptons
and 50% and 40%, respectively, for three-track τ-leptons. Electrons reconstructed as one-track τ-leptons
are rejected by imposing a pT- and |η |-dependent requirement on the likelihood identification variable
of the electron, which provides a constant efficiency of 95% for real τ-leptons, with a rejection factor
for electrons ranging from 30 to 150 depending on the |η | region. Like for jets, events with τ-lepton
candidates close to inactive calorimeter regions are rejected.

The missing transverse momentum vector pmiss
T , whose magnitude is denoted by Emiss

T , is defined as the
negative vector sum of the transverse momenta of all identified and calibrated physics objects (electrons,
muons, jets, and τ-leptons) and an additional soft term. The soft term is constructed from all the tracks
with pT > 400 MeV which originate from the primary vertex but are not associated with any physics
object. This track-based definition makes the soft term largely insensitive to pileup [79].

After the reconstruction, an overlap-removal procedure is applied to remove ambiguities in case the same
object is reconstructed by different algorithms. The successive steps of this procedure are summarized
in Table 1, where the overlap of reconstructed objects is defined in terms of the distance between objects
∆Ry ≡

√
(∆y)2 + (∆φ)2. First, loose τ candidates are discarded if they overlap with an electron or muon

(steps 1 and 2). If an electron and a muon are reconstructed using the same inner-detector track, the
electron is discarded (step 3). For overlapping light leptons (electrons and muons) and jets, the jet is kept
in cases where the lepton is likely to result from a heavy-flavor hadron decay within the jet, otherwise the
lepton is kept (steps 4–7). Finally, if a jet is also reconstructed as a loose τ-lepton, the jet is discarded
(step 8).

Table 1: Overview of the successive steps in the overlap-removal procedure.

Object discarded Object kept Matching condition

1. loose τ electron ∆Ry < 0.2
2. loose τ muon ∆Ry < 0.2
3. electron muon shared inner-detector track
4. jet electron ∆Ry < 0.2 and jet not b-tagged
5. electron jet ∆Ry < 0.4
6. jet muon ∆Ry < 0.2, jet with ≤ 2 tracks and not b-tagged
7. muon jet ∆Ry < 0.4
8. jet loose τ ∆Ry < 0.2

5 Event selection

A preselection common to the 1τ and 2τ channels is applied. Events are required to pass the missing
transverse momentum trigger with the lowest threshold and no bandwidth limitation. To select a phase
space where the trigger is fully efficient, the offline selection requires Emiss

T > 180 GeV and a leading jet
with pT > 120 GeV. Furthermore, an additional jet with pT > 25 GeV is required. The two leading jets
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Table 2: Summary of the preselection criteria applied in the 1τ and 2τ channels. Njet and Nτ are the number of jets
and τ-leptons respectively; other variables are defined in the text.

Subject of selection 1τ channel 2τ channel

Trigger Emiss
T > 180 GeV, pjet1

T > 120 GeV

Jets Njet ≥ 2, pjet2
T > 25 GeV

Multijet events ∆φ(pjet1,2
T , pmiss

T ) > 0.4

τ-leptons Nτ = 1 Nτ ≥ 2

are required to be separated from pmiss
T by at least 0.4 in φ, to reject multijet background where large Emiss

T
can arise from jet energy mismeasurements. The 1τ channel requires exactly one medium τ-lepton while
the 2τ channel requires at least two medium τ-lepton. The preselection is summarized in Table 2.

To isolate signatures of potential SUSY processes from known SM background, additional kinematic
variables are utilized:

— The transverse mass of the system formed by pmiss
T and the momentum p of a reconstructed object,

mT ≡ mT(p, p
miss
T ) =

√
2pTEmiss

T (1 − cos∆φ(p, pmiss
T )) ,

where ∆φ(p, pmiss
T ) denotes the azimuthal angle between the momentum of the reconstructed object

and the missing transverse momentum. For events where a lepton ` and the missing transverse
momentum both originate from a W(`ν) decay, the m`

T distribution exhibits a Jacobian peak at the
W boson mass. The transverse mass of various objects is used in this analysis, most notably the
transverse mass of the reconstructed τ-lepton.

— The mττ
T2 variable [80, 81], also called stransverse mass, computed as

mττ
T2 = min

pa
T +p

b
T=p

miss
T

(
max

[
mT(p

τ1, paT),mT(p
τ2, pbT)

] )
,

where (a, b) refers to two invisible particles that are assumed to be produced with transverse
momentum vectors p a,b

T . In this calculation, (a, b) are assumed to bemassless. Themττ
T2 distribution

has a kinematic endpoint for processes where massive particles are pair-produced, each particle
decaying into a τ-lepton and an undetected particle. When more than two τ-leptons are produced
in a decay chain, there is no way to a priori select the pair leading to the desired characteristic.
Therefore, mττ

T2 is calculated using all possible τ-lepton pairs and the largest value is chosen.

— The scalar sum of the transverse momenta of all τ-leptons and jets, HT =
∑
i

pτiT +
∑
j

p
jet j
T .

Figure 2 shows examples of kinematic distributions after the preselection and after applying background
normalization factors as described in section 6. The dominant backgrounds in the 1τ channel are tt̄
production and W(τν)+jets events, with subdominant contributions from Z(νν)+jets and Z(ττ)+jets.
In the 2τ channel, the spectrum is dominated by tt̄, W(τν)+jets and Z(ττ)+jets events. The multijet
background does not contribute significantly while contributions from the diboson background are only
relevant at high values of mτ1

T + mτ2
T .
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Figure 2: Distributions of (a) the τ-lepton transversemassmτ
T in the 1τ channel and (b) the sum of τ-lepton transverse

masses mτ1
T + mτ2

T in the 2τ channel after the preselection, after applying data-driven normalization factors to the
main backgrounds. The last bin includes overflow events. The total uncertainty in the background prediction is
shown as a shaded band. The contribution labeled as “Other” includes multijet events and the V+jets processes
not explicitly listed in the legend. Signal predictions are overlaid for several benchmark model points. For the
simplified model, LM, MM, and HM refer to low, medium, and high mass-splitting scenarios, with (mg̃,mχ̃0

1
) set to

(1065, 825) GeV, (1625, 905) GeV and (1705, 345) GeV, respectively. The GMSB benchmark model corresponds
to Λ = 120 TeV and tan β = 40.

Multiple phase space regions are then defined. A set of signal regions (SRs) with stringent kinematic
requirements and low background contribution is designed to target the different signatures and kinematic
configurations of the two SUSY models. A set of control regions (CRs) with negligible signal yield is
used to constrain the normalization of the dominant backgrounds in phase space regions close to the SRs.
The determination of background normalization factors and the search for a possible signal are performed
simultaneously by fitting a signal-plus-background model to the data in the CRs and SRs. Validation
regions (VRs) are defined in phase space regions between CRs and SRs. The VRs are not included in
the fit; they are used to compare the fitted background predictions with the observed data in the vicinity
of SRs to validate the background extrapolation before unblinding the SRs. The CRs, VRs and SRs are
mutually exclusive and therefore statistically independent.

In the 1τ channel, two SRs are defined for the simplified model, as summarized in Table 3. The 1τ
compressed SR targets small mass differences between the gluino and the LSP, up to ≈ 300 GeV. It
exploits topologies where the pair of gluinos recoils against a high-pT jet from initial-state radiation
(ISR). While τ-leptons and additional jets from gluino decays typically have low pT, such ISR events have
substantial Emiss

T since both LSPs tend to be emitted opposite to the ISR jet in the transverse plane. A
requirement on the transverse mass is used to suppressW(τν)+jets events as well as semileptonic tt̄ events
with a τ-lepton in the final state. The 1τ medium-mass SR targets larger mass-splittings, motivating a
more stringent mτ

T criterion and an HT requirement.

These two SRs also provide sensitivity to GMSB signals at low tan β, in cases where only one τ-lepton
decays hadronically and is reconstructed within the detector acceptance. At high tan β, the 1τ channel is
not competitive due to the large multiplicity of τ-leptons in signal events.
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Table 3: Summary of the signal region definitions in the 1τ channel. These requirements are applied in addition to
the preselection. The variables are defined in the text.

Subject of 1τ SRs
selection Compressed Medium-mass

τ-leptons 20 < pτT < 45 GeV pτT > 45 GeV

Event Emiss
T > 400 GeV

kinematics mτ
T > 80 GeV mτ

T > 250 GeV
— HT > 1000 GeV

Table 4: Summary of the signal region definitions in the 2τ channel. These requirements are applied in addition to
the preselection. The variables are defined in the text.

Subject of 2τ SRs
selection Compressed High-mass Multibin GMSB

Event mττ
T2 > 70 GeV mτ1

T +mτ2
T > 350 GeV mτ1

T +mτ2
T > 150 GeV mτ1

T +mτ2
T > 150 GeV

kinematics HT < 1100 GeV HT > 1100 GeV HT > 800 GeV HT > 1900 GeV
msum

T > 1600 GeV — Njet ≥ 3 —
7 bins in mτ1

T +mτ2
T

In the 2τ channel, three SRs are defined for the simplified model, as summarized in Table 4. The
compressed and high-mass SRs target signals with small and large mass-splittings, respectively. The 2τ
multibin SR exploits the shape difference between signal and background distributions, in contrast to the
other SRs which only exploit the total yields. The multibin approach is less model-dependent than a
single-bin SR designed to probe a narrow part of the model parameter space, and it provides increased
sensitivity to both small and large mass-splittings.

The 2τ compressed SR has a requirement on mττ
T2 to exploit the kinematic endpoint of Z(ττ)+jets and

dileptonic tt events. A requirement on msum
T ≡ mτ1

T +mτ2
T +

∑
i

mjeti
T is imposed to take advantage of the large

Emiss
T and the high multiplicities of jets and τ-leptons that are expected from gluino decays and the boosted

topologies. The upper bound on HT allows a combination with the high-mass SR, and does not affect the
sensitivity to compressed signals. The 2τ high-mass SR includes a stringent requirement on mτ1

T + mτ2
T

that reduces the contribution from Z(ττ)+jets events. The τ-leptons from high-pT Z bosons have a small
separation in φ, which results in low values of mτ1

T + mτ2
T given that the τ-neutrinos producing Emiss

T are
collimated with the visible decay products of τ-leptons. An HT requirement is applied to significantly
reduce background from tt̄ and W(τν)+jets events. The multibin SR uses looser selection criteria than the
high-mass SR, and comprises seven bins in mτ1

T + mτ2
T .

A dedicated SR is defined for the GMSB model, based on the high-mass SR. To accommodate the more
complex production and decay processes and the higher mass reach in the GMSB model, the minimum
mτ1

T + mτ2
T requirement, which depends on specific decay topologies, is lowered while the minimum HT

requirement is raised. The selection criteria defining the GMSB SR in the 2τ channel are summarized in
Table 4.

For the simplified model, the two SRs of the 1τ channel can be statistically combined in a simultaneous fit
with either the compressed and high-mass SRs of the 2τ channel or the multibin SR of the 2τ channel, as
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the multibin SR is not mutually exclusive to the other 2τ SRs. For each benchmark point in the parameter
space, the most sensitive expected result of these two fits is used. For the GMSB interpretation, the 1τ
SRs are combined with the 2τ GMSB SR and the 2τ compressed SR.

6 Background estimation

Events from W(τν)+jets, tt and, to a smaller extent, diboson production are significant backgrounds
in all SRs. Additionally, Z(νν)+jets plays a role in the 1τ channel, while Z(ττ)+jets is an important
background in some of the 2τ SRs. Multijet production makes a minor contribution in the 1τ channel.
Dedicated control regions are used to constrain the normalization of all these backgrounds, except for
diboson processes, which are normalized to their respective theoretical cross sections.

The τ-leptons selected in the Standard Model background events are either prompt leptons from elec-
troweak boson decays (true τ-leptons), or reconstructed objects such as jets that are misidentified as
τ-leptons (fake τ-leptons). Backgrounds that contribute almost exclusively to a single channel, with only
fake or only true τ-leptons, are each normalized with a single normalization factor. This is the case for
Z(νν)+jets, multijet and Z(ττ)+jets events. The associated control regions are named Z(νν) CR, multijet
CR and Z(ττ) CR. For both the W(τν)+jets and tt backgrounds, which contribute to both the 1τ and the
2τ SRs with different multiplicities of true and fake τ-leptons, three normalization factors are used. A
normalization factor for true τ-leptons is used to correct for differences in the τ-lepton reconstruction
and identification efficiencies between data and simulation. A normalization factor for fake τ-leptons
accounts for multiple sources of potential mismodeling in the simulation: the quark/gluon composition
of jets misidentified as τ-leptons, the parton shower and hadronization models of the generator, and the
modeling of particle shower shapes in the calorimeter, which mainly depends on the Geant4 hadronic
interaction model and the modeling of the ATLAS detector. An overall normalization factor accounts
for the modeling of the background kinematics and acceptance, and absorbs the theoretical uncertainties
in the cross-section computation, as well as the experimental uncertainties in the measured integrated
luminosity of the data. The corresponding CRs are named W /top true-τ CR, W/top fake-τ CR, and W /top
kinematic CR, respectively. The separation between W and top CRs is achieved by requiring the absence
or presence of a b-tagged jet.

The kinematic CRs require a muon and no τ candidate, to be independent of the τ-lepton reconstruction
and identification. An upper bound onmµ

T is applied to selectW(µν)+jets events and top-quark background
with a muon in the final state. The true-τ CRs target W(τν)+jets and semileptonic top-quark processes
with a true τ-lepton. They are based on events with a τ-lepton, jets, and Emiss

T . Contributions from
fake τ-leptons are suppressed by a requirement on mτ

T. The fake-τ CRs target W(µν)+jets and top-quark
processes with a final-state muon, with a jet misidentified as a τ-lepton. They use the same baseline
selection as kinematic CRs, but a τ candidate is required. Events with large mµ

T values are discarded to
suppress the top-quark background with a muon and a true τ-lepton. In the W fake-τ CR, the invariant
mass of the reconstructed τ-lepton and themuonmτµ is required to be large to suppress Z(ττ) events where
one of the τ-leptons decays into a muon. The Z(νν) CR requires one τ-lepton, has a lower bound on mτ

T to
suppress background with real τ-leptons, a requirement on Emiss

T /meff , where meff = HT + Emiss
T , to reject

multijet events, and requirements on the ∆φ separations between the missing transverse momentum and
the highest-pT jet and τ-lepton, to exploit the background topology. The Z(ττ)CR is designed by inverting
the mτ1

T + mτ2
T and HT requirements from the 2τ SRs. This selection requires two medium τ-leptons of

opposite electric charge and imposes an upper bound on the invariant mass of the τ-lepton pair to suppress
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Table 5: Summary of the W and top control regions. These requirements are applied in addition to the trigger, jet,
and multijet requirements of the preselection. The variables Nτ , Njet, Nµ and Nb-jet are the number of τ-leptons,
jets, muons, and b-tagged jet, respectively; other variables are defined in the text.

Subject of W / Top W / Top W / Top
selection kinematic CR true-τ CR fake-τ CR

τ-leptons Nτ = 0 Nτ = 1

Jets Njet ≥ 3 —

Muons Nµ = 1 Nµ = 0 Nµ = 1

W /top separation Nb-jet = 0/≥ 1

Event HT < 800 GeV
kinematics Emiss

T < 300 GeV
mµ

T < 100 GeV mτ
T < 80 GeV mµ

T < 100 GeV
— — mτµ > 60 GeV (W CR)

Table 6: Summary of the Z(νν), Z(ττ) and multijet control regions. These requirements are applied in addition to
the trigger, and jet requirements of the preselection. The variables Nτ and Nµ are the number of τ-leptons, and
muons, respectively; qτi is the charge of τ-lepton i; other variables are defined in the text.

Subject of selection Z(νν) CR Z(ττ) CR Multijet CR

τ-leptons Nτ = 1 Nτ ≥ 2, qτ1
= −qτ2

Nτ = 1

Multijet events ∆φ(pjet1,2
T , pmiss

T ) > 0.4 ∆φ(pjet1,2
T , pmiss

T ) < 0.3

Muons Nµ = 0 — —

Top suppression Nb-jet = 0 —

Event kinematics HT < 800 GeV —
Emiss

T < 300 GeV — —
100 ≤ mτ

T < 200 GeV mτ1
T + mτ2

T < 100 GeV 100 < mτ
T < 200 GeV

Emiss
T /meff > 0.3 mT2 < 70 GeV Emiss

T /meff < 0.2
∆φ(pjet1

T , pmiss
T ) > 2.0 — —

∆φ(pτ1
T , p

miss
T ) > 1.0 — —

dileptonic top-quark contributions. Both Z CRs employ a veto on b-tagged jets to suppress contributions
from top-quark processes. A simultaneous fit over all CRs is performed using HistFitter [82] to extract
the normalization factors.

The multijet background contributes when jets are misidentified as τ-leptons and large missing transverse
momentum is induced by jet energy mismeasurements. This, together with the very large production cross
section, makes it difficult to simulate a sufficient number of multijet events with the required accuracy, so
this background is estimated from data [83]. A data sample with high purity in multijet events is selected
using single-jet triggers. Events with well-measured jets are retained by applying an upper bound on the
Emiss

T significance [19], except for events where the leading b-tagged jet is aligned with pmiss
T . The latter

exception avoids too large of a suppression of high-pT b-hadrons decaying semileptonically and producing
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high-pT neutrinos. Jet energies are then smeared according to the jet energy resolution obtained from
simulation and corrected to better describe the data. The smearing is performed multiple times for each
selected event, leading to a large pseudo-data set where Emiss

T originates from resolution effects and which
includes an adequate fraction of jets misidentified as τ-leptons. A subtraction is performed to account for
the small contamination from tt events satisfying this kinematic configuration. The normalization of the
pseudo-data is constrained in the simultaneous fit using a multijet CR where either of the two leading jets
is aligned with pmiss

T .

The selection criteria defining the various CRs are summarized in Tables 5 and 6. Figure 3 illustrates
the background modeling in CRs after the fit. The fitted normalization factors do not deviate from unity
by more than 15% and are compatible with unity within one standard deviation when considering all
systematic uncertainties, except for the Z(νν)+jets background, where the normalization factor reaches
1.44 ± 0.29.

Validation regions are used to verify that the background is well modeled after the fit in kinematic regions
close to the SRs. In the 1τ channel, three VRs are defined for the medium-mass SR and two for the
compressed SR, while three VRs are used for the 2τ channel. Their selection criteria are summarized in
Tables 7 and 8. The level of agreement between data and background in the VRs is illustrated in Figures 4
and 5. Distributions are found to be well modeled in both channels. The comparison between the numbers
of observed events and the predicted background yields is displayed in Figure 6. Agreement well within
one standard deviation is observed.

Table 7: Validation regions for the 1τ channel. These requirements are applied in addition to the preselection. The
variables are defined in the text.

Subject of 1τ medium-mass VRs 1τ compressed VRs
selection HT Emiss

T mτ
T Emiss

T mτ
T

τ-leptons pτT > 45 GeV 20 < pτT < 45 GeV

Event mτ
T < 250 GeV mτ

T > 250 GeV mτ
T < 80 GeV mτ

T > 80 GeV
kinematics Emiss

T < 400 GeV Emiss
T > 400 GeV Emiss

T < 400 GeV Emiss
T > 400 GeV Emiss

T < 400 GeV
HT > 1000 GeV HT < 1000 GeV — —

Table 8: Validation regions for the 2τ channel. These requirements are applied in addition to the preselection. The
variables are defined in the text.

Subject of selection 2τ W /Top VR Z(ττ) VR
W /top separation Nb-jet = 0/≥ 1 —

Event HT < 800 GeV HT > 800 GeV
kinematics mτ1

T + mτ2
T > 150 GeV mτ1

T + mτ2
T < 150 GeV

mττ
T2 < 60 GeV
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Figure 3: (a) Scalar sum of transverse momenta of τ-leptons and jets HT in the top true-τ CR, (b) missing transverse
momentum Emiss

T in theW fake-τ CR, (c) HT in theW kinematic CR, (d) sum of τ-lepton transverse masses mτ1
T +mτ2

T
in the Z(ττ) CR, (e) HT in the Z(νν) CR, and (f) Emiss

T in the multijet CR, illustrating the background modeling in
the CRs after the fit. The contribution labeled as “Other” includes multijet events (except for the multijet CR) and
the V+jets processes not explicitly listed in the legend. The last bin of each distribution includes overflow events.
The total uncertainty in the background prediction is shown as a shaded band.
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Figure 4: Distributions of (a) τ-lepton transverse mass mτ
T in the compressed mτ

T VR, (b) missing transverse mo-
mentum Emiss

T in the compressed Emiss
T VR, (c) mτ

T in the medium-mass mτ
T VR, (d) Emiss

T in the medium-mass Emiss
T

VR, and (e) scalar sum of τ-lepton and jet transverse momenta HT in the medium-mass HT VR, illustrating the
background modeling in the VRs of the 1τ channel after the fit. The normalization factors obtained in the CRs are
applied. The contribution labeled as “Other” includes multijet events and the V+jets processes not explicitly listed
in the legend. The last bin of each distribution includes overflow events. The total uncertainty in the background
prediction is shown as a shaded band.
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Figure 5: (a) Sum of τ-lepton transverse masses mτ1
T +mτ2

T in the top VR, (b) scalar sum of τ-lepton and jet transverse
momenta HT in the W VR, and (c) mτ1

T +mτ2
T in the Z VR, illustrating the background modeling in the VRs of the 2τ

channel after the fit. The normalization factors obtained in the CRs are applied. The contribution labeled as “Other”
includes multijet events and the V+jets processes not explicitly listed in the legend. The last bin of each distribution
includes overflow events. The total uncertainty in the background prediction is shown as a shaded band.
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Figure 6: Number of observed events nobs and predicted background yields in the validation regions npred of the 1τ
and 2τ channels. The background predictions are scaled using normalization factors derived in the control regions.
The total uncertainty in the background predictions σtot is shown as a shaded band. The lower panel displays the
significance of the deviation of the observed from the expected yield.

7 Systematic uncertainties

Theoretical and experimental systematic uncertainties are evaluated for all simulated processes. The
uncertainties from theory include PDF, αS and scale uncertainties, and generator modeling uncertainties.
Experimental uncertainties are related to the reconstruction, identification, and calibration of final-state
objects. Specific uncertainties are evaluated for the multijet background, which is estimated from data.

For V+jets and diboson samples, systematic uncertainties related to PDFs, αS, and scales are evaluated
using alternative weights from the generator. The PDF uncertainty is obtained as the standard deviation
of the 100 PDF variations from the NNPDF3.0nnlo set. The effect of the uncertainty in αS is computed as
half the difference resulting from the αS = 0.119 and αS = 0.117 parameterizations. The renormalization
scale µR and factorization scale µF are varied up and down by a factor of two and all combinations are
evaluated, except for the (2µR,

1
2 µF) and (12 µR, 2µF) variations, which would lead to large log(µR/µF)

contributions to the cross section. The scale uncertainty is computed as half the difference between the
two combinations yielding the largest and smallest deviations from the nominal prediction. Uncertainties
due to the resummation and CKKW matching scales for V+jets samples are found to be negligible.
Additional generator modeling uncertainties are considered for the dominant W(τν)+jets background. An
uncertainty is derived to cover a mismodeling of the HT distribution observed in the W kinematic CR (cf.
Figure 3 (c)). In addition, predictions from Sherpa and MG5_aMC@NLO + Pythia8 are compared, and
the difference is taken as a systematic uncertainty. For the diboson background, which is not normalized
to data in the fit, the uncertainty in the cross section is also taken into account.
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For top quark pair production, uncertainties due to PDF and scale variations are derived using Powheg
+ Pythia8 and applied to the nominal predictions from Powheg + Pythia6. Generator modeling
uncertainties are assessed from comparisons with alternative generator samples. An uncertainty in
the hard-scattering model is evaluated by comparing predictions from MG5_aMC@NLO + Herwig++
and Powheg-Box + Herwig++. An uncertainty due to the parton shower and hadronization models is
evaluated by comparing predictions from Powheg-Box + Pythia6 and Powheg-Box + Herwig++. An
uncertainty due to the ISR modeling is assessed by varying the Powheg-Box parameter which controls
the transverse momentum of the first additional parton emission beyond the Born configuration. For the
small contributions from single-top-quark production and tt +V events, uncertainties in the cross sections
are taken into account.

Systematic uncertainties affecting jets arise from the jet energy scale [84], jet energy resolution [85], and
efficiency corrections for jet-vertex-tagging [69] as well as b-tagging [86]. Jet energy scale uncertainties
are mainly determined from measurements of the pT balance in the calorimeter in Z/γ+jet and multijet
events. Remaining uncertainties arise from the relative calibration of forward and central jets, jet flavor
composition, pileup, and punch-through for high-pT jets not fully contained in the calorimeters. A set
of five uncertainties that comprises contributions from both absolute and in situ energy calibrations and
which preserves the dominant correlations in the (pT, η) phase space is used. An uncertainty in the jet
energy resolution is applied to jets in the simulation as a Gaussian energy smearing.

Systematic uncertainties affecting true τ-leptons are related to the reconstruction and identification ef-
ficiencies, the electron rejection efficiency, and the energy scale calibration [87]. The uncertainties in
the reconstruction efficiency are estimated by varying parameters in the simulation such as the detector
material, underlying event, and hadronic shower model. Uncertainties in the identification efficiency and
in situ energy calibration, which are derived in Z(ττ) events with a hadronically decaying τ-lepton and a
muon, arise from the modeling of true- and fake-τ-lepton templates. The uncertainty in the energy scale
also includes non-closure of the calibration found in simulation and a single-pion response uncertainty.
In the case of fake τ-leptons, the misidentification rate in the simulation is largely constrained by the fit
to data in the CRs. The process-dependence of the misidentification rate is accounted for by the use of
different normalization factors for the various backgrounds. Uncertainties in the extrapolation from the
CRs to the VRs and SRs are covered by generator modeling uncertainties.

In the case of signal samples, which undergo fast calorimeter simulation, dedicated uncertainties take
into account the difference in performance between full and fast simulation. These uncertainties include
non-closure of the energy calibration for both the jets and τ-leptons, as well as differences in reconstruction
and identification efficiencies for τ-leptons.

Systematic uncertainties in the missing transverse momentum originate from uncertainties in the energy
or momentum calibration of jets, τ-leptons, electrons, and muons, which are propagated to the Emiss

T
calculation. Additional uncertainties are related to the calculation of the track-based soft term. These
uncertainties are derived by studying the pT balance between the soft term and the hard term composed of
all reconstructed objects, in Z(µµ) events. Soft-term uncertainties include scale uncertainties along the
hard-term axis, and resolution uncertainties along and perpendicular to the hard-term axis [88].

A systematic uncertainty accounts for themodeling of pileup in the simulation, which affects the correlation
between the average number of interactions per bunch crossing and the number of reconstructed primary
vertices. The modeling mostly depends on the minimum-bias tune and the longitudinal size of the pp
interaction region used in the simulation.
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Table 9: Dominant systematic uncertainties in the total background predictions, for the signal regions of the 1τ (top)
and 2τ (bottom) channels after the normalization fit in the control regions. The total systematic uncertainty accounts
for other minor contributions not listed in this table. Due to non-trivial correlations between the various sources in
the combined fit, the total uncertainty is not identical to the sum in quadrature of the individual components.

Source of uncertainty 1τ compressed SR 1τ medium-mass SR

Top generator modeling 6% 11%
V+jets generator modeling 7% 5%
Jet energy scale and resolution 7% 7%
τ-lepton energy scale < 1% 2.9%
τ-lepton identification 1.5% 3.3%
PDFs 1.9% 13%
Limited simulation sample size 1.8% 6%
Background normalization uncertainty 12% 11%

Total 10% 19%

Source of uncertainty 2τ compressed SR 2τ high-mass SR 2τ GMSB SR

Top generator modeling 31% 18% 14%
V+jets generator modeling 7% 15% 21%
Jet energy scale and resolution 15% 9% 5%
τ-lepton energy scale 4% 6% 1.7%
τ-lepton identification 5% 10% 9%
PDFs 2.0% 4% 10%
Limited simulation sample size 10% 8% 21%
Background normalization uncertainty 13% 13% 13%

Total 35% 30% 38%

Systematic uncertainties in the small multijet background contribution are due to the limited numbers of
events in the input data set satisfying the Emiss

T significance requirement, the jet resolution parameterization
used for jet energy smearing, and the tt background subtraction.

The uncertainty in the combined 2015+2016 integrated luminosity is 2.1%. It is derived, following a
methodology similar to that detailed in Ref. [89], from a calibration of the luminosity scale using x–y
beam-separation scans performed in August 2015 and May 2016.

The impact of themain systematic uncertainties on the total background predictions in the SRs of the 1τ and
2τ channels is summarized in Table 9. These uncertainties are shown after the background fit, assuming
that no signal is present in the CRs. In both channels, generator modeling uncertainties for the W+jets
and tt backgrounds are the largest sources of systematic uncertainty. Other dominant uncertainties are jet
energy calibration and τ-lepton identification, which contributes more in the 2τ channel. Uncertainties
in the b-tagging efficiency and Emiss

T calibration have little impact on background predictions, and those
affecting electrons and muons are negligible.
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Figure 7: Distributions of kinematic variables in extended SR selections of the 1τ channel after the fit: (a) τ-lepton
transverse mass mτ

T in the compressed SR without the mτ
T > 80 GeV requirement and (b) scalar sum of τ-lepton

and jet transverse momenta HT in the medium-mass SR without the HT > 1000 GeV requirement. The contribution
labeled as “Other” includes multijet events and theV+jets processes not explicitly listed in the legend. The last bin of
each distribution includes overflow events. The total uncertainty in the background prediction is shown as a shaded
band. Arrows in the Data/SM ratio indicate bins where the entry is outside the plotted range. The signal region is
indicated by the arrow in the upper pane. Signal predictions are overlaid for several benchmark models. For the
simplified model, LM, MM and HM refer to low, medium and high mass-splitting scenarios, with (mg̃,mχ̃0

1
) set to

(1065, 825) GeV, (1625, 905) GeV, and (1705, 345) GeV, respectively. The GMSB benchmark model corresponds
to Λ = 120 TeV and tan β = 40.

8 Results

Kinematic distributions for the SRs of the 1τ and 2τ channels are shown in Figures 7 and 8, respectively.
In these plots, all selection criteria defining the respective SRs are applied, except for the one on the
variable which is displayed. Data and fitted background predictions are compared, and signal predictions
from several benchmark models are overlaid. Variables providing the most discrimination between signal
and background are displayed. The mτ1

T +mτ2
T distribution which is used for the multibin SR of the 2τ

channel is also shown.

Good agreement between data and background expectation is observed. A small discrepancy is observed
for mτ

T < 200 GeV in the 1τ compressed SR (cf. Figure 7(a)). This region has been studied in detail and
no particular problem has been identified. Given that the deviation is only observed in a restricted region
and it is below two standard deviations in all bins, no significant impact on the result is expected.

The numbers of observed events and expected background events in the SRs of the 1τ and 2τ channels are
reported in Tables 10 and 11, respectively. In the high-mass and GMSB SRs of the 2τ channel that both
require high HT, a small excess of data with a significance of below two standard deviations is observed.
Apart from that, no significant deviation of data from the SM prediction is observed in any of the five
single-bin SRs and the seven bins of the multibin SR. Upper limits are set at the 95% confidence level
(CL) on the number of signal events, or equivalently, on the signal cross section.

The one-sided profile-likelihood-ratio test statistic is used to assess the probability that the observed data
is compatible with the background-only and signal-plus-background hypotheses. Systematic uncertainties
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Figure 8: Distributions of kinematic variables in extended SR selections of the 2τ channel after the fit: (a) sum of
transverse masses of τ-leptons and jets msum

T in the compressed SR without the msum
T > 1600 GeV requirement,

(b) scalar sum of transverse momenta of τ-leptons and jets HT in the high-mass SR without the HT > 1100 GeV
requirement, (c) sum of transverse masses of τ-leptons mτ1

T +mτ2
T in the multibin SR, and (d) HT in the GMSB SR

without the HT > 1900 GeV requirement. The contribution labeled as “Other” includes multijet events and the
V+jets processes not explicitly listed in the legend. The last bin of each distribution includes overflow events. The
total uncertainty in the background prediction is shown as a shaded band. Arrows in the Data/SM ratio indicate
bins where the entry is outside the plotted range. The signal region is indicated by the arrow in the upper pane.
Signal predictions are overlaid for several benchmark models. For the simplified model, LM, MM and HM refer
to low, medium and high mass-splitting scenarios, with (mg̃,mχ̃0

1
) set to (1065, 825) GeV, (1625, 905) GeV, and

(1705, 345) GeV, respectively. The GMSB benchmark model corresponds to Λ = 120 TeV and tan β = 40.
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Table 10: Number of observed events and predicted background yields in the two signal regions of the 1τ channel.
The background prediction is scaled using normalization factors derived in the control regions. The numbers in
brackets give the background prediction before application of the fitted normalization factors. All systematic and
statistical uncertainties are included in the quoted uncertainties. The bottom part of the table shows the observed
and expected model-independent upper limits at 95% CL on the number of signal events S95

obs and S95
exp, respectively,

the corresponding observed upper limit on the visible cross section 〈σvis〉
95
obs, the confidence level observed for the

background-only hypothesis CLb, the p0-value, and corresponding significance Z. If the number of observed events
is smaller than the expected background yield, the p0-value is set to 0.5, corresponding to a significance of 0.0
standard deviations.

1τ channel Compressed SR Medium-mass SR

Data 286 12

Total background [290] 320±32 [15.2] 15.9±3.0

Top quarks [66] 77±21 [5.2] 5.8±1.6
W(τν)+jets [57] 51±18 [2.4] 2.2±1.7
Z(νν)+jets [77] 110±24 [1.5] 2.2±0.5
Other V+jets [52] 45±10 [1.9] 1.7±0.4
Diboson [28] 28±5 [3.0] 3.0±0.6
Multijet [10.0] 9.2±1.2 [1.24] 1.14±0.14

S95
obs (S

95
exp) 49.5 (64.3+24.1

−14.9) 7.7 (10.0+4.3
−2.7)

〈σvis〉
95
obs[fb] 1.37 0.21

CLb 0.18 0.24
p0 (Z) 0.5 (0.0) 0.5 (0.0)

are included in the likelihood function as nuisance parameters with Gaussian probability densities. Fol-
lowing the standards used for LHC analyses, p-values are computed according to the CLs prescription [90]
using HistFitter [82].

Model-independent upper limits on the event yields are calculated for each SR except the multibin SR,
assuming no signal contribution in the CRs. No such interpretation can be made for the multibin SR, as
the relative signal contribution in each bin of the mτ1

T + mτ2
T distribution is model-dependent. The results

are derived using profile-likelihood-ratio distributions obtained from pseudo-experiments. Upper limits
on signal yields are converted into limits on the visible cross section (σvis) of BSM processes by dividing
by the integrated luminosity of the data. The visible cross section is defined as the product of production
cross section, acceptance, and selection efficiency. Results are summarized at the bottom of Tables 10
and 11. The observed upper limits on the visible cross section range from 0.18 fb for the compressed SR
of the 2τ channel to 1.37 fb for the compressed SR of the 1τ channel.

Limits are also set for the two SUSY models discussed in Section 1. Exclusion contours at the 95% CL
are derived in the (mg̃,mχ̃0

1
) parameter space for the simplified model and in the (Λ, tan β) parameter

space for the GMSB model. In the case of model-dependent interpretations, the signal contribution in the
control regions is included in the calculation of upper limits, and asymptotic properties of test-statistic
distributions are used [91]. Results are shown in Figures 9 and 10. The solid line and the dashed line
correspond to the observed and median expected limits, respectively. The band shows the one-standard-
deviation spread of the expected limits around the median, which originates from statistical and systematic
uncertainties in the background and signal. The theoretical uncertainty in the signal cross section is not
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Table 11: Number of observed events and predicted background yields in the three signal regions of the 2τ channel.
The background prediction is scaled using normalization factors derived in the control regions. The numbers in
brackets give the background prediction before application of the fitted normalization factors. All systematic and
statistical uncertainties are included in the quoted uncertainties. The bottom part of the table shows the observed
and expected model-independent upper limits at 95% CL on the number of signal events S95

obs and S95
exp, respectively,

the corresponding observed upper limit on the visible cross section 〈σvis〉
95
obs, the confidence level observed for

the background-only hypothesis CLb, the p0-value, and corresponding significance (Z). If the number of observed
events is smaller than the expected background yield, the p0-value is set to 0.5, corresponding to a significance of
0.0 standard deviations.

2τ channel Compressed SR High-mass SR GMSB SR

Data 5 6 4

Total background [4.7] 5.4±1.9 [2.3] 2.3±0.7 [1.5] 1.4±0.5

Top quarks [2.3] 2.9±1.7 [0.9] 1.0±0.5 [0.34] 0.39±0.23
W(τν)+jets [0.5] 0.4+0.5

−0.4 [0.4] 0.4±0.4 [0.4] 0.4±0.4
Z(ττ)+jets [0.035] 0.030±0.011 [0.37] 0.32±0.11 [0.33] 0.28±0.10
Z(νν)+jets [0.47] 0.67±0.35 [0.065] 0.093±0.028 [0.008] 0.011±0.007
Other V+jets [0.32] 0.30±0.08 [0.019] 0.015±0.012 [< 0.01] < 0.01
Diboson [1.06] 1.05±0.25 [0.56] 0.56±0.15 [0.29] 0.29±0.08
Multijet [0.0261] 0.0241±0.0031 [0.0131] 0.0121±0.0015 [0.065] 0.060±0.008

S95
obs (S

95
exp) 6.7 (6.7+2.8

−1.5) 9.0 (5.0+1.9
−1.3) 7.3 (4.4+1.5

−0.9)
〈σvis〉

95
obs[fb] 0.18 0.25 0.20

CLb 0.50 0.96 0.95
p0 (Z) 0.5 (0.0) 0.03 (1.83) 0.05 (1.68)

included in the band. Its effect on the observed limits is shown separately as dotted lines. For both SUSY
models, the exclusion limits obtained with 36.1 fb−1 of collision data at

√
s = 13 TeV significantly improve

upon the previous ATLAS results [19] established with 3.2 fb−1 of 13 TeV data. Besides the increase in
the integrated luminosity, the results benefit from an improved analysis and statistical treatment. The 1τ
and 2τ channels are now statistically combined in a global fit, while in the previous analysis, only the SR
with the lowest expected CLs value was considered for the simplified model, and only the 2τ GMSB SR
was used for the GMSB interpretation. In addition, the multibin SR of the 2τ channel provides increased
sensitivity to gluino pair production over a large region of the parameter space.

Expected limits in the model parameter space are shown for each channel, to illustrate their complemen-
tarity and the gain in sensitivity achieved with their combination. The green dash-dotted line corresponds
to a fit that includes all CRs and the two SRs of the 1τ channel. For the 2τ channel, in the case of the
simplified model, the magenta dash-dotted line corresponds to the best expected exclusion from fits that
include either the 2τ multibin SR or the combination of the 2τ compressed and high-mass SRs. In the
GMSB model, the 2τ combination is based on the 2τ GMSB and compressed SRs. In the simplified
model, the 1τ and 2τ channels have similar sensitivity at high gluino and low LSP masses. For high LSP
masses, the combination is dominated by the 2τ channel, while in the region with a low mass difference
between the gluino and the LSP, the 1τ channel drives the exclusion. In the GMSB interpretation, the
more stringent limits at high values of tan β are explained by the nature of the NLSP, which is the lightest
τ-slepton in this region. For lower values of tan β, the τ̃1 is nearly mass-degenerate with ẽR and µ̃R,
leading to fewer τ-leptons in squark and gluino decays, and reduced sensitivity of the 2τ GMSB SR. The
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Figure 9: Exclusion contours at the 95% confidence level as a function of the LSP mass m
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1
and gluino mass mg̃

for the simplified model of gluino pair production. The solid line and the dashed line correspond to the observed
and median expected limits, respectively, for the combination of the 1τ and 2τ channels. The band shows the one-
standard-deviation spread of expected limits around the median. The effect of the signal cross-section uncertainty
on the observed limits is shown as dotted lines. The inward fluctuation of the −1σ line originates from the method
employed to perform the combination. The previous ATLAS result [19] obtained with 3.2 fb−1 of 13 TeV data is
shown as the filled area in the bottom left.

weaker exclusion at low tan β is mitigated by the SRs from the 1τ channel and the compressed SR of
the 2τ channel. For high Λ, the sensitivity is limited by the strong-production cross section. While the
analysis is mainly sensitive to squark and gluino production, the total GMSB production cross section for
high Λ is dominated by electroweak production modes.
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Figure 10: Exclusion contours at the 95% confidence level as a function of tan β and the SUSY-breaking mass scale
Λ for the gauge-mediated supersymmetry-breaking model. The solid line and the dashed line correspond to the
observed and median expected limits, respectively, for the combination of the 1τ and 2τ channels. The band shows
the one-standard-deviation spread of expected limits around the median. The effect of the signal cross-section
uncertainty on the observed limits is shown as dotted lines. The gray and orange dash-dotted lines indicate the
masses of gluinos and mass-degenerate squarks, respectively. The previous ATLAS result [19] obtained with
3.2 fb−1 of 13 TeV data is shown as the filled area on the left.

9 Conclusion

A search for squarks and gluinos in events with jets, hadronically decaying τ-leptons, and missing
transverse momentum is performed using pp collision data at

√
s = 13 TeV recorded by the ATLAS

detector at the LHC in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb−1. Two
channels with exactly one or at least two τ-leptons are considered, and their results are statistically
combined. The observed data are consistent with background expectations from the Standard Model.
Upper limits are set at 95% confidence level on the number of events that could be produced by processes
beyond the Standard Model. Results are also interpreted in the framework of a simplified model of gluino
pairs decaying into τ-leptons via τ-sleptons, and a minimal model of gauge-mediated supersymmetry
breaking with the lighter τ-slepton as the NLSP at large tan β. At 95% CL in the simplified model, gluino
masses up to 2000 GeV are excluded for low LSP masses, and LSP masses up to 1000 GeV are excluded
for gluino masses around 1400 GeV. In the GMSB model, values of the SUSY-breaking scale Λ below
110 TeV are excluded at 95% CL for all values of tan β in the range 2 ≤ tan β ≤ 60, while a stronger limit
of 120 TeV is achieved for tan β > 30.
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