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On behalf of the ATLAS Collaboration

Michigan State University

July 5, 2018



The high luminosity challenge

The High Luminosity Large Hadron Collider (HL-LHC)
Upgrade of the LHC to be installed between 2024 and 2026
Operational parameters:

Center of mass energy:
√

s = 14 TeV
Instantaneous luminosity: 5.0× 1034 cm−2 s−1

Average interactions per bunch crossing: 〈µ〉 = 200
Integrated luminosity: 3 ab−1

ATLAS phase II upgrade
Major upgrade of the ATLAS detector to
maintain or improve current performance
under new challenging conditions

Six Technical Design Reports (TDR) and
one Technical Proposal (TP) describing
motivations, performance and technical
details

This talk will focus on three physics benchmarks that highlight the phase II

improvements: HH�4b – EW W±W±jj – Measurement of weak mixing angle
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The upgraded ATLAS phase II detector

Upgraded Trigger and 

Data Aquisition system

- L0 @ 1MHz

- Access to full calorimeter granularity

-  Hardware tracking trigger

- Improved HLT

Electronics Upgrade

 - LAr calorimeter

 - Tile Calorimeter

 - Muon system

New Muons chambers

 in the inner Barrel region

Replacement of the Inner Detector 

by a new Inner Tracker (ITk) 

(All silicon tracker up to |η| = 4)

High Granularity Timing 

Detector (HGTD) 2.4 < |η| < 4

Other ATLAS phase II
talks in this session ...

Earlier today: Calorimeter System

Later today: ITk (Strip), HGTD, Muon system
(Micromegas), ITk (Design and layout), Muon

System (HL-LHC overview), Muon system (MDT)

Tomorrow Morning: Trigger system

... will cover how ATLAS is achiev-
ing the performance I’ll show today
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Non resonant HH production in the bbb̄b̄ final state

Higgs pair production is a principal goal of the HL-LHC programme
Enable measurement of the Higgs self-coupling

Small cross section � Use dominant H � bb̄ mode

Combination with bbγγ and bbττ to increase sensitivity 1
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Analysis based on an extrapolation of 2015+2016 results
4 jet trigger and offline selection of 4 b-tagged jets with
PT > 65 GeV (Anti-kT with R=0.4)

Two Higgs candidate pairs required to have an invariant
mass consistent with the Higgs mass

Additional requirements on PT and on ∆R and ∆η
between the two candidates
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What detector upgrades will help this analysis?
Improvements in b-tagging (Identification of jets containig a b-hadron decay)

Maintaining a low PT cut for the jet selection

TDAQ TDR
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Non resonant HH production in the bbb̄b̄ final state

Improved b-tagging using MV2 (Multi-variant tagger)
Better tracking performance, extended |η| range and
re-optimisation of algorithms for ITK and HL-LHC
conditions

Improvement of up to 20% on final limits

Analysis very sensitive to low PT cut � Low Trigger Pt threshold required
Global Trigger (offline-like jets at L0) and HTT (Hardware Tracking Trigger) to achieve 65 GeV

Without Global Trigger � PT cut 75 GeV and 25% sensitivity loss
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With 3ab−1 the allowed
range at 95% CL for
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SM
HHH with negligible

systematics and PT cut of
65 GeV is -2.4 − 9.5

TDAQ TDR TDAQ TDR

ITk Pixel TDR
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Electroweak production of W±W±jj
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Ideal channel to study the EWSB mechanism
EW production dominant to QCD in W±W±jj

EW production contains Vector Boson Scattering (VBS)
diagrams and not VBS diagrams

VBS contribution enhanced in BSM scenarios

Particle level analysis with smearing functions derived
from simulation of the upgraded ATLAS detector

Same sign dilepton selection with additional jets
and moderate Emiss

T

Kinematics cuts to enhance VBS conribution
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What detector upgrades will help this analysis? Forward tracking for jets, electrons and
muons Improved Muon reconstruction Reduced material budget

ATL-PHYS-PUB-2017-023
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Electroweak production of W±W±jj

Extension of the tracking and the muon reconstruction to high Eta
In addition to extending object reconstruction it helps with pileup jet rejection

Jet Vertex Requirement (JVR) only possible within tracking coverage
No tracking↔ jet PT threshold increased to compensate
Increasing tracking coverage allows same PT threshold for full range

Improvements both in expected signal significance and precision
Range for JVR,
lepton Range

Significance Precision
Significance
improvement

Precision
improvement

No forward tracking |ηjet | ≤ 2.5, |ηeµ| ≤ 2.7 17 4.5% - -

Forward tracking for jets, electrons and muons |ηjet | ≤ 3.8, |ηeµ| ≤ 4.0 19 4.0% 15% 13%

Improved muon reconstruction with ITk and
upgraded muon spectrometer

Less material budget � Less electron charge
miss-identification

Muon Spectrometer TDR ITk Pixel TDR
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Precision measurement of the Weak Mixing Angle

Z boson couples different to left- and right handed
fermions

Asymmetry in the angular distribution of dilepton
events

Size of the asymmetry at the Z pole depends on
the weak mixing angle

Sensitive to BSM through radiative corrections

θ∗:angle between the negative lepton
and the quark in the Collins-Soper

frame of the l+l− system

Particle level analysis with smearing functions derived
from simulation of the upgraded ATLAS detector

Extraction done minimising χ2 of particle level
Afb with different hypothesis

ID requirements and track-based isolation to
reduce miss-identified jets contribution

Best sensitivity with di-electron pairs with one
forward electron

∆2 sin2 θeff = 18× 10−5 ± 16× 10−5 (PDF) ± 9× 10−5(exp)

High Granularity Timing Detector (HGTD) TP
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Precision measurement of the Weak Mixing Angle

What detector upgrades will help this analysis? Timing measurement using HGTD,
Extension of tracking coverage and Good overall electron identification

HGTD can be used to assign time to leptons and nearby tracks
in the forward region

Reject tracks which come from other interactions but are
spatially close

Addition of HGTD keeps the isolation efficiency above 80%
even at high pileup density

Cut-based results on electron ID show similar performance as
Run2

Full optimisation and re-training of multivariate
discriminant is still under investigation

ITk alone provides a 40% improvement on significance by
adding track isolation in the forward region while HGTD

brings an extra 13% improvement

HGTD TP

LAr TDR
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Summary

Major upgrade of the ATLAS detector to be installed between 2024 and 2026
Objective: Maintain or improve performance at the challenging HL-LHC conditions with
〈µ〉 = 200

Most sub-detectors will undergo major modifications to one or various areas

Complete replacement of the Inner Detector by the new ITk

6 TDRs and 1 TP available that discuss performance and technical details

Three benchmark analysis shown with emphasis on how the upgraded detector helps
performance

B-tagging, pileup-jet rejection, object reconstruction, extended tracker, Timing
measurement, improved trigger.. � Many more I did not talk about!

Keep an eye out for other ATLAS speakers in today’s and tomorrow’s sessions for many

more details on the HL-LHC ATLAS upgrade!

Results obtained from

ITk Strip TDR
Muon Spectrometer TDR

LAr Calorimeter TDR

Tile Calorimeter TDR
TDAQ TDR

ITk Pixel TDR
HGTD TP
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Backup



Full selection for W±W±jj analysis

Selection requirement Selection value

Number of leptons 2 leptons with pT > 25 GeV
Dilepton separation and charge ∆R`,` ≥ 0.3, q`1 · q`2 > 0
Dilepton mass m`` > 20 GeV
Zee veto |mee −mZ | > 10 GeV
Emiss

T Emiss
T > 40 GeV

Jet selection and separation at least two jets with ∆R`,j > 0.3
Dijet rapidity separation ∆ηj,j > 2.4
Number of additional preselected leptons 0
Dijet mass mjj > 500 GeV
Lepton centrality ζ > 0
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Diagrams for W±W±jj production
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Higgs boson production in µµ and 4µ final states

Higgs precision measurements
H� ZZ � 4µ and H� µµ measurements present
opportunities to make precision measurements of
the Higgs boson

Both channels profit from muon measurement
improvements, extended tracking and muon
identification.

Vector Boson Fusion (VBF) topologies are of particular interest
Two well separated forward jets
A new trigger module , the forward Feature Extractor (fFEX) will handle full granularity
forward calorimeter information 2.5 < |η| < 4.9
Possibility of defining Inclusive VBF triggers
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B-Physics performance

Bs � µµ

Statistics very dependent on dimuon trigger � (6 GeV,6 GeV) thresholds x75 Run-1
statistics
Bs mass resolution improved with ITK
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Improved decay time resolution due to upgrade
Inner Tracker

Proper time resolution very sensitive to reduced
material budget.

ATL-PHYS-PUB-2018-005

Pixel TDR

ATL-PHYS-PUB-2018-005
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τ -lepton reconstruction performance

Important part of ATLAS HL-LHC program
Higgs (VBF), Di-higgs measurements and BSM searches
Hadronic tau performance (dominant BR) reconstruction improved in ITK
η reach also increased up to 4.0

Tau trigger improvements also an important part of TDAQ upgrade. Many more details

in talk tomorrow “The upgraded trigger system and di-τ trigger strategies of the ATLAS

detector at the HL-LHC”

Pixel TDRPixel TDR
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Jet reconstruction performance

High-Pt and boosted (large-R) jet performance shown to be similar to Run-2 even without

HL-LHC specific optimisation and despite the higher 〈µ〉

Tile TDR Tile TDR Tile TDR
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Missing transverse energy performance

Missing Et benefits from the increased tracker acceptance � Enables pile-up rejection in

the forward region

Improvement due to HGTD currently under study � Improved pileup rejection

Pixel TDR

HGTD TP
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Electron and photon trigger performance

Full granularity and topo-cluster building in Global Trigger allows for improved L0
electron and photon triggers

Eratio variable, currently used in HLT and offline, discriminates between isolated
electrons or photons and π0 decays.

Topo-cluster based isolation also possible
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