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Abstract: We present the complete cross-section for the production of unpolarized
hadrons in semi-inclusive deep-inelastic scattering up to power-suppressed O(1/Q2) terms
in the Wandzura–Wilczek-type approximation, which consists in systematically assuming
that q̄gq–terms are much smaller than q̄q–correlators. We compute all twist-2 and twist-3
structure functions and the corresponding asymmetries, and discuss the applicability of the
Wandzura–Wilczek-type approximations on the basis of available data. We make predic-
tions that can be tested by data from COMPASS, HERMES, Jefferson Lab, and the future
Electron-Ion Collider. The results of this paper can be readily used for phenomenology and
for event generators, and will help to improve the description of semi-inclusive deep-inelastic
processes in terms of transverse momentum dependent parton distribution functions and
fragmentation functions beyond the leading twist.
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1 Introduction

A great deal of what is known about the quark-gluon structure of nucleons is due to studies
of parton distribution functions (PDFs) in deep-inelastic reactions. Leading-twist PDFs tell
us how likely it is to find an unpolarized parton [described by PDF fa1 (x), a = q, q̄, g] or
a longitudinally polarized parton [described by PDF ga1(x), a = q, q̄, g] in a fast-moving
unpolarized or longitudinally polarized nucleon, which carries the fraction x of the nucleon
momentum. This information depends on the “resolution (renormalization) scale” associ-
ated with the hard scale Q of the process. Although the PDFs fa1 (x) and ga1(x) continue
being the subject of intense research (small-x, large-x, helicity sea and gluon distributions)
they can be considered as rather well known, and the frontier has been extended in the last
years to go beyond the one-dimensional picture offered by those PDFs.

One way to do this consists in a systematic inclusion of transverse parton momenta k⊥,
whose effects manifest themselves in terms of transverse momenta of the reaction products
in the final state. If these transverse momenta are much smaller than the hard scale Q of the
process, the formal description is given in terms of transverse momentum dependent distri-
bution functions (TMDs) and fragmentation functions (FFs), which are defined in terms of
quark-quark correlators [1–5]. Both of them depend on two independent variables: in the
case of TMDs, on the fraction x of nucleon momentum carried by the parton and intrinsic
transverse momentum k⊥ of the parton, while in the case of FFs, on the fraction z of the
parton momentum transferred to the hadron and the transverse momentum of the hadron
acquired during the fragmentation process. Being a vector in the plane transverse with
respect to the light-cone direction singled out by the hard-momentum flow in the process,
k⊥ allows us to access novel information on the nucleon spin structure through correla-
tions of k⊥ with the nucleon and/or parton spin. The latter is a well-defined concept for
twist-2 TMDs interpreted in the infinite momentum frame or in the lightcone quantization
formalism.

One powerful tool to study TMDs are measurements of the semi-inclusive deep-inelastic
scattering (SIDIS) process. By exploring various possibilities for the lepton beam and target
polarizations unambiguous information can be accessed on the 8 leading-twist TMDs [3]
and, if one assumes factorization, on certain linear combinations of the 16 subleading-twist
TMDs [4, 5]. It is important to stress that this information could not have been obtained
without advances in target polarization techniques employed in the HERMES, COMPASS
and Jefferson Lab (JLab) experiments [6–9]. Complementary information can be obtained
from the Drell–Yan process [10], and e+e− annihilation [11].

In QCD the TMDs are independent functions. Each TMD contains unique information
on a different aspect of the nucleon structure. Twist-2 TMDs have partonic interpretations.
Twist-3 TMDs give insights on quark-gluon correlations in the nucleon [12–14]. Besides
positivity constraints [15] there is little model-independent information on TMDs. An
important question with practical applications is: do useful approximations for TMDs
exist? Experience from collinear PDFs encourages to explore this possibility: the twist-3
gaT (x) and haL(x) can be respectively expressed in terms of contributions from twist-2 ga1(x)

and ha1(x), and additional quark-gluon-quark (q̄gq) correlations or current-quark mass terms
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[16, 17] (the index a = q , q̄ does not include gluons for ha1, haL and other chiral-odd TMDs
below). We shall refer to the latter generically as q̄gq–terms, keeping in mind one deals in
each case with matrix elements of different operators. The q̄gq–correlations contain new
insights on hadron structure, which are worthwhile exploring for their own sake, see for
instance Ref. [18] on gaT (x).

The striking observation is that the q̄gq–terms in gaT (x) and haL(x) are small: theoretical
mechanisms predict this [19–22], and in the case of gaT (x) data confirm or are compatible
with these predictions [23–25]. This approximation (“neglect of q̄gq–terms”) is commonly
known as Wandzura–Wilczek (WW) approximation [16]. The possibility to apply this type
of approximation also to TMDs has been explored in specific cases in [26–32]. In both cases,
PDFs and TMDs, one basically assumes that the contributions from q̄gq–terms can be ne-
glected with respect to q̄q–terms. But the nature of the omitted matrix elements is different,
and in the context of TMDs one often prefers to speak about WW-type approximations.

The WW-type approximation is not preserved under Q2 evolution. Some intuition can
be obtained from the collinear case. However, much less is known about the k⊥-evolution
especially at subleading twist. More theoretical work is required here.

The present work is the first study of all SIDIS structure functions up to twist-3 eval-
uated within one common systematic theoretical guideline. Our results are of importance
for measurements performed or in preparation at COMPASS, HERMES, and JLab with
12GeV beam-energy upgrade, or proposed in the long-term (Electron-Ion Collider), and
provide helpful input for the development of Monte Carlo event generators [33].

On the theoretical side it is also important to note that the theory for subleading-twist
TMD observables is only poorly developed as compared to the current state-of-the-art of
leading-twist observables. In order to address subleading-twist TMD observables one has
to restrict oneself to the tree-level formalism [1–5], which may not be free of doubts [34, 35].

Our predictions, whether confirmed or not supported by current and future experimen-
tal data, will in any case provide a useful benchmark, and call for dedicated theoretical
studies to explain (i) why the pertinent q̄gq–terms are small or (ii) why they are sizable,
depending on the outcome of the experiments. In either case our results will deepen the
understanding of q̄gq–correlations, pave the way towards testing the validity of the TMD
factorization approach at subleading twist, and help us to guide further developments.

In this work, after introducing the SIDIS process and defining TMDs and FFs (Sec. 2),
we shall introduce the WW(-type) approximations, and review what is presently known
about them from experiment and theory (Sec. 3). We will show that under the assumption
of the validity of these approximations all leading and subleading SIDIS structure functions
are described in terms of a basis of 6 TMDs and 2 FFs (Sec. 4), and review how these basis
functions describe available data (Sec. 5). We will systematically apply the WW and/or
WW-type approximations to SIDIS structure functions at leading (Sec. 6) and subleading
(Sec. 7) twist, and conclude with a critical discussion (Sec. 8). The Appendices A and B
contain technical details. An open-source package is available which allows one to visualize
and reproduce the results presented in this work, and may easily be adapted by interested
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colleagues for their purposes 1.

2 The SIDIS process in terms of TMDs and FFs

In this section we review the description of the SIDIS process, define structure functions,
PDFs, TMDs, FFs and recall how they describe the SIDIS structure functions.

2.1 The SIDIS process

Θ

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

z−axis

h
φS

φ
h

P
h

l’

l

q

HADRON PRODUCTION PLANE

LEPTON SCATTERING PLANE

N

S

S

Figure 1. Kinematics of the SIDIS process lN →
l′hX in the 1-photon exchange approximation.

The SIDIS process lN → l′hX is
sketched in Fig. 1. Here, l and P are the
momenta of the incoming lepton and nu-
cleon, l′ and Ph are the momenta of the
outgoing lepton and produced hadron.
The virtual-photon momentum q = l− l′

defines the z-axis, and l′ points in the
direction of the x-axis from which az-
imuthal angles are counted. The relevant
kinematic invariants are

x =
Q2

2P · q
, y =

P · q
P · l

, z =
P · Ph
P · q

, Q2 = −q2. (2.1)

Note that we consider the production of unpolarized hadrons in DIS of charged leptons
(electrons, positrons, muons) at Q2 � M2

Z in the single-photon exchange approximation,
where MZ denotes the mass of the Z0 electroweak gauge boson. In addition to x, y, and
z, the cross section is also differential in the azimuthal angle φh of the produced hadron
and in the square of the hadron’s momentum component PhT perpendicular with respect
to the virtual-photon momentum. The cross section is also differential with respect to
the azimuthal angle ψl characterizing the overall orientation of the lepton scattering plane
around the incoming lepton direction. The angle is calculated with respect to an arbitrary
reference axis, which in case of transversely polarized targets is chosen to be the transverse
component ST of the target-spin direction. In the DIS limit, ψl ≈ φS , where the latter is
the azimuthal angle of the spin-vector defined as in Fig. 1.

To leading order in 1/Q the SIDIS cross-section is given by

d6σleading

dx dy dz dψl dφh dP
2
hT

=
α2
em

x y Q2

(
1− y +

1

2
y2

)
FUU (x, z, P 2

hT )

×

{
1 + cos(2φh) p1A

cos(2φh)
UU + SL sin(2φh) p1A

sin(2φh)
UL + λSL p2ALL

+ ST sin(φh − φS)A
sin(φh−φS)
UT + ST sin(φh + φS) p1A

sin(φh+φS)
UT

1Open-source packages with implementations of SIDIS structure functions in the WW-
type approximation are publicly available on github.com: in Mathematica, Version 11.3 on
https://github.com/prokudin/WW-SIDIS, in Python on https://jeffersonlab.github.io/jam3d.
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+ ST sin(3φh − φS) p1A
sin(3φh−φS)
UT + λST cos(φh − φS) p2A

cos(φh−φS)
LT

}
. (2.2a)

Here FUU is the structure function due to transverse polarization of the virtual photon
(sometimes denoted as FUU,T ), and we neglect 1/Q2 corrections in kinematic factors and
a structure function (sometimes denoted as FUU,L) arising from longitudinal polarization
of the virtual photon (and another structure function ∝ ST sin(φh − φS), see below). The
structure functions (and asymmetries) also depend on Q2 via the scale dependence of TMDs
and FFs, which we do not show in formulas throughout this work.

At subleading order in the 1/Q expansion one has

d6σsubleading

dx dy dz dψl dφh dP
2
hT

=
α2
em

x y Q2

(
1− y +

1

2
y2

)
FUU (x, z, P 2

hT )

{
cos(φh) p3A

cos(φh)
UU

+λ sin(φh) p4A
sin(φh)
LU + SL sin(φh) p3A

sin(φh)
UL + λSL cos(φh) p4A

cos(φh)
LL

+ST sin(2φh − φS) p3A
sin(2φh−φS)
UT + ST sin(φS) p3A

sin(φS)
UT

+λST cos(φS) p4A
cos(φS)
LT + λST cos(2φh − φS) p4A

cos(2φh−φS)
LT

}
. (2.2b)

Neglecting 1/Q2 corrections, the kinematic prefactors pi are given by

p1 =
1− y

1− y + 1
2 y

2
, p2 =

y(1− 1
2 y)

1− y + 1
2 y

2
, p3 =

(2− y)
√

1− y
1− y + 1

2 y
2
, p4 =

y
√

1− y
1− y + 1

2 y
2
,

(2.3)
and the asymmetries Aweight

XY , are defined in terms of structure functions Fweight
XY , as follows

Aweight
XY ≡ Aweight

XY (x, z, PhT ) =
Fweight
XY (x, z, PhT )

FUU (x, z, PhT )
. (2.4)

Here, the first subscript X = U(L) denotes the unpolarized beam (longitudinally polarized
beam with helicity λ). The second subscript Y = U(L or T ) refers to the target, which can
be unpolarized (longitudinally or transversely polarized with respect to the virtual photon).
The superscript “weight” indicates the azimuthal dependence with no index indicating a φh-
independent asymmetry or structure function.

In the partonic description the structure functions in (2.2a) are “twist-2.” Those in
(2.2b) are “twist-3” and contain a factor MN/Q in their definitions, see below, where MN

is the nucleon mass. In our treatment to 1/Q2 accuracy we neglect two structure functions
due to longitudinal virtual-photon polarization, which contribute at order O(M2

N/Q
2) in

the partonic description of the process, one being FUU,L and the other contributing to the
sin(φh − φS) angular distribution [5].

Experimental collaborations often define asymmetries in terms of counts N(φh). This
means the kinematic prefactors pi and 1/(x y Q2) are included in the numerators or denom-
inators of the asymmetries which are averaged over y within experimental kinematics. We
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will call the corresponding asymmetries Aweight
XY,〈y〉. For instance, in the unpolarized case one

has

N(x, . . . , φh) =
N0(x, . . . )

2π

(
1 + cosφh A

cosφh
UU,〈y〉(x, . . . ) + cos 2φh A

cos 2φh
UU,〈y〉 (x, . . . )

)
(2.5)

where N0 denotes the total (φh–averaged) number of counts and the dots indicate further
kinematic variables in the kinematic bin of interest (which may also be averaged over). It
would be preferable if asymmetries were analyzed with known kinematic prefactors divided
out on event-by-event basis. One could then directly compare asymmetries Aweight

XY mea-
sured in different experiments and kinematics, and focus on effects of evolution or power
suppression for twist-3. In practice, often the kinematic factors were included. We will
define and comment on the explicit expressions as needed.

For completeness we remark that after integrating the cross section over transverse
hadron momenta one obtains

d4σleading

dx dy dz dψl
=

1

2π

4πα2
em

xyQ2

(
1− y +

1

2
y2

)
FUU (x, z)

{
1 + λSL p2ALL

}
(2.6a)

d4σsubleading

dx dy dz dψl
=

1

2π

4πα2
em

xyQ2

(
1− y +

1

2
y2

)
FUU (x, z)

{
ST sin(φS) p3A

sin(φS)
UT +

λST cos(φS) p4A
cos(φS)
LT

}
, (2.6b)

where (and analogous for the other structure functions)

FUU (x, z) =

∫
d2PhT FUU (x, z, PhT ) (2.7)

and the asymmetries are defined as

Aweight
XY (x, z) =

Fweight
XY (x, z)

FUU (x, z)
. (2.8)

The connection of “collinear” SIDIS structure functions in (2.6a, 2.6b) to those known
from inclusive DIS is established by integrating over z and summing over hadrons as∑

h

∫
dz z FUU (x, z) ≡ 2xF1(x) , (2.9a)

∑
h

∫
dz z FLL(x, z) ≡ 2x g1(x) , (2.9b)

∑
h

∫
dz z F cosφS

LT (x, z) ≡ − γ 2x

(
g1(x) + g2(x)

)
, (2.9c)

∑
h

∫
dz z F sinφS

UT (x, z) = 0 , (2.9d)
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where γ = 2MNx/Q signals the twist-3 character of F cosφS
LT (x, z). Notice that F sinφS

UT (x, z)

has no DIS counterpart due to time-reversal symmetry of strong interactions, and terms
suppressed by 1/Q2 are consequently neglected throughout this work including the twist-4
DIS structure function FL(x).

2.2 TMDs, FFs and structure functions

TMDs are defined in terms of light-front correlators

Φ(x,k⊥)ij =

∫
dξ−d2ξ⊥

(2π)3
eikξ 〈N(P, S)|ψ̄j(0)W(0,∞)W(∞, ξ) ψi(ξ)|N(P, S)〉

∣∣∣∣∣ ξ+ =0

k+ = xP+

,

(2.10)
where the Wilson lines W(0,∞)W(∞, ξ) refer to the SIDIS process [37]. For a generic four-
vector aµ we define the light-cone coordinates aµ = (a+, a−, a⊥) with a± = (a0 ± a3)/

√
2.

The light-cone direction is singled out by the virtual-photon momentum and transverse
vectors like k⊥ are perpendicular to it. In the virtual-photon–nucleon center-of-mass frame,
the nucleon and the partons inside it move in the (+)–lightcone direction, while the struck
quark and the produced hadron move in the (−)–light-cone direction. In the nucleon rest
frame the polarization vector is given by S = (0,ST , SL) with S2

T + S2
L = 1.

The 8 leading-twist TMDs [3] are projected out from the correlator (2.10) as follows
(blue: T-even TMDs, red: T-odd TMDs; all TMDs depend on x, k⊥, renormalization scale
and carry a flavor index which we do not indicate for brevity):

1

2
Tr

[
γ+ Φ(x,k⊥)

]
= f1 −

εjkkj⊥S
k
T

MN
f⊥1T , (2.11a)

1

2
Tr

[
γ+γ5 Φ(x,k⊥)

]
= SL g1 +

k⊥ · ST
MN

g⊥1T , (2.11b)

1

2
Tr

[
iσj+γ5 Φ(x,k⊥)

]
= SjT h1 + SL

kj⊥
MN

h⊥1L +
κjkSkT
M2
N

h⊥1T +
εjkkk⊥
MN

h⊥1 , (2.11c)

and the 16 subleading-twist TMDs [2, 5] are given by

1

2
Tr

[
1 Φ(x,k⊥)

]
=
MN

P+

[
e−

εjkkj⊥S
k
T

MN
e⊥T

]
, (2.11d)

1

2
Tr

[
iγ5Φ(x,k⊥)

]
=
MN

P+

[
SLeL +

k⊥ · ST
MN

eT

]
, (2.11e)

1

2
Tr

[
γj Φ(x,k⊥)

]
=
MN

P+

[
kj⊥
MN

f⊥+ εjkSkT fT +SL
εjkkk⊥
MN

f⊥L −
κjkεklSlT
M2
N

f⊥T

]
,(2.11f)

1

2
Tr

[
γjγ5Φ(x,k⊥)

]
=
MN

P+

[
SjT gT + SL

kj⊥
MN

g⊥L +
κjkSkT
M2
N

g⊥T +
εjkkk⊥
MN

g⊥
]
, (2.11g)

1

2
Tr

[
i σjkγ5Φ(x,k⊥)

]
=
MN

P+

[
SjTk

k
⊥ − SkTk

j
⊥

MN
h⊥T − εjk h

]
, (2.11h)

1

2
Tr

[
i σ+− γ5 Φ(x,k⊥)

]
=
MN

P+

[
SL hL +

k⊥ · ST
MN

hT

]
, (2.11i)
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where κjk ≡ (kj⊥k
k
⊥−

1
2 k

2
⊥δ

jk). The indices j, k, l refer to the plane transverse with respect
to the light cone, εij ≡ ε−+ij and ε0123 = +1. Dirac structures not listed in (2.11a–2.11i)
are twist-4 [4]. Integrating out transverse momenta in the correlator (2.10) leads to the
“usual” PDFs known from collinear kinematics [17, 38], namely at twist-2 level

1

2
Tr

[
γ+ Φ(x)

]
= f1 , (2.12a)

1

2
Tr

[
γ+γ5 Φ(x)

]
= SL g1 , (2.12b)

1

2
Tr

[
iσj+γ5 Φ(x)

]
= SjT h1 , (2.12c)

and at twist-3 level

1

2
Tr

[
1 Φ(x)

]
=
MN

P+
e , (2.12d)

1

2
Tr

[
γjγ5 Φ(x)

]
=
MN

P+
SjT gT , (2.12e)

1

2
Tr

[
i σ+−γ5 Φ(x)

]
=
MN

P+
SL hL . (2.12f)

Other structures drop out either due to explicit k⊥–dependence, or due to the sum rules [5]∫
d2k⊥ f

a
T (x, k2

⊥) =

∫
d2k⊥ e

a
L(x, k2

⊥) =

∫
d2k⊥ h

a(x, k2
⊥) = 0 (2.13)

imposed by time reversal constraints.
Fragmentation functions are defined through the following correlator [11] (where P⊥

denotes the transverse momentum of the produced hadrons acquired during the fragmen-
tation process with respect to the quark):

∆(z,P⊥)ij =
∑
X

∫
dξ+d2ξ⊥
2z(2π)3

eipξ 〈0|W(∞,ξ)ψi(ξ) |h,X〉 〈h,X|ψ̄j(0)W(0,∞)|0〉

∣∣∣∣∣ ξ−=0

p−=P−h /z

p⊥=−P⊥/z

.

(2.14)
In this work we will consider only unpolarized final-state hadrons. If the produced hadron
moves fast in the (−) light-cone direction, the twist-2 FFs are projected out as

1

2
Tr[γ−∆(z,P⊥)] = D1 , (2.15a)

1

2
Tr[iσj−γ5∆(z,P⊥)] = εjk

P k⊥
zmh

H⊥1 , (2.15b)

and at twist-3 level

1

2
Tr

[
1 ∆(z,P⊥)

]
=

mh

P−h
E , (2.15c)
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1

2
Tr

[
γj ∆(z,P⊥)

]
= −

P j⊥
zP−h

D⊥ , (2.15d)

1

2
Tr

[
γjγ5 ∆(z,P⊥)

]
= εjk

P k⊥
zP−h

G⊥ , (2.15e)

1

2
Tr

[
i σjkγ5 ∆(z,P⊥)

]
= −εjk mh

P−h
H . (2.15f)

The FFs depend on z, P⊥, renormalization scale, quark flavor and type of hadron which
we do not indicate for brevity. Integration over transverse hadron momenta leaves us with
D1(z), E(z), H(z) while the other structures drop out due to their P⊥ dependence.

The structure functions in Eqs. (2.2a, 2.2b) are described in the Bjorken limit at tree
level in terms of convolutions of TMDs and FFs. We define the unit vector ĥ = PhT /PhT
and use the following convolution integrals (see Appendix B.1 for details)

C
[
ω f D

]
= x

∑
a

e2
a

∫
d2k⊥d

2P⊥ δ
(2)(zk⊥ + P⊥ − PhT ) ω fa(x,k2

⊥) Da(z,P 2
⊥) , (2.16)

where ω is a weight function, which in general depends on k⊥ and P⊥. The 8 leading-twist
structure functions are

FUU = C
[
ω{0} f1D1

]
, (2.17a)

F cos 2φh
UU = C

[
ω
{2}
AB h

⊥
1 H

⊥
1

]
, (2.17b)

F sin 2φh
UL = C

[
ω
{2}
AB h

⊥
1LH

⊥
1

]
, (2.17c)

FLL = C
[
ω{0} g1D1

]
, (2.17d)

F
cos(φh−φS)
LT = C

[
ω
{1}
B g⊥1TD1

]
, (2.17e)

F
sin(φh+φS)
UT = C

[
ω
{1}
A h1H

⊥
1

]
, (2.17f)

F
sin(φh−φS)
UT = C

[
−ω{1}B f⊥1TD1

]
, (2.17g)

F
sin(3φh−φS)
UT = C

[
ω{3} h⊥1TH

⊥
1

]
. (2.17h)

At subleading-twist we have the structure functions

F cosφh
UU =

2MN

Q
C
[

ω
{1}
A

(
xhH⊥1 + rh f1

D̃⊥

z

)
− ω{1}B

(
xf⊥D1 + rh h

⊥
1

H̃

z

)]
, (2.18a)

F sinφh
LU =

2MN

Q
C
[

ω
{1}
A

(
x eH⊥1 + rh f1

G̃⊥

z

)
+ ω

{1}
B

(
xg⊥D1 + rh h

⊥
1

Ẽ

z

)]
, (2.18b)

F sinφh
UL =

2MN

Q
C
[

ω
{1}
A

(
xhLH

⊥
1 + rh g1

G̃⊥

z

)
+ ω

{1}
B

(
xf⊥LD1− rh h⊥1L

H̃

z

)]
, (2.18c)
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F cosφh
LL =

2MN

Q
C
[
−ω{1}A

(
xeLH

⊥
1 − rh g1

D̃⊥

z

)
− ω{1}B

(
xg⊥LD1 + rh h

⊥
1L

Ẽ

z

)]
, (2.18d)

F sinφS
UT =

2MN

Q
C
[

ω{0}
(
xfTD1 − rh h1

H̃

z

)
−
ω
{2}
B

2

(
xhTH

⊥
1 + rh g

⊥
1T

G̃⊥

z
− xh⊥TH⊥1 + rh f

⊥
1T

D̃⊥

z

)]
, (2.18e)

F cosφS
LT =

2MN

Q
C
[
−ω{0}

(
xgTD1 + rh h1

Ẽ

z

)
+
ω
{2}
B

2

(
xeTH

⊥
1 − rh g⊥1T

D̃⊥

z
+ xe⊥TH

⊥
1 + rh f

⊥
1T

G̃⊥

z

)]
, (2.18f)

F
sin(2φh−φS)
UT =

2MN

Q
C
[

ω
{2}
AB

2

(
xhTH

⊥
1 + rh g

⊥
1T

G̃⊥

z
+ xh⊥TH

⊥
1 − rh f⊥1T

D̃⊥

z

)
+ω
{2}
C

(
xf⊥T D1 − rh h⊥1T

H̃

z

)]
, (2.18g)

F
cos(2φh−φS)
LT =

2MN

Q
C
[
−
ω
{2}
AB

2

(
xeTH

⊥
1 − rh g⊥1T

D̃⊥

z
− xe⊥TH⊥1 − rh f⊥1T

G̃⊥

z

)
−ω{2}C

(
xg⊥TD1 + rh h

⊥
1T

Ẽ

z

)]
, (2.18h)

where rh = mh/MN and Fweight
XY ≡ Fweight

XY (x, z, PhT ). The tilde-functions D̃⊥, G̃⊥, H̃, Ẽ
are defined in terms of q̄gq-correlators, see Sec. 3.2. The weight functions are defined as

ω{0} = 1 ,

ω
{1}
A =

ĥ · P⊥
zmh

, ω
{1}
B =

ĥ · k⊥
MN

,

ω
{2}
A =

2 (ĥ · P⊥) (ĥ · k⊥)

zMNmh
, ω

{2}
B = −

P⊥ · k⊥
zMNmh

, ω
{2}
C =

2 (ĥ · k⊥)2 − k2
⊥

2M2
N

,

ω{3} =
4 (ĥ · P⊥) (ĥ · k⊥)2 − 2 (ĥ · k⊥) (k⊥ · P⊥)− (ĥ · P⊥)k2

⊥
2zM2

Nmh
, (2.19)

and ω
{2}
AB = ω

{2}
A + ω

{2}
B . In ω

{n}
i the index n = 0, 1, 2, 3 indicates the (maximal) power

(PhT )n with which the corresponding contribution scales, and index i (if any) distinguishes
different types of contributions at the given order n. Notice that twist-3 structure functions
in Eqs. (2.18a–2.18h) contain an explicit factor MN/Q. We also recall that we neglect two
structure functions (denoted in [5] as FUU,L and F sin(φh−φS)

UT,L ) due to longitudinal virtual-
photon polarization, which are of order O(M2/Q2) in the TMD partonic description.

The structure functions that survive PhT –integration of the SIDIS cross section in
(2.6a, 2.6b) are associated with the trivial weights ω{0} and expressed in terms of collinear
PDFs and FFs as follows (here the sum rules (2.13) are used):

FUU (x, z) = x
∑
a

e2
a f

a
1 (x)Da

1(z) , (2.20a)

– 10 –



FLL(x, z) = x
∑
a

e2
a g

a
1(x)Da

1(z) , (2.20b)

F cosφS
LT (x, z) = − 2MN

Q
x
∑
a

e2
a

(
x gqT (x)Da

1(z) + rh h
a
1(x)

Ẽa(z)

z

)
, (2.20c)

F sinφS
UT (x, z) = − 2mh

Q
x
∑
a

e2
a h

a
1(x)

H̃a(z)

z
. (2.20d)

Finally, integrating over z, summing over hadrons, and using the sum rules for the T-odd
FFs,

∑
h

∫
dz Ẽa(z) = 0 and

∑
h

∫
dz H̃a(z) = 0, we recover Eqs. (2.9a–2.9d) and obtain

for the DIS structure functions

F1(x) =
1

2

∑
a

e2
a f

a
1 (x) , (2.21a)

g1(x) =
1

2

∑
a

e2
a g

a
1(x) , (2.21b)

g2(x) =
1

2

∑
a

e2
a g

a
T (x) − g1(x) . (2.21c)

Before introducing the WW-type approximations in the next section, we would like
to add a comment on TMD factorization: the partonic description of the leading-twist
structure functions in (2.17) is based on factorization theorems [39–43]. In contrast to this,
the partonic description of the subleading-twist structure functions in (2.18) is based on
the assumption that the SIDIS cross section factorizes.

A lot of progress has been achieved in recent years in the theoretical understanding of
leading-twist observables within the TMD framework, including definition, renormalization
and evolution of leading-twist TMDs [44–47], next-to-leading order corrections within the
TMD framework [48], and phenomenological fits with evolution [49, 50]. The matching of
twist-2 collinear and TMD quantities was studied to next-to-leading and next-to-next-to-
leading order [51, 52]. The WW approximation has been used recently in Ref. [53] to connect
the twist-2 TMDs f⊥1T , g

⊥
1T , h

⊥
1 , h⊥1L to certain higher-twist collinear matrix elements.

In contrast to this, the theory for subleading-twist TMD observables is only poorly
developed. Still to the present day, the state-of-the-art approach to subleading-twist TMD
observables is the one of Refs. [1–5], based on a TMD tree-level formalism, which we adopt
here. In fact, the results of Refs. [34, 35] indicate doubts even in the tree-level formalism.
Recently, an attempt was made to remedy these doubts [54]. Keeping in mind these “words
of warning,” still the formulas (2.18) are the best that theory has to offer currently. We
may consider (2.18) as a model itself for the twist-3 SIDIS observables. We hope that the
phenomenological approach based on WW-type approximations pursued in this work might
lead to more insight into these observables, and eventually might trigger more theory efforts
in the future.

3 WW and WW-type approximations

In this section we will define the approximations and review what is known about them.
The basic idea of the approximations is simple. One uses QCD equations of motion to

– 11 –



separate contributions from q̄q–terms and q̄gq–terms and assumes that the latter can be
neglected with respect to the leading q̄q–terms with a useful accuracy (here the 〈. . .〉 denote
symbolically the matrix elements which enter the definitions of TMDs or FFs):∣∣∣∣〈q̄gq〉〈q̄q〉

∣∣∣∣� 1 . (3.1)

3.1 WW approximation for PDFs

The WW approximation applies in principle to all twist-3 PDFs, Eqs. (2.12d, 2.12e, 2.12f).
It was established first for gaT (x) [16], and later for haL(x) [17]. The situation of ea(x) is
somewhat special, see below and the review [55].

The origin of the approximations is as follows. The operators defining gaT (x) and haL(x)

can be decomposed by means of QCD equations of motion in twist-2 parts, and pure twist-3
(interaction dependent) q̄gq–terms and current-quark mass terms. We denote q̄gq–terms
and mass terms collectively and symbolically by functions with a tilde.2 Such decomposi-
tions are possible because gaT (x) and haL(x) are “twist-3” not according to the “strict QCD
definition” (twist = mass dimension of associated local operator minus its spin). Rather
they are classified according to the “working definition” of twist [56] (a function is “twist t”
if, in addition to overall kinematic prefactors, it contributes to cross sections in a partonic
description suppressed by (M/Q)t−2 where M is a generic hadronic and Q the hard scale).
The two definitions coincide for twist-2 quantities, but higher-twist observables in general
contain “contaminations” by leading twist.

In this way one obtains the decompositions and, if they apply, WW approximations
[16, 17] (keep in mind here tilde terms contain pure twist-3 and current-quark mass terms)

gaT (x) =

∫ 1

x

dy

y
ga1(y)+g̃aT (x)

WW
≈

∫ 1

x

dy

y
ga1(y) , (3.2a)

haL(x) = 2x

∫ 1

x

dy

y2
ha1(y)+h̃aL(x)

WW
≈ 2x

∫ 1

x

dy

y2
ha1(y) , (3.2b)

x ea(x) = x ẽa(x)
WW
≈ 0 , (3.2c)

where we included ea(x) which is a special case in the sense that it receives no twist-2
contribution. A prefactor of x is provided in (3.2c) to cancel a δ(x)–type singularity [55].

The relations (3.2a–3.2c) have been derived basically using operator product expansion
techniques [16, 17]. Notice that the operators defining gaT and haL can also be decomposed
within the TMD framework by means of a combination of relations derived from the QCD
equations of motion and further constraint relations, called Lorentz-invariance relations
(LIRs), into a twist-2 part, and dynamical twist-3 (interactions dependent) q̄gq-terms and
current-quark mass terms (see recent review [57] and references therein).

We will come back to (3.2a, 3.2b) and review the theoretical predictions and supporting
experiments, but before we will introduce the WW-type approximations for TMDs and FFs.

2In the literature it is customary to reserve the term "tilde terms" for matrix elements of q̄gq operators as
done, e.g., in Ref [5]. For convenience in this work "tilde terms" refers to both q̄gq terms and current-quark
mass terms as done, e.g., in [30].
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3.2 WW-type approximations for TMDs and FFs

Analogous to WW approximations for PDFs discussed in Sec. 3.1, also certain TMDs and
FFs can be decomposed into twist-2 contributions and tilde terms. The latter may be
assumed, in the spirit of (3.1), to be small. Hereby it is important to keep in mind that for
each TMD or FF one deals with different types of (“unintegrated”) q̄gq–correlations, and
we prefer to refer to them as WW-type approximations.

In the T-even case one obtains the following approximations3, where the terms on the
left-hand-side are twist-3, those on the right-hand-side (if any) are twist-2,

xeq(x, k2
⊥)

WW–type
≈ 0, (3.3a)

xf⊥q(x, k2
⊥)

WW–type
≈ f q1 (x, k2

⊥), (3.3b)

xg⊥qL (x, k2
⊥)

WW–type
≈ gq1(x, k2

⊥), (3.3c)

xg⊥qT (x, k2
⊥)

WW–type
≈ g⊥q1T (x, k2

⊥), (3.3d)

xgqT (x, k2
⊥)

WW–type
≈ g

⊥(1)q
1T (x, k2

⊥), (3.3e)

xhqL(x, k2
⊥)

WW–type
≈ −2h

⊥(1)q
1L (x, k2

⊥), (3.3f)

xhqT (x, k2
⊥)

WW–type
≈ −hq1(x, k2

⊥)− h⊥(1)q
1T (x, k2

⊥), (3.3g)

xh⊥qT (x, k2
⊥)

WW–type
≈ hq1(x, k2

⊥)− h⊥(1)q
1T (x, k2

⊥). (3.3h)

In the T-odd case one obtains the approximations

xeqL(x, k2
⊥)

WW–type
≈ 0, (3.4a)

xeqT (x, k2
⊥)

WW–type
≈ 0, (3.4b)

xe⊥qT (x, k2
⊥)

WW–type
≈ 0, (3.4c)

xg⊥q(x, k2
⊥)

WW–type
≈ 0, (3.4d)

xf⊥qL (x, k2
⊥)

WW–type
≈ 0, (3.4e)

xf⊥qT (x, k2
⊥)

WW–type
≈ f⊥q1T (x, k2

⊥), (3.4f)

xf qT (x, k2
⊥)

WW–type
≈ − f⊥(1)q

1T (x, k2
⊥), (3.4g)

xhq(x, k2
⊥)

WW–type
≈ −2h

⊥(1)q
1 (x, k2

⊥). (3.4h)

The superscript “(1)” denotes the first transverse moment of TMDs defined generically as

f (1)(x, k2
⊥) =

k2
⊥

2M2
f(x, k2

⊥) , f (1)(x) =

∫
d2k⊥f

(1)(x, k2
⊥) . (3.5)

3Notice that Ref. [5] uses four-vector notation for transverse vectors, while in this paper we always utilize
two-vectors for transverse vectors, such that e.g. k2

⊥our = −p2TRef. [5] and analog for other scalar products
of transverse vectors. In our notation transverse vectors are never understood as four-vectors such that
k2
⊥our ≡ k2

⊥our.
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Two very useful WW-type approximations follow from combining the WW approxima-
tions (3.2a, 3.2b) with the WW-type approximations (3.3e, 3.3f). The resulting relations
are the only WW-type relations applicable to twist-2 TMDs and are given by [2, 29, 32]:

g
⊥(1)a
1T (x)

WW–type
≈ x

∫ 1

x

dy

y
ga1(y) , (3.6a)

h
⊥(1)a
1L (x)

WW–type
≈ −x2

∫ 1

x

dy

y2
ha1(y) . (3.6b)

Some of the above WW-type approximations were discussed in [2, 26–32]. WW-relations
for FFs are actually not needed: in Eqs. (2.17, 2.18) either twist-2 FFs Dq

1, H
⊥q
1 enter or

tilde FFs, as a consequence of how the azimuthal angles are defined [5]. For completeness
we quote the WW-type approximations for FFs [5]

E(z, P 2
⊥)

WW–type
≈ 0, (3.7a)

G⊥(z, P 2
⊥)

WW–type
≈ 0, (3.7b)

D⊥(z, P 2
⊥)

WW–type
≈ z D1(z, P 2

⊥) , (3.7c)

H(z, P 2
⊥)

WW–type
≈ −

P 2
⊥

zm2
h

H⊥1 (z, P 2
⊥) . (3.7d)

Having introduced the WW and WW-type approximations, we will review in the following
what is currently known from theory and experiment about the WW(-type) approximations.

3.3 Predictions from instanton vacuum model

Insights into the relative size of hadronic matrix elements, such as Eq. (3.1), require a
non-perturbative approach. It is by no means obvious which small parameter in the strong-
interaction regime would allow one to explain such results. An appealing non-perturbative
approach is provided by the instanton model of the QCD vacuum [58–60]. This semi-
classical approach assumes that properties of the QCD vacuum are dominated by instantons
and anti-instantons, topological non-perturbative gluon field configurations, which form a
strongly interacting medium. The approach provides a natural mechanism for dynamical
chiral-symmetry breaking, the dominant feature of strong interactions in the nonperturba-
tive regime. It was shown with variational and numerical methods that the instantons form
a dilute medium characterized by a non-trivial small parameter ρ/R ∼ 1/3 [58–60], where
ρ and R denote respectively the average instanton size ρ and separation R.

Applying the instanton vacuum model to studies of gaT (x) and haL(x), it was predicted
that matrix elements of the q̄gq operators defining g̃aT (x) [19] and h̃aL(x) [20] are strongly
suppressed by powers of the small parameter ρ/R with respect to contributions from the
respective twist-2 parts, which are of order (ρ/R)0. For the n = 3 Mellin moments (i.e. the
lowest non-trivial ones for these tilde-functions) it was found [19, 20]

g̃qT
gqT
∼
h̃qL
hqL
∼ 〈q̄gq〉
〈q̄q〉

∼
(
ρ

R

)4

log

(
ρ

R

)
∼ 10−2 , (3.8)
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which strongly supports the generic approximation in Eq. (3.1) with the instanton packing
fraction providing the non-trivial small parameter justifying the neglect of tilde terms. The
predictions for g̃aT (x) [19] were made before the advent of the first precise data on g2(x),
which we discuss next. The instanton calculus has not yet been applied to ẽa(x).

3.4 Tests of WW approximation in DIS experiments

The presently available phenomenological information on gaT (x) is due to measurements of
the structure function g2(x), Eq. (2.21c), in DIS off various transversely polarized targets.
In the WW-approximation (3.2a) one can write g2(x) as a total derivative expressed in
terms of the experimentally well-known twist-2 structure function g1(x) as follows

g2(x)
WW
≈ g2(x)WW ≡

d

dx

[
x

∫ 1

x

dy

y
g1(y)

]
. (3.9)

Data support (3.9) to a good accuracy [23–25, 61], although especially at smaller x more
stringent tests are not yet possible. Overall it has been estimated that the WW approxi-
mation for g2(x) and gaT (x) works with an accuracy of about 40 % or better [62].

We present calculations of g2(x)WW in Fig. 2. This result is obtained using the LO
ga1(x)-parametrization [63]. In order to display the theoretical “uncertainty band” of this
WW-approximation of about 40 % as deduced in Ref. [62] we proceed as follows: we split
the 40 % uncertainty into two parts: ε1 = ±20 % and ε2(x) = ±20 %(1 − x)ε with a small
ε > 0, and estimate the impact of this uncertainty as

g2(x)WW = (1± ε1)
d

dx

[
x

∫ 1

x

dy

y

(
1

2

∑
a

e2
a g

a
1(y(1± ε2))

)]
. (3.10)

The effect of ε1 is to change the magnitude of g2(x)WW, ε2 varies the position of its zero. The
x–dependence of ε2 preserves limx→1 g2(x) = 0; we use ε = 0.05, which yields ε2 ≈ 20 % up
to the highest measured x–bin. The good agreement of g2(x)WW with data is encouraging,
and in line with theory predictions [19]. Our estimate with the split uncertainties ε1,2 may
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Figure 2. Left panel: The structure function xg2(x) in WW-approximation at Q2 = 7.1 GeV2,
Eq. (3.9), for proton (P) and neutron (N) targets, and data from the SLAC E144 and E155
experiments at 〈Q2〉 = 7.1 GeV2 [23, 24]. Right panel: HERMES data for Q2 > 1 GeV2 with
〈Q2〉 = 2.4 GeV2 [25]. The estimate of the theoretical uncertainty is described in the text.
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overestimate in certain x–bins the 40 %–“uncertainty band” estimated in [62]. This however
helps us to display a conservative estimate of possible uncertainties. We conclude that the
WW–approximation works reasonably well, see Fig. 2.

Presently haL(x) is unknown. With phenomenological information on ha1(x) [64–66], the
WW approximation (3.2b) for haL(x) could be tested experimentally in Drell–Yan [67].

3.5 Tests in lattice QCD

The lowest Mellin moments of the PDF gqT (x) were studied in lattice QCD in the quenched
approximation [21] and with Nf = 2 flavors of light dynamical quarks [22]. The results
obtained were compatible with a small g̃qT (x). We are not aware of lattice QCD studies
related to the PDF haL(x), and turn now our attention to TMD studies in lattice QCD.

After first exploratory investigations of TMDs on the lattice [68, 69], recent years
have witnessed considerable progress and improvements with regard to rigor, realism and
methodology. For the latest developments we refer the interested reader to Refs. [70–78].
However, numerical results from recent calculations are only available for a subset of ob-
servables, and the quantities calculated are not in a form that lends itself to straightforward
tests of the WW-type relations as presented in this paper.

For the time being, we content ourselves with rather crude comparisons based on the
lattice data published in Refs. [68, 69]. These early works explored all nucleon and quark
polarizations, but they used a gauge link that does not incorporate the final or initial state
interactions present in SIDIS or Drell–Yan experiments. In other words, the transverse mo-
mentum dependent quantities computed in [68, 69] are not precisely the TMDs measurable
in experiment. More caveats will be discussed along the way.

Let us now translate the approximations (3.6a, 3.6b) into expressions for which we
have a chance to compare them with available lattice data. For that we multiply the
Eqs. (3.6a, 3.6b) by xN with N = 0, 1, 2, . . . and integrate over x ∈ [−1, 1] which yields∫ 1

−1
dx xNg

⊥(1)q
1T (x)

WW–type
≈ 1

N + 2

∫ 1

−1
dx xN+1gq1(x) , (3.11)∫ 1

−1
dx xNh

⊥(1)q
1L (x)

WW–type
≈ − 1

N + 3

∫ 1

−1
dx xN+1 hq1(x) . (3.12)

Here the negative x refer to antiquark distributions gq̄1(x) = + gq1(−x), hq̄1(x) = −hq1(−x),
g
⊥(1)q̄
1T (x) = −g⊥(1)q

1T (−x), h⊥(1)q̄
1L (x) = +h

⊥(1)q
1L (−x) depending on C–parity of the involved

operators [2]. The right-hand sides of Eqs. (3.11, 3.12) are x–moments of parton distribu-
tions, and those can be obtained from lattice QCD using well-established methods based
on operator product expansion. The left-hand sides are moments of TMDs in x and k⊥.
We have to keep in mind that TMDs diverge for large k⊥. Therefore, without regularizing
these divergences in a scheme suitable for the comparison of left and right hand side, a test
of the above relations is meaningless, even before we get to address the issues of lattice
calculations. Let us not give up at this point and take a look at the lattice observables of
Ref. [69] where TMDs were obtained from amplitudes Ãi(l2, . . .) in Fourier space, where
k⊥ is encoded in the Fourier conjugate variable `⊥, which is the transverse displacement
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of quark operators in the correlator evaluated on the lattice. In Fourier space, the afore-
mentioned divergent behavior for large k⊥ translates into strong lattice scale and scheme
dependencies at short distances `⊥ between the quark operators. The k⊥ integrals needed
for the left-hand sides of Eqs. (3.11, 3.12) correspond to the amplitudes at `⊥ = 0, where
scheme and scale dependence is greatest. In Ref. [69] Gaussian fits have been performed to
the amplitudes excluding data at short quark separations `⊥. The Gaussians describe the
long-range data quite well and bridge the gap at short distances `⊥. Taking the Gaussian
fit at `⊥ = 0, we get a value that is (presumably) largely lattice-scheme and scale inde-
pendent. We have thus swept the problem of divergences under the rug. The Gaussian
fit acts as a crude regularization of the divergences that appear in TMDs at large k⊥ and
manifest themselves as short range artifacts on the lattice. Casting this line of thought into
mathematics, we get∫ 1

−1
dx g

⊥(1)q
1T (x) =

∫ 1

−1
dx

∫
d2k⊥

k2
⊥

2M2
g⊥q1T (x, k⊥) = −2Ã7,q(` = 0)

Gauss
= −c7,q (3.13)∫ 1

−1
dx h

⊥(1)q
1L (x) =

∫ 1

−1
dx

∫
d2k⊥

k2
⊥

2M2
h⊥q1T (x, k⊥) = −2Ã10,q(` = 0)

Gauss
= −c10,q (3.14)

where the amplitudes Ã and constants c are those of Ref. [69]. We have thus expressed
the left-hand side of Eqs. (3.11, 3.12) in terms of amplitudes c7,q and c10,q of the Gaussian
fits on the lattice. Before quoting numbers, a few more comments are in order. The
overall multiplicative renormalization in Ref. [69] was fixed by setting the Gaussian integral
c2,u−d of the unpolarized TMD f1 in the isovector channel (u-d) to the nucleon quark
content, namely to 1. One then assumes that the normalization of the lattice results for the
unpolarized TMD f1 also fixes the normalization for polarized quantities correctly. This
assumption holds if renormalization is multiplicative and flavor-independent for the non-
local lattice operators. This is not true for all lattice actions [76]. But presumably it is true if
the lattice action preserves chiral symmetry, as it does in the present case. The Gaussian fits
along with the normalization prescription serve as a crude form of renormalization, and this
is needed to attempt a comparison of left and right hand sides of equations Eqs. (3.11, 3.12).

There is another issue to discuss. The gauge link that goes into the evaluation of the
quark-quark correlator introduces a power divergence that has to be subtracted. Ref. [69]
employs a subtraction scheme on the lattice but establishes no connection with a subtraction
scheme designed for experimental TMDs and the corresponding gauge-link geometry. The
gauge-link renormalization mainly influences the width of the Gaussian fits; the amplitudes
are only slightly affected, so it may not play a big role for our discussion. Altogether, the
significance of our numerical “tests” of WW relations should be taken with a grain of salt.

For the test of (3.11), we use the numbers
∫
dx g

⊥(1)u
1T (x)

Gauss
= −c7,u = 0.1041(85) and∫

dx g
⊥(1)d
1T (x)

Gauss
= −c7,d = −0.0232(42) from [69]. Lattice data for

∫
dxxNgq1(x) [79, 80]

and
∫
dxxNhq1(x) [81] are available for N = 0, 1, 2, 3 . These values have been computed

using (quasi-)local operators that have been renormalized to the MS scheme at the scale
µ2 = 4GeV2. According to [80] (data set 4: with amu,d = 0.020 with mπ ≈ 500 MeV) one
has

∫
dx x gu−d1 (x) = 0.257(10) and

∫
dx x gu+d

1 (x) = 0.159(14). Decomposing the results
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from [80] into individual flavors and inserting them into (3.11), we obtain∫
dx g

⊥(1)u
1T (x)︸ ︷︷ ︸

=0.1041(85) Ref. [69]

!
≈ 1

2

∫
dx x gu1 (x)︸ ︷︷ ︸

=0.104(9) Ref. [80]

,

∫
dx g

⊥(1)d
1T (x)︸ ︷︷ ︸

=−0.0232(42) Ref. [69]

!
≈ 1

2

∫
dx x gd1(x)︸ ︷︷ ︸

=−0.025(9) Ref. [80]

, (3.15)

which confirms the approximation (3.11) for N = 0 within the statistical uncertainties
of the lattice calculations. In order to test (3.12) we use

∫
dx h

⊥(1)u
1L (x)

Gauss
= −c10,u =

−0.0881(72) and
∫
dx h

⊥(1)d
1L (x)

Gauss
= −c10,d = 0.0137(34) from [69] and the lattice data∫

dx xhu1(x) = 0.28(1) and
∫
dx xhd1(x) = −0.054(4) from QCDSF [81].4 Inserting these

numbers into (3.12) for the case N = 0 we obtain∫
dx h

⊥(1)u
1L (x)︸ ︷︷ ︸

=−0.0881(72) Ref. [69]

!
≈ − 1

3

∫
dx xhu1(x)︸ ︷︷ ︸

=−0.093(3) Ref. [81]

,

∫
dx h

⊥(1)d
1L (x)︸ ︷︷ ︸

=0.0137(34) Ref. [69]

!
≈ − 1

3

∫
dx xhd1(x)︸ ︷︷ ︸

=0.018(1) Ref. [81]

, (3.16)

which again confirms the WW-type approximation within the statistical uncertainties of
the lattice calculations.

Several more comments are in order concerning the, at first glance, remarkably good
confirmation of the WW-type approximations by lattice data in Eqs. (3.15, 3.16).

First, the relations refer to lattice parameters corresponding to pion masses of 500 MeV.
We do not need to worry about that too much. The lattice results do provide a valid test of
the approximations in a “hadronic world” with somewhat heavier pions and nucleons. All
that matters in our context is that the relative size of q̄gq–matrix elements is small with
respect to q̄q–matrix elements.

Second, we have to revisit carefully which approximations the above lattice calculations
actually test. As mentioned above, in the lattice study [68, 69], a specific choice for the
path of the gauge link was chosen, which is actually different from the paths required
in SIDIS or Drell–Yan. With the path choice of [68, 69] there are effectively only (T-
even) Ai amplitudes, the Bi amplitudes are absent. Therefore the test (3.15) of the WW-
type approximation (3.11) actually constitutes a test of the WW-approximation (3.2a)
and confirms earlier lattice work [21, 22], (cf. Refs. [30, 31] and Sec. 3.6). Similarly, the
test (3.16) of the WW-type approximation (3.12) actually constitutes a test of the WW-
approximation (3.2b). The latter, however, has not been reported previously in literature,
and constitutes a new result.

4 These numbers are read off from a figure in [81], and were computed on a different lattice. We
interpolate them to a common value of the pion mass mπ ≈ 500 MeV, and estimate the uncertainty
conservatively in order to take systematic effects into account due to the use of a different lattice.
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Third, to be precise, (3.15, 3.16) test the first Mellin moments of the WW approxi-
mations (3.2a, 3.2b), which corresponds to the Burkhardt-Cottingham sum rule for gaT (x)

and an analogous sum rule for haL(x) (see [56] and references therein). In view of the long
debate on the validity of those sum rules [55, 82, 83], this is an interesting result in itself.

It is important to stress that in view of the pioneering and exploratory status of the
TMD lattice calculations [68, 69], this is already a remarkable and very interesting result.
Thus, apart from the instanton calculation [20], also lattice data provide support for the
validity of the WW approximation (3.2b). At the same time, however, we also have to
admit that we do not really reach our goal of testing the WW-type approximations on the
lattice. We have to wait for better lattice data. Meanwhile we may try to gain insights into
the quality of WW-type approximations from models.

3.6 Tests in models

Effective approaches and models such as bag [17, 84–86], spectator [87], chiral quark-soliton
[88], or light-cone constituent [89, 90] models support the approximations (3.2a, 3.2b) for
PDFs within an accuracy of (10− 30) % at low hadronic scale below 1 GeV.

Turning to TMDs, we recall that in models without gluon degrees of freedom certain
relations among TMDs hold, the so-called quark-model Lorentz-invariance relations (qLIRs)
[2, 32].5 Initially thought to be exact [2, 32], qLIRs were shown to be invalid in models
with gluons [91, 92] and in QCD [93]. They originate from decomposing the (completely
unintegrated) quark correlator in terms of Lorentz-invariant amplitudes, and TMDs are
certain integrals over those amplitudes. When gluons are absent, the correlator consists of
twelve amplitudes [2, 32], i.e., fewer amplitudes than TMDs, which implies relations: the
qLIRs. In QCD, the correct Lorentz decomposition requires the consideration of gauge links,
which introduces further amplitudes. As a result one has as many amplitudes as TMDs
and no relations exist [93]. However, qLIRs “hold” in QCD in the WW-type approximation
[30]. In models without gluon degrees of freedom they are exact [30, 31, 86, 87].

The bag, spectator, and light-cone constituent-quark models support the approxima-
tions (3.6a, 3.6b) within an accuracy of (10 − 30) % [86, 87, 89, 90]. The spectator and
bag model support WW-type approximations within (10− 30) % [86]. As they are defined
in terms of quark bilinear expressions (2.10), it is possible to evaluate twist-3 functions
in quark models [17]. The tilde-terms arise due to the different model interactions, and
it is important to discuss critically how realistically they describe the q̄gq–terms of QCD
[94, 95].

In the covariant parton model with intrinsic 3D-symmetric parton orbital motion [96],
quarks are free, q̄gq correlations absent, and all WW and WW-type relations exact [97, 98].
The phenomenological success of this approach [96] may hint at a general smallness of q̄gq
terms, although some of the predictions from this model have yet to be tested [97].

Noteworthy is the result from the chiral quark-soliton model where the WW-type ap-
proximation (3.3b) happens to be exact: xf⊥q(x, k2

⊥) = f q1 (x, k2
⊥) for quarks and antiquarks

5Notice that the qLIRs of [2, 32] are valid only in quark models with no gluons and should not be
confused with the LIRs of [57], which are exact relations in QCD, see Sec. 3.1. In the literature, both are
often simply referred to as LIRs. This ambiguity is unfortunate.
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[94]. The degrees of freedom in this model are quarks, antiquarks, and Goldstone bosons,
which are strongly coupled (the coupling constant is ∼ 4) and has to be solved using nonper-
turbative techniques (expansion in 1/Nc, where Nc is the number of colors) with the nucleon
described as a chiral soliton. In general, the model predicts non-zero tilde-terms, for in-
stance ẽa(x) 6= 0 [99–101]. However, despite strong interactions in this effective theory, the
tilde term f̃⊥q(x, k2

⊥) vanishes exactly in this model [94] and the WW-type approximation
(3.3b) becomes exact at the low initial scale of this model of µ0 ∼ 0.6 GeV.

Let us finally discuss quark-target models, where gluon degrees of freedom are included
and WW(-type) approximations badly violated [91, 92, 102, 103]. This is natural in this
class of models for two reasons. First, quark-mass terms are of O(mq/MN ) and negligible
in the nucleon case, but of O(100 %) in a quark target where mq plays also the role of
MN . Second, even if one refrains from mass terms the approximations are spoiled by gluon
radiation, see for instance [104] in the context of (3.2a). This means that perturbative QCD
does not support the WW-approximations: they certainly are not preserved by evolution.
However, scaling violations per se do not need to be large. What is crucial in this context are
dynamical reasons for the smallness of the matrix elements of q̄gq–operators. This requires
the consideration of chiral symmetry breaking effects reflected in the hadronic spectrum, as
considered in the instanton vacuum model [19, 20] but out of scope in quark-target models.

We are not aware of systematic tests of WW-type approximations for FFs. One infor-
mation worth mentioning in this context is that in spectator models [87] tilde-contributions
to FFs are proportional to the offshellness of partons [94, 95]. This natural feature may
indicate that in the region dominated by effects of small P⊥ tilde-terms might be small.
On the other hand, quarks have sizable constituent masses of the order of few hundred
MeV in spectator models and the mass-terms are not small. The applicability of WW-type
approximations to FFs remains the least tested point in our approach.

3.7 Basis functions for the WW-type approximations

The 6 leading–twist TMDs fa1 , f⊥a1T , g
a
1 , h

a
1, h

⊥a
1 , h⊥a1T and 2 leading–twist FFs Da

1 , H
⊥a
1

provide a basis in the sense that in WW-type approximation all other TMDs and FFs can
either be expressed in terms of these basis functions or vanish. Below we shall see that,
under the assumption of the validity of WW-type approximations, it is possible to express
all SIDIS structure functions in terms of the basis functions.6 These basis functions allow
us to describe, in WW-type approximation, all other TMDs. The experiment will tell us
how well the approximations work. In some cases, however, we know in advance that the
WW-type approximations have limitations, see next Section 3.8.

3.8 Limitation of WW-type approximations

The approximation may work in the case when a TMD or FF = 〈q̄q〉 + 〈q̄gq〉 ≈ 〈q̄q〉 6= 0

with a “controlled approximation” in the spirit of Eq. (3.1). We know cases where this
6Notice that SIDIS alone is not sufficient to uniquely determine the eight basis functions that appear

in six SIDIS leading-twist structure functions. It is thus crucial to take advantage of other processes (like
Drell-Yan and hadron production in e+e− annihilation, which are indispensable for the determination of
fa1 , Da

1 , H⊥a1 ).
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works, see Secs. 3.3, 3.4, but it has to be checked case by case whether |〈q̄gq〉|� |〈q̄q〉| for
a given operator. At least in such cases the approximation has a chance to work.

However, it may happen that after applying the QCD equations of motion one ends
up in the situation that a given function = 〈q̄q〉 + 〈q̄gq〉 with 〈q̄q〉 = 0. This happens for
the T-even TMD ea in Eqs. (3.2c, 3.3a), for the T-odd TMDs eqL, e

q
T , e

⊥q
T , f⊥qL , g⊥q in

Eqs. (3.4a–3.4e), and for the FFs Eq, G⊥q in Eqs. (3.7a, 3.7b) (actually, all twist-3 FFs
are affected, we will discuss this in detail below). In this situation the “leading term” is
absent, so neglecting the “subleading (pure twist-3) term” actually constitutes an error of
100 % even if the neglected matrix element 〈q̄gq〉 is very small. Notice that this occurs for
all subleading-twist FFs that enter SIDIS structure functions only in the shape of tilde-FFs,
see Sec. 2 and Eqs. (2.18). We shall see that some structure functions are potentially more
and others potentially less affected by this generic limitation. In any case, phenomenological
work has to be carried out to find out whether or not the approximation works.

For both FFs and TMDs there are also limitations which go beyond this generic issue.
To illustrate this for FFs we recall that both H

⊥(1)q
1 and H̃q

1 are related to integrals of
an underlying function Hq,=

FU (z, z1) as pointed out in Ref. [57]. Therefore, if one literally
assumed H̃q(z) to be zero, this would imply that also H⊥(1)q

1 would vanish, indicating that
the WW-type approximation has to be used with care for chiral-odd FFs.

Similar limitations exist also for TMDs. This is manifest in particular for those twist-3
T-odd TMDs that appear in the decomposition of the correlator (2.10) with no prefactor
of k⊥. There are three cases: faT (x, k2

⊥), ha(x, k2
⊥), and eaL(x, k2

⊥). Such TMDs in principle
survive integration of the correlator over k⊥ and would have PDF counterparts if there
were not the sum rules in Eq. (2.13). These sum rules arise because hypothetical PDF
versions of T-odd TMDs vanish: they have a simple straight gauge link along the lightcone,
and such objects vanish due to parity and time-reversal symmetry of strong interactions.
This argument does not apply to other T-odd TMDs because they drop out from the k⊥–
integrated correlator due to explicit factors of, e.g., kj⊥ in the case of the Sivers function.

Let us first discuss the case of faT (x, k2
⊥). Taking the WW-type approximation (3.4g)

literally means x
∫
d2k⊥ f

a
T (x, k2

⊥)
!?
= −f⊥(1)a

1T (x) 6= 0, at variance with the sum rule (2.13).
We have xfaT (x, k⊥) = xf̃aT (x, k2

⊥)−f⊥(1)a
1T (x, k2

⊥) from QCD equations of motion [5], which
yields (3.4g). The point is that in this case it is essential to keep the tilde-function. The
situation for the chirally and T-odd twist-3 TMD ha(x, k2

⊥) is analogous. The third function
in (2.13) causes no issues since eaL(x, k2

⊥) = ẽaL(x, k2
⊥) ≈ 0 in WW-type approximation.

Does it mean WW-type approximations fail for faT (x, k2
⊥) and ha(x, k2

⊥)? Not neces-
sarily! The approximations may work in some but not all regions of k⊥, but the sum rules
(2.13) include integration over all k⊥. Notice also that, e.g., f⊥(1),q

1T (x) is related to the soft-
gluon-pole matrix element TF (x, x) [105, 106], which is a q̄gq-term that one would naturally
neglect in WW-type approximation. In this sense (3.4g) could be consistent. Thus, issues
with the sum rules (2.13) do not need to exclude the possibility that the WW-type approx-
imations for faT (x, k2

⊥) and ha(x, k2
⊥) in (3.4g, 3.4h) may work at small k⊥ where we use

them in our TMD approach. This would mean that the UV region is essential to realize the
sum rules (2.13). Alternatively, one could also envision the sum rules (2.13) to be sensitive
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to the IR region through gluonic or fermionic pole contributions manifest in tilde-terms.
Presently too little is known in the theory of subleading-twist TMDs. In Secs. 7.6 and 7.8
we will present pragmatic solutions for how to deal with the TMDs faT (x, k2

⊥) and ha(x, k2
⊥)

phenomenologically. For now let us keep in mind that one has to keep a vigilant eye on all
WW-type approximations, and especially on those for faT (x, k2

⊥) and ha(x, k2
⊥).

As it was mentioned in the Introduction one important limitation concerns the fact that
the WW-type approximations are not preserved under Q2 evolution. Still some intuition
can be obtained from the collinear case: the evolution equations for gaT (x) and haL(x) exhibit
complicated mixing patterns typical for higher twist functions, which simplify to DGLAP-
type evolutions in the limit of a large number of colors Nc and in the limit of large-x [107–
110]. These evolution equations differ from those of the leading-twist functions ga1(x) and
ha1(x). However, since Q2 varies moderately in the considered experiments (e.g. for common
values of x the Q2 at COMPASS is only about a factor 2-3 larger than at HERMES), this
point is not a major uncertainty in our study. More theoretical work will be required
to understand k⊥-evolution effects of subleading twist TMDs in future experiments (EIC)
covering kinematic regions that vary by orders of magnitude in Q2.

4 SIDIS in the WW-type approximation and Gaussian model

In this section, we consequently apply the WW and WW-type approximation to SIDIS,
and describe our procedure to evaluate the structure functions in this approximation and
the Gaussian Ansatz which we use to model the k⊥ dependence of TMDs.

4.1 Leading structure functions amenable to WW-type approximations

The WW and WW-type approximations are useful for the following two leading-twist struc-
ture functions:

F
cos(φh−φS)
LT

WW
= C

[
ω
{1}
B g⊥1TD1

]∣∣∣∣∣ g⊥a1T → ga1
Eq. (3.6a)

, (4.1a)

F sin 2φh
UL

WW
= C

[
ω
{2}
AB h

⊥
1LH

⊥
1

]∣∣∣∣∣ h⊥a1L → ha1
Eq. (3.6b)

. (4.1b)

4.2 Subleading structure functions in WW-type approximations

In the case of the subleading-twist structure functions the WW-type approximations in
(3.3a–3.4h) lead to considerable simplifications. We obtain the approximations

F cosφh
UU

WW
=

2MN

Q
C
[
ω
{1}
A xhH⊥1 − ω

{1}
B x f⊥D1

]∣∣∣∣∣ f⊥a → fa1 , h
a → h⊥a1

with Eqs. (3.3b, 3.4h)

(4.2a)

F sinφh
UL

WW
=

2MN

Q
C
[
ω
{1}
A xhLH

⊥
1

]∣∣∣∣∣ haL → h⊥a1L

(3.3f)

(4.2b)
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F sinφS
UT

WW
=

2MN

Q
C
[
ω{0} x fTD1 −

ω
{2}
B

2
(xhT − xh⊥T )H⊥1

]∣∣∣∣∣ faT → f⊥a1T ,

haT − h
⊥a
T → ha1

(3.4g, 3.3g, 3.3h)

(4.2c)

F
sin(2φh−φS)
UT

WW
=

2MN

Q
C
[
ω
{2}
C x f⊥T D1 +

ω
{2}
AB

2
x(hT + h⊥T )H⊥1

]∣∣∣∣∣ f⊥aT → f⊥a1T ,

(haT + h⊥aT )→ h⊥a1T

(3.4f, 3.3g, 3.3h)

(4.2d)

F sinφh
LU

WW
= 0 (4.2e)

F cosφS
LT

WW
=

2MN

Q
C
[
−ω{0} x gTD1

]∣∣∣∣∣ gaT → ga1
(3.2a)

(4.2f)

F cosφh
LL

WW
=

2MN

Q
C
[
−ω{1}B xg⊥LD1

]∣∣∣∣∣ g⊥aL → ga1
(3.3c)

(4.2g)

F
cos(2φh−φS)
LT

WW
=

2MN

Q
C
[
−ω{2}C xg⊥TD1

]∣∣∣∣∣ g⊥aT → ga1
(3.3d, 3.6a)

(4.2h)

4.3 Gaussian Ansatz for TMDs and FFs

In this work we will use the so-called Gaussian Ansatz for the TMDs and FFs. This Ansatz,
which for a generic TMD or FF is given by

f(x, k2
⊥) = f(x)

e−k
2
⊥/〈k

2
⊥〉

π〈k2
⊥〉

, D(z, P 2
⊥) = D(z)

e−P
2
⊥/〈P

2
⊥〉

π〈P 2
⊥〉

, (4.3)

is popular not only because it considerably simplifies the calculations. In fact, all convo-
lution integrals of the type (2.16) can be solved analytically with this Ansatz. Far more
important is the fact that it works phenomenologically with a good accuracy in many prac-
tical applications [111–116]. Of course this Ansatz is only a rough approximation. For
instance, it is not consistent with general matching expectations for large k⊥ [117].

Nevertheless, if one limits oneself to work in a regime where the transverse momenta (of
hadrons produced in SIDIS, dileptons produced in the Drell–Yan process, etc.) are small
compared to the hard scale in the process, then the Ansatz works quantitatively very well.
The most recent and detailed tests were reported in [114], where the Gaussian Ansatz was
shown to describe the most recent SIDIS data: no deviations were observed within the error
bars of the data provided one takes into account the broadening of the Gaussian widths with
increasing energy [114] according with expectations from QCD [44]. The Gaussian Ansatz is
approximately compatible with the k⊥–shapes obtained from evolution [44] or fits to high-
energy Tevatron data on weak-boson production [118]. Effective models at low [86, 89, 90]
and high [98] renormalization scales support this Ansatz as a good approximation.
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4.4 Evaluation of structure functions in WW-type & Gaussian approximation

The Gaussian Ansatz is compatible with many WW-type approximations, but not all. The
trivial approximations (3.3a) and (3.4a–3.4e) cause no issue. The Gaussian Ansatz can
also be applied to the nontrivial approximations in Eqs. (3.3b–3.3d) and (3.4f), provided
the corresponding Gaussian widths are defined to be equal to each other: for example, in
the WW-type approximation (3.3b), xf⊥q(x, k2

⊥) ≈ f q1 (x, k2
⊥), one may assume Gaussian

k⊥–dependence for f⊥q(x, k2
⊥) and for f q1 (x, k2

⊥) as long as the Gaussian widths of these
two TMDs are assumed to be equal.

In the case of the approximations (3.3e–3.3h) the situation is different because here
twist-3 TMDs are related to transverse moments of twist-2 TMDs. In such cases the Gaus-
sian Ansatz is not compatible with the WW-type approximations: for instance, the approx-
imation (3.3e) relates xgqT (x, k2

⊥) ≈ k2⊥
2M2

N
gq1T (x, k2

⊥), e.g., if gq1T (x, k2
⊥) was exactly Gaussian

then gqT (x, k2
⊥) certainly could not be Gaussian. If one wanted to take the Gaussian Ansatz

and WW-type approximations literally, one clearly would deal with an incompatibility.
However, we of course must keep in mind that both are approximations.

Some comments are in order to understand how the usage of the Gaussian Ansatz and
the WW-type approximations can be reconciled. First, let us remark that the individual
TMDs, say gqT (x, k2

⊥) and gq1T (x, k2
⊥) in our example, may each by itself be assumed to be

approximately Gaussian in k⊥, which is supported by quark model calculations [86]. Second,
we actually do not need the unintegrated WW-type approximations. For phenomenological
applications we can use the WW-type approximations in “integrated form.”

Let us stress that if one took an unintegrated WW-type approximation of the type
xgqT (x, k2

⊥) ≈ k2⊥
2M2

N
gq1T (x, k2

⊥) literally and assumed both TMDs to be exactly Gaussian,
one would find “incompatibilities”, perhaps most strikingly in the limit k⊥ → 0 where the
left-hand side is finite while the right-hand side vanishes. Notice that the failure of the
WW-type approximations (3.3e–3.3h) in the limit k⊥ → 0 is not specific to the Gaussian
model, but a general feature caused by neglecting tilde-terms. This indicates a practical
scheme how to use responsibly the WW-type approximations in Eqs. (3.3e–3.3h).

Our procedure is as follows. In a first step we assume that all TMDs and FFs are
(approximately) Gaussian and solve the convolution integrals. In the second step we use
the integrated WW-type approximations to simplify the results for the structure functions.

Notice that in some cases (when T-even TMDs are involved) one could choose a dif-
ferent order of the steps: first apply WW-type approximations and then solve convolution
integrals with Gaussian Ansatz. In general, this would yield different (and bulkier) ana-
lytical expressions, but we convinced ourselves that the differences are numerically within
the accuracy expected for this approach. However, for the structure functions discussed
in Secs. 7.6 and 7.8, such an “alternative scheme” would give results at variance with the
sum rules for the twist-3 T-odd TMDs in Eq. (2.13), as discussed in Sec. 3.8. The scheme
presented here will allow us to implement those sum rules in a convenient and consistent
way. We will follow up on this in more detail in Secs. 7.6 and 7.8.

To summarize, our procedure is to solve first the convolution integrals with a Gaussian
Ansatz, and use then WW-type approximations. When implementing this procedure we
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will see that the results for the structure functions can be conveniently expressed in terms
of the basis TMDs or their adequate transverse moments.

4.5 Phenomenological information on basis functions

We have seen that the following 6 TMDs and 2 FFs provide a basis (Sec. 3) and allow us
to express all SIDIS structure functions (Sec. 4) in WW-type approximation:

basis: fa1 , f
⊥a
1T , g

a
1 , h

a
1, h

⊥a
1 , h⊥a1T ; Da

1 , H
⊥a
1 . (4.4)

Phenomenological information is available for all basis functions at least to some extent.
In Fig. 3 we present plots of the basis functions, and refer to App. A for details. The four
functions fa1 , ga1 , ha1, Da

1 are related to twist-2 collinear functions. All collinear functions
are calculated at Q2 = 2.4 GeV2 with fa1 (x) from [119], ga1(x) from [63], and Da

1(z) from
[120]. The other four TMDs have no collinear counterparts. For f⊥a1T , h⊥a1 , and H⊥a1 it
is convenient to consider their (1)-moments, for h⊥a1T the (2)-moment; see (B.8) for defini-
tions. This has two important advantages. First, this step simplifies the Gaussian model
expressions, and the Gaussian width parameters are largely absorbed in the definitions of
the transverse moments. Second, the k⊥–moments of these TMDs have in principle simple
definitions in QCD (whereas, e.g., the function f⊥a1T (x) can be computed in models but is
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Figure 3. The basis functions fa1 , ga1 , ha1 , f⊥a1T , h
⊥a
1 , h⊥a1T ; Da

1 , H
⊥a
1 . The parametrizations of

the basis functions and the Gaussian model parameters are described in detail in App. A.
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very cumbersome to define in QCD). The parametrizations for the basis functions read

fa1 (x, k2
⊥) = fa1 (x)

1

π〈k2
⊥〉f1

e−k
2
⊥/〈k

2
⊥〉f1 , (4.5a)

Da
1(z, P 2

⊥) = Da
1(z)

1

π〈P 2
⊥〉D1

e−P
2
⊥/〈P

2
⊥〉D1 , (4.5b)

ga1(x, k2
⊥) = ga1(x)

1

π〈k2
⊥〉g1

e−k
2
⊥/〈k

2
⊥〉g1 , (4.5c)

ha1(x, k2
⊥) = ha1(x)

1

π〈k2
⊥〉h1

e−k
2
⊥/〈k

2
⊥〉h1 , (4.5d)

H⊥a1 (z, P 2
⊥) = H

⊥(1)a
1 (z)

2z2m2
h

π〈P 2
⊥〉2H⊥1

e
−P 2
⊥/〈P

2
⊥〉H⊥1 , (4.5e)

f⊥a1T (x, k2
⊥) = f

⊥(1)a
1T (x)

2M2

π〈k2
⊥〉2f⊥1T

e
−k2⊥/〈k

2
⊥〉f⊥

1T , (4.5f)

h⊥a1 (x, k2
⊥) = h

⊥(1)a
1 (x)

2M2

π〈k2
⊥〉2h⊥1

e
−k2⊥/〈k

2
⊥〉h⊥1 , (4.5g)

h⊥a1T (x, k2
⊥) = h

⊥(2)a
1T (x)

2M4

π〈k2
⊥〉3h⊥1T

e
−k2⊥/〈k

2
⊥〉h⊥

1T . (4.5h)

5 Leading-twist asymmetries and basis functions

In this section we review how the basis functions describe available SIDIS data. This is of
importance to assess the reliability of the predictions presented in the next sections.

5.1 Leading-twist FUU and Gaussian Ansatz

As explained in Sec. 4.3 the Gaussian Ansatz is chosen not only because it considerably
simplifies the calculations, but more importantly because it works phenomenologically with
a good accuracy in many processes including SIDIS [111–116].

The Gaussian Ansatz for the unpolarized TMD and FF is given by Eqs. (4.5a, 4.5b).
The parameters 〈k2

⊥〉f1 and 〈P 2
⊥〉D1 can be assumed to be flavor- and x– or z–independent,

as present data hardly allow us to constrain too many parameters, see App. A.1 for a review.
This assumption can be relaxed, e.g., theoretical studies in chiral effective theories predict
a strong flavor-dependence in the k⊥–behavior of sea and valence quark TMDs [121].

The structure function FUU needed for our analysis reads

FUU (x, z, PhT ) = x
∑
q

e2
q f

q
1 (x)Dq

1(z)G(PhT ) , (5.1a)

FUU (x, z) = x
∑
q

e2
q f

q
1 (x)Dq

1(z) , (5.1b)

where we introduce the notation G(PhT ), which is defined as

G(PhT ) =
exp(−P 2

hT /λ)

π λ
, λ = z2 〈k2

⊥〉f1 + 〈P 2
⊥〉D1 , (5.2)

– 26 –



π+

0.0 0.2 0.4 0.6 0.8 1.0

10-2

10-1

100

PhT
2 (GeV2)

σ
(P
hT2
)/
σ
(0
)

π+

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

1

2

3

4

PhT(GeV)

M
nh

h+

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

PhT
2 (GeV2)

nh

Figure 4. Left panel: FUU (P 2
hT )/FUU (0) for π+ production at JLab with a 5.75 GeV e− beam

[123]. Middle panel: HERMES multiplicity (5.3) at 〈Q2〉 = 2.87 GeV2, 〈x〉 = 0.15, 〈z〉 = 0.22 [124].
Right panel: COMPASS multiplicity (5.4) at 〈Q2〉 = 20 GeV2, 〈x〉 = 0.15, 〈z〉 = 0.2 [125].

with the understanding that the convenient abbreviation λ is expressed in terms of the
Gaussian widths of the preceding TMD and FF. Notice that G(PhT ) ≡ G(x, z, PhT ) and
that in general G(PhT ) appears under the flavor sum due to a possible flavor-dependence of
the involved Gaussian widths. The normalization

∫
d2PhT G(PhT ) = 1 correctly connects

the structure function FUU (x, z, PhT ) in (5.1a) with its PhT –integrated counterpart (5.1b).
In our effective description this step is trivial. In QCD the connection of TMDs to PDFs is
subtle [122]. Figure 4 illustrates how the Gaussian Ansatz describes selected SIDIS data.

Let us begin with JLab where, in the pre-12GeV era, electron beams from CEBAF
with energies in the range 4.3 to 5.7 GeV were scattered off proton or deuterium targets
in the typical kinematics 1 GeV2 < Q2 < 4.5 GeV2, W > 2 GeV, 0.1 < x < 0.6, y < 0.85,
0.5 < z < 0.8. The left panel of Fig. 4 shows basically the SIDIS structure function
FUU (P 2

hT ) normalized with respect to its value at zero transverse hadron momentum7 for
π+ production from a proton target measured in the CLAS experiment with a 5.75 GeV
beam for the kinematics 〈Q2〉 = 2.37 GeV2, 〈x〉 = 0.24, 〈z〉 = 0.30 [123]. Clearly, the
Gaussian model works for the entire region of PhT covered in this experiment, in which the
structure function FUU falls down by 2 orders of magnitude [114].

Next we discuss a representative plot from the HERMES experiment where pions
or kaons were measured in the scattering of 27.6 GeV electrons or positrons of HERA’s
polarized lepton storage ring off proton and deuteron targets in the SIDIS kinematics
Q2 > 1 GeV2, W 2 > 10 GeV2, 0.023 < x < 0.4, y < 0.85, 0.2 < z < 0.7. The middle
panel of Fig. 4 displays the HERMES multiplicity [124]

Mh
n (x, z, PhT ) ≡ dσSIDIS(x, z, PhT )/dx dz dPhT

dσDIS(x)/dx
= 2πPhT

FUU (x, z, PhT )

x
∑

q e
2
q f

q
1 (x)

(5.3)

at 〈Q2〉 = 2.87 GeV2, 〈x〉 = 0.15, 〈z〉 = 0.22 for π+ production on the proton target [124].
Finally we show also a representative plot from the COMPASS experiment where

charged pions, kaons, or hadrons were measured with 160 GeV longitudinally polarized
muons scattered off proton and deuteron targets in the typical SIDIS kinematics Q2 >

1 GeV2, W > 5 GeV, 0.003 < x < 0.7, 0.1 < y < 0.9, 0.2 < z < 1. The right panel of Fig. 4

7Strictly speaking in [123] data for the normalized SIDIS cross section was presented. But these data
correspond to FUU (P 2

hT )/FUU (0) ≡ FUU (〈x〉, 〈z〉, P 2
hT )/FUU (〈x〉, 〈z〉, 0) up to 1/Q2-suppressed terms.
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shows the COMPASS multiplicity [125]

nh(x, z, P 2
hT ) ≡

dσSIDIS(x, z, P 2
hT )/dx dz dP 2

hT

dσDIS(x)/dx
= π

FUU (x, z, P 2
hT )

x
∑

q e
2
q f

q
1 (x)

(5.4)

at 〈Q2〉 = 20 GeV2, 〈x〉 = 0.15, 〈z〉 = 0.2 for h+ production on the deuterium target [125].
To streamline the presentation we refer to the comprehensive App. A on the parametriza-

tions used, and for technical details on the Gaussian Ansatz to App. B.
The description of the HERMES and COMPASS multiplicities in Fig. 4 is good and

sufficient for our purposes, but it is not perfect. The descriptions of the COMPASS data
in the region of small P 2

hT and that of the HERMES data for PhT & 0.3 GeV are not
ideal. However, notice that in our description we use the Gaussian widths as fitted and
employed in the original extractions of the TMDs. These values were not optimized to fit
the HERMES or COMPASS multiplicities. Keeping this in mind, the description in Fig. 4
can be considered as satisfactory. We also remark that we do not take into account k⊥-
broadening effects between HERMES and COMPASS energies and that the HERMES data
actually represent multiplicities integrated (separately for numerator and denominator) over
the kinematic ranges of each bin while the curve is plotted for a fixed set of kinematics.
Through dedicated fits to the HERMES, COMPASS (and other) data and consideration of
k⊥-evolution effects it is possible to obtain a better description than in Fig. 4, see [126].

5.2 Leading-twist ALL and first test of Gaussian Ansatz in polarized scattering

The Gaussian Ansatz is useful in unpolarized case [111–116], but nothing is known about its
applicability to spin asymmetries. The JLab data [127] on ALL(PhT ) put us in the position
to conduct a first “test” for polarized partons. We assume Gaussian form for ga1(x, k2

⊥),
Eq. (4.5c), and use lattice QCD results [68] to estimate the width 〈k2

⊥〉g1 , see App. A.2.
With λ = z2〈k2

⊥〉g1 + 〈P 2
⊥〉D1 implicit in G(PhT ), the structure function FLL reads

FLL(x, z, PhT ) = x
∑
q

e2
q g

q
1(x)Dq

1(z)G(PhT ) , (5.5a)

FLL(x, z) = x
∑
q

e2
q g

q
1(x)Dq

1(z) . (5.5b)
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Figure 5. ALL,〈y〉 as function of PhT vs. JLab data [127] for π+, π0, π−. The solid lines are our
results for the mean values of kinematical variables 〈x〉 = 0.25, 〈z〉 = 0.5, and 〈Q2〉 = 1.67 GeV2.
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The definition of the asymmetry used by the JLab experiment [127] is

ALL,〈y〉(x, z, PhT ) = 〈p2ALL(x, z, PhT )〉 =
〈y(2− y) FLL(x, z, PhT )〉

〈(1 + (1− y)2) FUU (x, z, PhT )〉
, (5.6)

where p2 = y(2−y)/(1+(1−y)2) and averaging (separately in numerator and denominator)
over the kinematics of [127] is implied. We use the lattice data [68] to constrain the Gaussian
width 〈k2

⊥〉g1 as described in App. A.2. All other ingredients in (5.6) are known and tested
through other observables in Sec. 5.1. Therefore the comparison of our results to the JLab
data [127] shown in Fig. 5 provides several important tests. First, the JLab data [127] are
compatible with the Gaussian Ansatz within uncertainties. Second, the lattice results—in
the way we use them in App. A.2—give an appropriate description of the data. (Another
important test was already presented in [127]: the PhT –integrated (“collinear”) asymmetry
(5.5b) is compatible with data from other experiments and theoretical results obtained from
parametrizations of fa1 (x), ga1(x), Da

1(z). This shows that in the pre-12 GeV era one was,
to a good approximation, indeed already probing DIS [127].) We remark that HERMES
and COMPASS data also show flat PhT -distributions [199? ].

Encouraged by these findings we will use lattice predictions from Ref. [68] below also
for the Gaussian widths of g⊥(1)a

1T and h⊥(1)a
1L . Of course, at this point one could argue that

the WW and WW-type approximations (3.6a, 3.6b) also dictate that g⊥1T and h⊥1L have the
same Gaussian widths as g1 and h1. In fact, the lattice results for the respective widths
are numerically similar, which can be interpreted as yet another argument in favor of the
usefulness of the approximations. The practical predictions depend only weakly on the
choice of parameters.

5.3 Leading-twist Asin(φh−φS)
UT Sivers asymmetry

The F sin(φh−φS)
UT structure function is related to the Sivers function [131], which describes

the distribution of unpolarized quarks inside a transversely polarized proton. It has so far
received the widest attention, from both phenomenological and experimental points of view.

The Sivers function f⊥1T is related to initial and final-state interactions of the struck
quark and the rest of the nucleon and could not exist without contributions of orbital angular
momentum of partons to the spin of the nucleon. As such it encodes the correlation between
the partonic intrinsic motion and the transverse spin of the nucleon, and it generates a dipole
deformation in momentum space. The Sivers function has been extracted from SIDIS data
by several groups, with consistent results [46, 112, 132–137].

The structure function F sin(φh−φS)
UT reads

F
sin(φh−φS)
UT (x, z, PhT ) = −x

∑
q

e2
q f
⊥(1)q
1T (x)Dq

1(z) b
(1)
B

(
zPhT
λ

)
G(PhT ) , (5.7a)

F
sin(φh−φS)
UT (x, z, 〈PhT 〉) = −x

∑
q

e2
q f
⊥(1)q
1T (x)Dq

1(z) c
(1)
B

(
z

λ1/2

)
, (5.7b)

where λ = z2〈k2
⊥〉f⊥1T +〈P 2

⊥〉D1 and b(1)
B = 2MN and c(1)

B =
√
πMN , see App. B.5 for details.
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Figure 6. Sivers asymmetry Asin(φh−φS)
UT for a proton target as function of x based on the fit [128]

in comparison to (left panel) HERMES [129] and (right panel) COMPASS [130] data.

Notice that integrating structure functions over PhT is different from integrating the
cross section over PhT where azimuthal hadron modulations drop out. Only if the relevant
weight is ω{0} we obtain “collinear structure functions”: FUU (x, z), FLL(x, z) in Secs. 5.1,
5.2, and below in Secs. 7.2, 7.6. In all other cases, despite integration over PhT , we end up
always with true convoluted TMDs (here within Gaussian model). We stress this impor-
tant point by displaying the dependence of the structure functions on the mean transverse
momentum, e.g., F sin(φh−φS)

UT (x, z, 〈PhT 〉) =
∫
d2PhTF

sin(φh−φS)
UT (x, z, PhT ) in (5.7b).

The asymmetries Asin(φh−φS)
UT = F

sin(φh−φS)
UT /FUU obtained from the fit [128] are plotted

in Fig. 6 as functions of x in comparison to HERMES [129] and COMPASS [130] data on
respectively charged pion and hadron production from a proton target. Notice that the
COMPASS data points seem to be below the theoretical curves which may indicate evolution
effects [49, 138]. We do not show here the description of the PhT –dependence of the data
but it is well described by the fit of [128] which confirms that the Gaussian model works
also in this case. The Sivers function is predicted to enter the description of hadron-hadron
collisions (with transversely polarized protons) with an opposite sign compared to SIDIS
[37, 139, 140]. Recent results on single-spin asymmetries in weak-boson production from
RHIC [141] and Drell–Yan from COMPASS [142, 143] are consistent with this prediction.

5.4 Leading-twist Asin(φh+φS)
UT Collins asymmetry

The F sin(φh+φS)
UT structure function of the SIDIS cross section is due to the convolution of

the transversity distribution h1 and the Collins FF H⊥1 . It describes the distribution of
transversely polarized quarks in a transversely polarized nucleon, and is the only source
of information on the tensor charge of the nucleon. Transversity can also be accessed
as a PDF in Drell–Yan or dihadron production [144–149]. The Collins FF H⊥1 decodes
the fundamental correlation between the transverse spin of a fragmenting quark and the
transverse momentum of the produced final hadron [150]. There are many extractions of h1

and H⊥1 from combined fits of SIDIS and e+e− data, for instance those of Refs. [151–153].
In this work we will use the extractions of h1 and H⊥1 from Ref. [151].

The structure function F sin(φh+φS)
UT reads

F
sin(φh+φS)
UT (x, z, PhT ) = x

∑
q

e2
q h

q
1(x)H

⊥(1)q
1 (z) b

(1)
A

(
zPhT
λ

)
G(PhT ) , (5.8a)
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Figure 7. Collins asymmetry for a proton target vs x based on the fit [151]. (a) Asin(φh+φS)
UT,〈y〉 in

comparison to HERMES [154] data. (b) Asin(φh+φS)
UT in comparison to COMPASS [155] data.

F
sin(φh+φS)
UT (x, z, 〈PhT 〉) = x

∑
q

e2
q h

q
1(x)H

⊥(1)q
1 (z) c

(1)
A

(
z

λ1/2

)
, (5.8b)

where λ = z2〈k2
⊥〉h1 + 〈P 2

⊥〉H⊥1 and b(1)
A = 2mh and c(1)

A =
√
πmh, see App. B.5 for details.

The asymmetries Asin(φh+φS)
UT,〈y〉 = 〈(1−y)F

sin(φh+φS)
UT 〉/〈(1−y+y2/2)FUU 〉 are plotted in

Fig. 7 as functions of x in comparison to HERMES [154] and Asin(φh+φS)
UT = F

sin(φh+φS)
UT /FUU

for COMPASS [155] data on charged-pion production from proton targets. We remark
that the description of the PhT –dependences of this azimuthal spin asymmetry is equally
satisfactory by the fit of Ref. [151], which implies that the data are compatible with the
Gaussian Ansatz also in this case.

5.5 Leading-twist Acos(2φh)
UU Boer–Mulders asymmetry

The structure function F cos(2φh)
UU arises from a convolution of the Collins fragmention func-

tion and the Boer–Mulders TMD h⊥1 , which describes the distribution of transversely po-
larized partons inside an unpolarized target. The expression of this structure function is
given by

F
cos(2φh)
UU (x, z, PhT ) = x

∑
q

e2
q h
⊥(1)q
1 (x)H

⊥(1)q
1 (z) b

(2)
AB

(
zPhT
λ

)2

G(PhT ) , (5.9a)

F cos 2φh
UU (x, z, 〈PhT 〉) = x

∑
q

e2
q h
⊥(1)q
1 (x)H

⊥(1)q
1 (z) c

(2)
AB

(
z

λ1/2

)2

, (5.9b)

where λ = z2〈k2
⊥〉h⊥1 + 〈P 2

⊥〉H⊥1 and b(2)
AB = 4MNmh and c(2)

AB = 4MNmh, see App. B.5.

The asymmetries Acos(2φh)
UU,〈y〉 = 〈(1−y)F

cos(2φh)
UU 〉/〈(1−y+y2/2)FUU 〉 for HERMES [157]

and A
cos(2φh)
UU = F

cos(2φh)
UU /FUU for COMPASS [158] are plotted in Fig. 8, where we only

considered the Boer–Mulders contribution to Acos(2φh)
UU , which does not describe the data

well. Especially for COMPASS one can see that calculation and data are of opposite signs.
In fact, it is suspected that this observable receives a significant contribution from the Cahn
effect [159], a term of higher-twist character of the type 〈P 2

hT 〉/Q2, which is not negligible
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Figure 8. The asymmetry Acos(2φh)
UU,〈y〉 for a proton target as function of x based on the fit [156] in

comparison to (left panel) HERMES [157] and Acos(2φh)
UU (right panel) COMPASS data [158].

in fixed-target experiments as shown in phenomenological [114] and model [160] studies. In
the phenomenological works [156, 161, 162], an attempt was made to estimate and correct
for this contribution in order to obtain a picture of the Boer–Mulders function undistorted
from Cahn effect. The point is that this substantial twist-4 contamination can be estimated
phenomenologically, even though there is no rigorous theoretical basis for the description
of such power-suppressed terms. In this work we consistently neglect power-suppressed
contributions of order 1/Q2, and do so also in Fig. 8. Nevertheless, we of course use the
parametrizations of [156, 161, 162] offering the best currently available parametrizations for
h⊥1 , which were corrected for the Cahn effect as good as it is possible at the current state of
art. It is unknown whether other asymmetries could be similarly effected by such type of
power corrections. This is an important point to be kept in mind as the lesson from Fig. 8
shows.

5.6 Leading-twist Asin(3φh−φS)
UT asymmetry

The pretzelosity TMD h⊥q1T is the least known basis function. It is of interest as it allows one
to measure the deviation of the nucleon spin density from spherical shape [12], is related to
the only leading-twist SIDIS structure function where the small-PhT description in terms
of TMDs and the large-PhT expansion in perturbative QCD mismatch [117], and is the
only TMD where a clear relation to quark orbital angular momentum could be established
(albeit only within quark models) [86, 163–165].

The structure function F sin(3φh−φS)
UT reads

F
sin(3φh−φS)
UT (x, z, PhT ) = x

∑
q

e2
q h
⊥(2)q
1T (x)H

⊥(1)q
1 (z) b(3)

(
zPhT
λ

)3

G(PhT ) , (5.10a)

F
sin(3φh−φS)
UT (x, z, 〈PhT 〉) = x

∑
q

e2
q h
⊥(2)q
1T (x)H

⊥(1)q
1 (z) c(3)

(
z

λ1/2

)3

, (5.10b)

where λ = z2〈k2
⊥〉h⊥1T +〈P 2

⊥〉H⊥1 and b(3) = 2M2
Nmh and c(3) = 3/2

√
πM2

Nmh, see App. B.5.
In Eq. (5.10a) we see that this structure function suffers a cubic suppression for small
transverse hadron momenta.
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Figure 9. A
sin(3φh−φS)
UT as a function of x from preliminary COMPASS [166] (a,b) and Asin(3φh−φS)

UT,〈y〉
for HERMES [167] (c) in comparison to the best fit from [168] (whose 1-σ uncertainty band is
compatible with zero), and our calculation for COMPASS kinematics (d). For comparison the
COMPASS plots show the model results [169, 170]. [We remark that in this and several subsequent
figures we have the permission to show the preliminary data [166] only in the official figures provided
by the COMPASS collaboration in (a,b), and have to display our results separately in (d). Notice
also the different scale on the y-axis in panel (d) as compared to (a,b).]

Preliminary COMPASS data [166] for Asin(3φh−φS)
UT = F

sin(3φh−φS)
UT /FUU and prelimi-

nary HERMES data [167] forAsin(3φh−φS)
UT,〈y〉 = 〈(1− y)F

sin(3φh−φS)
UT 〉/〈(1− y + y2/2)FUU 〉 are

plotted in Fig. 9. Clearly, the pretzelosity TMD is the least known of the basis TMDs.
Nevertheless it is of fundamental importance, as it provides one of the basis functions in
our approach. It is so difficult to access it experimentally, because its contribution to the
SIDIS cross section is proportional to P 3

hT , the TMD approach requires us to necessarily
operate at PhT � Q, and so far only moderate values of Q could be achieved in the fixed
target experiments. Future high-luminosity data from JLab 12 are expected to significantly
improve our knowledge of this TMD.

For comparison Fig. 15 shows also the results from the quark-diquark model calculation
of Ref. [169], and from the light-cone constituent quark model of Ref. [170].

5.7 Statistical and systematic uncertainties of basis functions

Even the well-known collinear functions fa1 (x) and ga1(x) have statistical uncertainties and
systematic uncertainties (the latter introduced by choosing a certain fit Ansatz, which
however can be avoided through neural-network techniques [171]). These uncertainties as
well as those of Da

1(z) can safely be neglected for our purposes. For TMDs the situation
is different. Already the transverse momentum descriptions of fa1 (x, k2

⊥) and Da
1(z, P 2

⊥)

are associated with non-negligible statistical uncertainties, which are reviewed in App. A,
and with systematic uncertainties that are very difficult to assess as they are related to
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model bias (because of Gaussian model and its limitations). The statistical and systematic
uncertainties are significant when we deal with the basis functions f⊥q1T , h

q
1, H

⊥q
1 . The

least well-controlled uncertainties are associated with the Boer–Mulders function h⊥q1 and
pretzelosity h⊥q1T .

In this work we are not interested in these uncertainties, which future data will allow
us to diminish, even though in practice they may be sizable. Rather in this work we
are interested in making projections based on the WW-type approximation. To avoid
cumbersome and difficult-to-interpret figures, we will therefore refrain from indicating the
uncertainties associated with our current knowledge of the basis functions. In the following
we will only display the estimated systematic uncertainty associated with the WW-type
approximations assuming it works within a relative accuracy of ±40%. We stress that this
is only to simplify the presentation. The actual uncertainty of the predictions may be larger.

6 Leading-twist asymmetries in WW-type approximation

Two out of the eight leading-twist structure functions can be described in the WW-type
approximation thanks to Eqs. (3.6a, 3.6b), which relate g⊥(1)q

1T (x) and h
⊥(1)q
1L (x) to the

basis functions gq1(x) and ha1(x), see Fig. 10. These TMDs are sometimes referred to as
“worm gear” functions, where g⊥q1T describes the distributions of longitudinally polarized
quarks inside a transversely polarized nucleon, and h⊥q1L the opposite configuration, namely
transversely polarized quarks inside a longitudinally polarized nucleon. It is interesting that
both cases can be expressed in the WW-type approximation in terms of the basis functions.
In this section we discuss the associated asymmetries.

6.1 Leading-twist Acos(φh−φS)
LT

We assume for g⊥1T the Gaussian Ansatz as shown in (B.9a) of App. B.3, see also [28], and
evaluate g⊥(1)q

1T (x) using (3.6a), which yields the result shown in Fig. 10. For our numerical
estimates we use 〈k2

⊥〉g⊥1T = 〈k2
⊥〉g1 , which is supported by lattice results [68].
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Figure 10. g
⊥(1)q
1T (x) (left panel) and h⊥(1)q1L (x) distributions (right panel) for up and down flavor

as predicted by the WW-type approximations in Eqs. (3.6a, 3.6b).

– 34 –



-210 -110 1

-0.2

-0.1

0

0.1

0.2
preliminaryCOMPASS +h

Proton 2010 data

)
Sϕ-

hϕ
co

s(

LT
A

x

PRD73:114017(2006)

arXiv:0806.3804 [hep-ph]
PRD79:094012(2009)

PRD73:114017(2006) updated

-210 -110 1

-0.2

-0.1

0

0.1

0.2
COMPASS preliminary-h

)
S

-ϕ
h

co
s(

ϕ
LT

A

x

PRD73:114017(2006)
PRD73:114017(2006) updated
arXiv:0806.3804 [hep-ph]
PRD79:094012(2009)

Proton 2010 data

h+

h-

0.01 0.05 0.10

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

x

A
L
T
co
s(
Φ
h
-
Φ
S
)

(a) (b) (c)

Figure 11. Leading-twist Acos(φh−φS)
LT : preliminary COMPASS data [166] (a,b); and our cal-

culation for COMPASS kinematics (c) shown separately for reasons explained in the caption of
Fig. 9.

In the Gaussian Ansatz the structure function F cos(φh−φS)
LT has the form

F
cos(φh−φS)
LT (x, z, PhT ) = x

∑
q

e2
q g
⊥(1)q
1T (x)Dq

1(z) b
(1)
B

(
zPhT
λ

)
G(PhT ) (6.1a)

F
cos(φh−φS)
LT (x, z, 〈PhT 〉) = x

∑
q

e2
q g
⊥(1)q
1T (x)Dq

1(z) c
(1)
B

(
z

λ1/2

)
(6.1b)

where λ = z2〈k2
⊥〉g⊥1T + 〈P 2

⊥〉D1 , b
(1)
B = 2MN , c

(1)
B =

√
πMN , see App. B.5 for details.

This asymmetry was measured at JLab [172], COMPASS [173–175] and HERMES [176,
177] (for the latter two experiments only preliminary results are available so far). Figure 11
shows the preliminary results from the 2010 COMPASS data [166], in addition to our calcu-
lation, where we approximate the charged hadrons (70–80 % of which are π± at COMPASS)
by charged pions, see App. A.1. We observe that the WW-type approximation describes
the data within their experimental uncertainties. For comparison also results from the the-
oretical works [28, 169, 170] are shown. Our results are also compatible with the JLab data,
which were taken with a neutron (3He) target [172] and have larger statistical uncertainties
than the preliminary COMPASS and HERMES data.

6.2 Leading-twist Asin 2φh
UL Kotzinian–Mulders asymmetry

We use the Gaussian form for the Kotzinian–Mulders function h⊥a1L , (B.9b) in App. B.3, with
〈k2
⊥〉h⊥1L = 〈k2

⊥〉h1 as supported by lattice data [68]. From (3.6b) we obtain the WW-type

estimate for h⊥(1)a
1L (x) shown in Fig. 10. The structure function F sin(2φh)

UL reads

F
sin(2φh)
UL (x, z, PhT ) = x

∑
q

e2
q h
⊥(1)q
1L (x)H

⊥(1)q/h
1 (z)

(
zPhT
λ

)2

b
(2)
AB G(PhT ) , (6.2a)

F
sin(2φh)
UL (x, z, 〈PhT 〉) = x

∑
q

e2
q h
⊥(1)q
1L (x)H

⊥(1)q/h
1 (z)

(
z

λ1/2

)2

c
(2)
AB , (6.2b)

where λ = z2〈k2
⊥〉h⊥1L + 〈P 2

⊥〉H⊥1 and b(2)
AB = c

(2)
AB = 4MNmh, see App. B.5 for details.

The asymmetry Asin(2φh)
UL = F

sin(2φh)
UL /FUU was studied at HERMES [178, 181], COM-

PASS [175, 179], and JLab [127, 180]. In Fig. 12 proton data are shown for π± in the
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Figure 12. Leading twist Asin(2φh)
UL vs. x from HERMES [178] and COMPASS [175, 179] (a, b),

A
sin(2φh)
UL,〈y〉 from JLab [180] (c), and from our calculation for COMPASS kinematics in the WW-type

approximation (d) shown separately for reasons explained in the caption of Fig. 9. Results from
[29] are also shown in comparison to the COMPASS data.

HERMES experiment measured with the 27.6 GeV positron beam of HERA for 1 GeV2 <

Q2 < 15 GeV2, W > 2 GeV, 0.023 < x < 0.4, and y < 0.85. The COMPASS data were
taken in 2007 (160 GeV) and 2011 (200 GeV) and show the asymmetry for charged hadrons
(in practice mainly pions). Since y–dependent prefactors were included in the analyses
(see Sec. 2.1), the HERMES data are adequately (“D(y) –”)rescaled. The CLAS π0 data
in the right panel were measured using 6GeV longitudinally polarized electrons scattering
off longitudinally polarized protons in a cryogenic 14NH3 target in the kinematic region of
1.0 GeV2 < Q2 < 3.2 GeV2, 0.12 < x < 0.48 and 0.4 < z < 0.7 [180].

A
sin(2φh)
UL can be expected to be smaller than A

cos(φh−φS)
LT discussed in Sec. 6.1, even

though both are leading twist. This is because F sin(2φh)
UL is quadratic in the hadron transverse

momenta PhT , while F
cos(φh−φS)
LT is linear. In addition, the former is proportional to the

Collins function, which is smaller than Dq
1(z), and the WW-type approximation predicts

the magnitude of h⊥(1)q
1L (x) to be about half of the size of g⊥(1)q

1T (x). The data support these
expectations. HERMES and JLab data are compatible with zero for this asymmetry. So
are the preliminary COMPASS data except for the region x > 0.1 for negative hadrons,
where the trend of the data provides a first encouraging confirmation for our results. Thus
current data are compatible with the WW-type approximation for h⊥(1)q

1L (x).
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6.3 Inequalities and a cross check

We discussed WW-type approximations for the twist-2 TMDs g⊥q1T and h⊥q1L in Secs. 6.1, 6.2.
Before proceeding with twist-3 let us pause and revisit positivity bounds [15].

The Kotzinian–Mulders function h⊥q1L in conjunction with the Boer–Mulders function,
and the TMD g⊥q1T in conjunction with the Sivers function obey the positivity bounds [15]

k2
⊥

4M2
N

(
(f q1 (x, k2

⊥))2 − (gq1(x, k2
⊥))2

)
− (h

⊥(1)q
1L (x, k2

⊥))2 − (h
⊥(1)q
1 (x, k2

⊥))2 ≥ 0 , (6.3a)

k2
⊥

4M2
N

(
(f q1 (x, k2

⊥))2 − (gq1(x, k2
⊥))2

)
− (f

⊥(1)q
1T (x, k2

⊥))2 − (g
⊥(1)q
1T (x, k2

⊥))2 ≥ 0 , (6.3b)

where f (1)(x, k2
⊥) ≡ k2⊥

2M2
N
f(x, k2

⊥). The inequalities provide a non-trivial test of our ap-
proach. The inequalities (6.3a, 6.3b) must be strictly satisfied by the exact leading-order
QCD expressions for the TMDs. (For PDFs it is known that positivity can be preserved
in some schemes and violated in others. For TMDs not much is known about positivity
conditions beyond leading order.) However, here we do not deal with exact TMDs but
(i) we invoked strong model assumptions (WW-type approximations for g⊥q1T and h⊥q1L and
Gaussian Ansatz for all TMDs), and (ii) we deal with first extractions, which have sizable
uncertainties including poorly controlled systematic uncertainties. Therefore, considering
that we deal with approximations (WW-type, Gauss) and considering the current state of
TMD extractions, the inequalities (6.3a, 6.3b) constitute a challenging test for the approach.

In order to conduct a test we use the Gaussian Ansatz (4.5a, 4.5d, 4.5f, 4.5g, B.9a,
B.9b) for the TMDs and integrate over k⊥. The results are shown in Fig. 13, where we plot
the “normalized inequalities” defined as follows: given an inequality a − b − . . . ≥ 0, the
normalized inequality is defined as: 0 ≤ (a− b− . . . )/(|a|+|b|+ . . . ) ≤ 1.

Figure 13 shows that the results of our approach for the “normalized inequalities” for
both TMDs lie between zero and one, as it is dictated by positivity constraints. This is an
important consistency cross-check for our approach.
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Figure 13. The normalized inequalities for g⊥(1)q1T (x) and h
⊥(1)q
1L (x) vs. x which are obtained

by integrating (6.3a) and (6.3b) over k⊥ and normalizing with respect to the sum of the absolute
values of the individual terms. The result must be positive and smaller than unity if the WW-type
approximations and the application of the Gaussian model are compatible with positivity, see text.
Clearly, our approach respects this test of the positivity conditions.
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7 Subleading-twist asymmetries in WW-type approximation

WW-type approximations can be applied to all eight twist-3 asymmetries, see Sec. 4.2. In
this section we discuss all of them, starting with less complex cases and proceeding then to
those structure functions whose description in WW-type approximation is more involved.

7.1 Subleading-twist Asinφh
LU

We start our discussion with the structure function F sinφh
LU , Eq. (2.18b), containing four

terms: two are proportional to the pure twist-3 fragmentation functions G̃⊥a and Ẽa; the
other two terms are proportional to the twist-3 TMDs ea and g⊥a, which also turn out
to be given in terms of pure twist-3 terms upon the inspection of (3.3a, 3.4d). Hence,
after consequently applying the WW-type approximation, we are left with no term. Our
approximation predicts this structure function to be zero.

In this asymmetry we encounter the generic limitation of the WW-type approximation
in most extreme form. As discussed in Sec. 3.8, if we have a function = 〈q̄q〉 + 〈q̄gq〉
the necessary condition for the approximation to work is that 〈q̄q〉 6= 0 and the sufficient
condition would be |〈q̄q〉|� |〈q̄gq〉|. Remarkably, none of the twist-3 TMDs or FFs entering
this structure function satisfy even the necessary condition. In this situation we do not
expect the WW-type approximation to work.

Indeed, data from COMPASS, HERMES, and JLab show a clearly non-zero asymmetry
Asinφh
LU = F sinφh

LU /FUU of the order of 2% [158, 182–186] (which includes the 1/Q factor
intrinsic in twist-3 observables; without this factor the asymmetry would reach 10% at
large x at COMPASS). This observable provides a unique opportunity to learn about the
physics of q̄gq-terms, but is beyond the applicability of the WW-type approximation.

With the numerator of the asymmetry proportional to q̄gq–terms and the denominator
given in terms of q̄q–terms, one could be tempted to interpret this observation as

Asinφh
LU ∝ 〈q̄gq〉

〈q̄q〉
exp∼ O(2 %) . (7.1)

Thus, in some sense the observed effect hints at the smallness of the involved q̄gq–terms.
While in principle a correct observation, one should keep in mind several reservations.
First, the experimental result (7.1) contains kinematic prefactors, which help to reduce
the value. Second, the denominator contains fa1 and Da

1 , which are the largest TMD and
FF because of positivity constraints. Third, the numerator is a sum of four terms, so its
overall smallness could result from cancellation of different terms, rather than indicating
that each single q̄gq–term is small. Fourth, some asymmetries predicted to be non-zero in
WW-approximation are not larger and in some cases even smaller than the result in (7.1).

To conclude, the WW-type approximation predicts Asinφ
LU ≈ 0 in contradiction to ex-

periment. The size of the observed effect seems in line with the WW-type approximation,
as Asinφh

LU ∼ 〈q̄gq〉/〈q̄q〉 ∼ O(2 %) is not large, although this interpretation has reserva-
tions. F sinφ

LU is the only twist-3 SIDIS structure function not “contaminated” by leading
twist. Attempts to describe this observable and relevant model studies have been reported
[34, 55, 94, 99–101, 187? –196]. But more phenomenological work and dedicated studies
on the basis of models of q̄gq terms are needed to fully understand this asymmetry.
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7.2 Subleading-twist AcosφS

LT

In the WW-type approximation the structure function F cosφS
LT arises from gaT (x, k2

⊥) and
Da

1(z, P 2
⊥), whose collinear counterparts are more or less known, see Secs. 3.4 and 5.1. We

assume the Gaussian Ansatz for gaT (x, k2
⊥), shown in (B.9c) of App. B.3, with 〈k2

⊥〉gT =

〈k2
⊥〉g1 . We then determine gqT (x) according to (3.2a), which is a well-tested approximation

in DIS, see Sec. 3.4. In this way we obtain for F cosφS
LT the result

F cosφS
LT (x, z, PhT ) = −2MN

Q
x2
∑
q

e2
q g

q
T (x)Dq

1(z) G(PhT ) , (7.2a)

F cosφS
LT (x, z) = −2MN

Q
x2
∑
q

e2
q g

q
T (x)Dq

1(z) , (7.2b)

with the width λ = z2〈k2
⊥〉gT + 〈P 2

⊥〉D1 in the Gaussian G(PhT ).
Notice that we followed here the scheme explained in Sec. 4.4: first assume Gaussian

Ansatz, then apply WW-type approximation. For some structure functions the order of
these steps is not relevant, but here it is. It is instructive to discuss what the opposite order
of these steps would yield. Using first the WW-type approximation (3.3e) in the convolution
integral (3.2a) and then using the Gaussian Ansatz yields a bulkier analytical expression
than (7.2a) though a numerically similar result. But there are two critical issues with that.
First, the WW-type approximation (3.3e) relates xgqT (x, k2

⊥) = g
⊥(1)q
1T (x, k2

⊥) which would
imply gqT (x, k2

⊥)→ 0 for k⊥ → 0 due to the weight k2
⊥/(2M

2
N ) in the (1)-moment, which is

not supported by model calculations [86]. Second, the more economic (because less bulky)
expression in (7.2a) automatically yields (7.2b), which is the correct collinear result for
this SIDIS structure function in (2.20c) in WW-type approximation. This technical remark
confirms the consistency of the scheme suggested in Sec. 4.4.

Figure 14 shows our predictions for AcosφS
LT in comparison to preliminary COMPASS

data [166]. The predicted asymmetry is small and compatible with the COMPASS data
within uncertainties. Preliminary HERMES data [177] confirm a small asymmetry. More
precise data are necessary to judge how well the WW-type approximation works in this
case. Such data could come from the JLab12 experiments. For further model studies of
this asymmetry we refer to Refs. [197, 198].

COMPASS preliminary
Proton 2010 data

-210 -110 1

-0.2

-0.1

0

0.1

0.2
h+

S
co

sϕ

LT
A

x

arXiv:0806.3804 [hep-ph]

COMPASS preliminary
Proton 2010 data

-210 -110 1

-0.2

-0.1

0

0.1

0.2

-h

S
co

sϕ

LT
A

x

arXiv:0806.3804 [hep-ph]

h+

h-

0.01 0.05 0.10 0.50

-0.06

-0.04

-0.02

0.00

0.02

0.04

x

A
L
T
co
s(
Φ
S
)

(a) (b) (c)

Figure 14. Subleading-twist asymmetry AcosφS

LT as function of x from scattering of 160 GeV longi-
tudinally polarized muons off a transversely polarized proton target [166] (a,b), and our calculation
for COMPASS kinematics (c) where a different scale is chosen to better visualize the theory curves.
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7.3 Subleading-twist Acos(2φh−φS)
LT

In the WW-type approximation this asymmetry is expressed in terms of g⊥aT (x, k2
⊥), for

which we assume a Gaussian Ansatz according to (B.9d) in App. B.3, and use the WW-
type approximation (3.3d) as

xg
⊥(2)q
T (x) =

〈k2
⊥〉g⊥1T
M2
N

g
⊥(1)q
1T (x) , (7.3)

where we finally express g⊥(1)q
1T (x) in terms of gq1(x) according to Eq. (3.6a). For the Gaus-

sian widths we assume 〈k2
⊥〉g⊥T = 〈k2

⊥〉g⊥1T = 〈k2
⊥〉g1 . This yields for the structure function

F
cos(2φh−φS)
LT (x, z, PhT ) = −2MN

Q
x
∑
q

e2
q x g

⊥(2)q
T (x)Dq

1(z) b
(2)
C

(
zPhT
λ

)2

G(PhT ),(7.4a)

F
cos(2φh−φS)
LT (x, z, 〈PhT 〉) = −2MN

Q
x
∑
q

e2
q x g

⊥(2)q
T (x)Dq

1(z) c
(2)
C

(
z

λ1/2

)2

(7.4b)

where λ = z2〈k2
⊥〉g⊥T + 〈P 2

⊥〉D1 and b(2)
C = c

(2)
C = M2

N , see App. B.5 for details.

Our predictions for the asymmetry Acos(2φh−φS)
LT = F

cos(2φh−φS)
LT /FUU as a function of

x are displayed in Fig. 15 in addition to preliminary COMPASS data from Ref. [166]. The
asymmetry is very small, so at the current stage one may conclude that the WW-type
approximation for the asymmetry Acos(2φh−φS)

LT is compatible with available data. In view
of the smallness of the effect (cf. Fig. 15), it might be difficult to obtain more quantitative
insights in the near future.

For completeness, Fig. 15 shows also results from a quark-diquark model calculation,
where a more sizable asymmetry was predicted [169]. Let us remark that the Acos(2φh−φS)

LT

asymmetry was also studied in a different spectator model in Ref. [197] predicting asym-
metries of the same sign but of smaller magnitudes of O(1 %).
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Figure 15. A
cos(2φh−φS)
LT as a function of x from a proton target: preliminary COMPASS data

[166] (a,b), and our calculation for COMPASS kinematics (c) shown separately for reasons explained
in the caption of Fig. 9.
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Figure 16. A
cos(φh)
LL as a function of x: preliminary COMPASS data [175, 179] (a,b), and our

calculation for COMPASS kinematics in WW-type approximation (c) shown separately for reasons
explained in the caption of Fig. 9.

7.4 Subleading-twist Acosφh
LL

In WW-type approximation the only contribution to F cosφh
LL is due to g⊥qL (x, k2

⊥), which we
assume to have a Gaussian k⊥–behavior according to (B.9e) in App. B.3 with the Gaussian
width 〈k2

⊥〉g⊥L = 〈k2
⊥〉g1 . The structure function F cosφh

LL reads

F cosφh
LL (x, z, PhT ) = − 2MN

Q
x
∑
q

e2
q x g

⊥(1)q
L (x)Dq

1(z) b
(1)
B

(
zPhT
λ

)
G(PhT ) , (7.5a)

F cosφh
LL (x, z, 〈PhT 〉) = − 2MN

Q
x
∑
q

e2
q x g

⊥(1)q
L (x)Dq

1(z) c
(1)
B

(
z

λ1/2

)
, (7.5b)

where λ = z2〈k2
⊥〉g⊥L + 〈P 2

⊥〉D1 , b
(1)
B = 2MN , c

(1)
B =

√
πMN , see App. B.5. Finally we

explore the WW-type approximation (3.3c) to relate x g⊥(1)a
L (x) =

〈k2⊥〉g1
2M2

N
ga1(x).

The asymmetry Acosφh
LL = F cosφh

LL /FUU predicted by the WW-type approximation in
this case is compatible with preliminary COMPASS [175, 179] (see Fig. 16) and HERMES
[199] data. We remark that previously this asymmetry was studied in basically WW-type
approximation in [200] and more recently also in a model study [201]. The predictions from
both works are included in Fig. 16 for comparison.

7.5 Subleading-twist Asinφh
UL

This was historically the first measurement of a single-spin asymmetry in SIDIS, by HER-
MES [178, 202], and consequently subject to numerous phenomenological and model studies
[203–210]. A more recent model study was reported in [211].

In WW-type approximation Asinφh
UL is described by hqL(x, k2

⊥), for which we assume the
Gaussian Ansatz (B.9f) in App. B.3 with 〈k2

⊥〉hL = 〈k2
⊥〉h1 . We explore (3.3f) to estimate

xhqL(x) = −2h
⊥(1)q
1L (x) and express h⊥(1)q

1L (x) through ha1(x) according to (3.6b). This yields
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Figure 17. Asinφh

UL for proton vs. x from WW-type approximation and comparison to the data.
π± from HERMES [212] (a), π0 from HERMES (blue) [202] and JLab (red) [180] (b), prelimi-
nary COMPASS data [175, 179] (c,d), and our calculation for COMPASS kinematics in WW-type
approximation (e) shown separately for reasons explained in the caption of Fig. 9.

F sinφh
UL (x, z, PhT ) =

2MN

Q
x
∑
q

e2
q xh

q
L(x)H

⊥(1)q
1 (z) b

(1)
A

(
zPhT
λ

)
G(PhT ) , (7.6a)

F sinφh
UL (x, z, 〈PhT 〉) =

2MN

Q
x
∑
q

e2
q xh

q
L(x)H

⊥(1)q
1 (z) c

(1)
A

(
z

λ1/2

)
(7.6b)

where λ = z2〈k2
⊥〉hL + 〈P 2

⊥〉H⊥1 and b(1)
A = 2mh and c(1)

A =
√
πmh, see App. B.5 for details.

The asymmetries Asinφh
UL = F sinφh

UL /FUU are compared to HERMES, JLab, and prelimi-
nary COMPASS data in Fig. 17. The WW-type approximation seems not incompatible with
data for negative pions and hadrons, but underestimates the magnitude of the asymmetry
for positive pions and hadrons at HERMES and COMPASS. For neutral pions the approx-
imation predicts a negligibly small effect (due to cancelling contributions from favored und
unfavored Collins fragmentation function) and is not able to explain the large effect ob-
served at HERMES and JLab for π0 in the large–x region 0.1 < x < 0.5 in Fig. 17. This
indicates that in this asymmetry the tilde-terms are not negligible, and have a characteristic
flavor dependence that is distinct from that of the Collins effect.
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Figure 18. Subleading-twist asymmetry AsinφS

UT (x), which is predicted to vanish in the WW-type
approximation: preliminary COMPASS [166] (a,b), and HERMES data [167] (c).

7.6 Subleading-twist AsinφS

UT

In this structure function some interesting new features occur. The first feature is that after
applying theWW-type approximation, not one but three terms are left, cf. Eqs. (2.18e, 4.2c):
two terms proportional to h⊥qT (x, k2

⊥) and hqT (x, k2
⊥), respectively, and one term propor-

tional to f qT (x, k2
⊥), which is associated with the second interesting feature. This T-odd

TMD must satisfy the sum rule
∫
d2k⊥ f

q
T (x, k2

⊥) = 0, see (2.13) and Sec. 3.8. This could
be implemented in two ways. One could describe it with a superposition of Gaussians, see
App. B.4. But at this point we have no guidance from phenomenology or theory to fix ad-
ditional parameters. So we choose an alternative and pragmatic solution, namely to neglect
the contribution of f qT (x, k2

⊥).8 Assuming Gaussian Ansatz (B.9g, B.9h) for h⊥qT (x, k2
⊥),

hqT (x, k2
⊥) in App. B.3 and relating them to transversity via the WW-type approximations

(3.3g, 3.3h), the expression for F sinφS
UT is given in terms of a single term

F sinφS
UT (x, z, PhT ) =

2MN

Q
x
∑
q

e2
q h

(1)q
1 (x)H

⊥(1)q
1 (z)

4z2mhMN

λ

(
1−

P 2
hT

λ

)
G(PhT )

(7.7a)

F sinφS
UT (x, z) = 0 . (7.7b)

with λ = z2〈k2
⊥〉h⊥T + 〈P 2

⊥〉H⊥1 and 〈k2
⊥〉h⊥T = 〈k2

⊥〉hT = 〈k2
⊥〉h1 . The third interesting feature

is the occurrence of a term that drops out upon integrating the structure function over PhT ,
cf. (7.7a) vs. (7.7b). This is a property of the weight ω{2}B , see (2.19) and App. B (which
appears also in F cosφS

LT , (2.18f), where it drops out in WW-type approximation). This
property can help to discriminate experimentally the terms associated with this weight.

The final result in (7.7b) is the consistent result for F sinφS
UT (x, z) in WW-type approx-

imation, see (2.20d). Our prediction is therefore AsinφS
UT (x) = 0. Preliminary COMPASS

[166] (Fig. 18 top) and HERMES [167] (Fig. 18 bottom) data indicate that at x & 0.1 the
signal is clearly non-zero and thus inconsistent with this WW-type prediction. In order to
describe the data, it is therefore necessary to explicitly model the involved tilde-functions.
For a recent model study we refer to Ref. [213].

8 This corresponds to using a “single Gaussian” as fqT (x, k2
⊥) = fqT (x)

exp
(
−k2⊥/〈k

2
⊥〉fT

)
π〈k2⊥〉fT

with the “coeffi-

cient” fqT (x) = 0 as dictated by the sum rule (2.13).
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Figure 19. A
sin(2φh−φS)
UT (x): preliminary COMPASS data [166] (a,b) and our calculation for

COMPASS kinematics in WW-type approximation (c) shown separately for reasons explained in
the caption of Fig. 9. Similarly Asin(2φh−φS)

UT,〈y〉 (x) vs preliminary HERMES data [167] (d).

7.7 Subleading-twist Asin(2φh−φS)
UT

In this asymmetry, two terms survive the WW-type approximation. Using the Gaussian
Ansatz for f⊥qT (x, k2

⊥), h⊥qT (x, k2
⊥), hqT (x, k2

⊥), according to (B.9g, B.9h, B.9i) in App. B.3,
with 〈k2

⊥〉h⊥T = 〈k2
⊥〉hT = 〈k2

⊥〉h⊥1T and 〈k2
⊥〉f⊥T = 〈k2

⊥〉f⊥1T yields the expressions

F
sin(2φh−φS)
UT (x, z, PhT ) =

2MN

Q
x
∑
q

e2
q

[
x f
⊥(2)q
T (x) Dq

1(z) b
(2)
C

(
zPhT
λ

)2

G(PhT )

+
x

2

(
h

(1)q
T (x) + h

⊥(1)q
T (x)

)
H
⊥(1)q
1 (z) b

(2)
AB

(
zPhT
λ

)2

G(PhT )

]
,

(7.8a)

F
sin(2φh−φS)
UT (x, z, 〈PhT 〉) =

2MN

Q
x
∑
q

e2
q

[
x f
⊥(2)q
T (x) Dq

1(z) c
(2)
C

(
z

λ1/2

)2

+
x

2

(
h

(1)q
T (x) + h

⊥(1)q
T (x)

)
H
⊥(1)q
1 (z) c

(2)
AB

(
z

λ1/2

)2
]
,

(7.8b)

with respectively λ = z2〈k2
⊥〉f⊥T + 〈P 2

⊥〉D1 in the first, and λ = z2〈k2
⊥〉h⊥T + 〈P 2

⊥〉H⊥1 in the

second terms in (7.8a, 7.8b). The coefficients b(2)
i and c(2)

i are defined in App. B.5. In the
next step we explore the WW-type approximations (3.3g, 3.3h, 3.4f) to relate x f⊥(2)q

T (x) =
〈k2⊥〉f⊥

1T

M2
N

f
⊥(1)q
1T (x) and − 1

2 x
(
h

(1)q
T (x) + h

⊥(1)q
T (x)

)
= h

⊥(2)q
1T (x).

The asymmetries Asin(2φh−φS)
UT = F

sin(2φh−φS)
UT /FUU are plotted in Fig. 19 in comparison

to preliminary COMPASS [166] and HERMES [167] data. The predicted asymmetry is small
and compatible with the data that are consistent with a zero effect within uncertainties. For
comparison, Fig. 15 shows also the predictions from the quark-diquark model of Ref. [169].
More recently the Asin(2φh−φS)

UT was also studied in the model approach of Ref. [213].
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Figure 20. Left panel: asymmetry Acosφh

UU for positive and negative hadrons at COMPASS for a
proton target [158]. Right panel: the corresponding Acosφh

UU,〈y〉 for π
± from HERMES [157].

7.8 Subleading-twist Acosφh
UU

Historically this was the earliest azimuthal SIDIS asymmetry to be discussed in literature:
the first prediction for this asymmetry from intrinsic k⊥ was made in [159, 214], a first
measurement was reported in [215].9 This structure function contains after the WW-type
approximation initially two contributions, proportional to f⊥(x, k2

⊥) and hq(x, k2
⊥). The

latter is T-odd and obeys the sum rule (2.13). We treat hq(x, k2
⊥) exactly as f qT (x, k2

⊥) in
Sec. 7.6. Using the Gaussian Ansatz for f⊥(x, k2

⊥) in (B.9j) of App. B.3, we obtain

F cosφh
UU (x, z, PhT ) =

2MN

Q
x
∑
q

e2
q

[
−x f⊥(1)q(x)Dq

1(z) b
(1)
B

(
zPhT
λ

)
G(PhT )

]
, (7.9a)

F cosφh
UU (x, z, 〈PhT 〉) =

2MN

Q
x
∑
q

e2
q

[
−x f⊥(1)q(x)Dq

1(z) c
(1)
B

(
z

λ1/2

)]
, (7.9b)

with λ = z2〈k2
⊥〉f⊥ + 〈P 2

⊥〉D1 . The coefficients b(1)
i and c(1)

i are defined in App. B.5. Note
that (7.9a) is valid in the “scheme” of footnote 8, but (7.9a) holds independent of how one
implements the sum rule (2.13) (as in footnote 8 or App. B.4).

For f⊥(1)(x) we explore (3.3b) as xf⊥(1)q(x) =
〈k2⊥〉f1
2M2

N
f q1 (x) and assume for its Gaussian

width 〈k2
⊥〉f⊥ = 〈k2

⊥〉f1 . The latter means the Gaussian factors of F cosφh
UU and FUU cancel

out, i.e. at some point for PhT & 1GeV we would obtain from (7.9a) an asymmetry Acosφh
UU =

F cosφh
UU /FUU exceeding 100% and violating unitarity. This is of course an artifact of our

approximations, and reminds us that Gaussian and WW-type approximations as well as
the entire TMD formalism must be applied to small PhT � Q.

The asymmetries Acosφh
UU were measured by EMC [215], at JLab [123, 217], HERMES

[157], and COMPASS [158]. In Fig. 20 we compare our predictions to the HERMES and
COMPASS data. The WW-type approximation tends to overestimate the data at COM-
PASS especially in the small-x region. It is also not compatible with the flavor dependence
seen at HERMES. However, both experiments seem not to agree for instance on the shape
of the asymmetry for negative pions or hadrons. More experimental and theoretical work
is needed to clarify whether this could be due to power corrections.

9First hints [216] of azimuthal modulations in SIDIS date back to the early 1970s, i.e., 10 years before
the CERN measurements, but (unfortunately) were discarded by the authors.
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8 Conclusions

In this work a comprehensive and complete treatment of SIDIS spin and azimuthal asym-
metries was presented. The theoretical and phenomenological understanding of most of
the leading-twist SIDIS structure functions for the production of unpolarized hadrons is
relatively advanced: factorization is proven, and each structure functions is unambiguously
expressed in terms of one of eight twist-2 TMDs convoluted with one of two twist-2 FFs.
For subleading-twist SIDIS structure functions the situation is far more complex for two
reasons. First, factorization is not proven and must be assumed. Second, each of the
subleading-twist structure functions receives four or six contributions from various TMDs
and FFs one of which is twist-2 and the other twist-3. Clearly, to make predictions for new
experiments or interpret early data, an organizing theoretical guideline is needed.

In this work we have explored the so-called WW-type approximation as a candidate
guideline for the description of SIDIS structure functions. This approximation consists of
a systematic neglect of q̄gq-terms in the correlators defining the TMDs and FFs. We have
shown that in such an approach all twist-2 and twist-3 structure functions can be described
in terms of eight basis functions: six TMDs and two FFs, which are each twist-2. All other
TMDs and FFs, assuming this approximation, are either related to the basis functions or
vanish. We remark that the generalized parton model approach of Ref. [218] provides a
description that is largely equivalent to ours.

To make this work self-contained, we included a review of the available phenomeno-
logical information on the basis functions, which is given in terms of six SIDIS structure
functions. (Of course, one cannot extract eight basis functions from six observables: the
extraction of two basis functions, the unpolarized TMD and FF f q1 (x, k2

⊥) and Dq
1(x, P 2

⊥),
makes also use of other experiments, most notably Drell–Yan and hadron production in
e+e− annihilations.)

The WW-type approximation for TMDs and FFs is inspired by the observation that the
classical WW-approximation for the twist-3 DIS structure function g2(x) (or PDF gqT (x))
works well. This was predicted in theoretical studies in the instanton model of the QCD
vacuum, and confirmed by data and lattice QCD studies. The instanton vacuum model
predicts an analogous WW approximation for the chirally odd twist-3 PDF hqL(x) to work
similarly well. This prediction remains to be tested in experiment.

In each case, gqT (x) and hqL(x), we deal with nucleon matrix elements of different q̄gq
correlators, which are assumed to be small. Can one generalize these approximations to
TMDs? This is a key question, which has been addressed in the past in literature in selected
cases. This work is the first systematic investigation of this question. As in the unintegrated
correlators one deals with different classes of operators, we prefer to speak of the WW-type
approximation to distinguish from the collinear case.

We have studied in detail all SIDIS structure function in this approximation. This
includes a review of results from lattice QCD calculations, effective theories and models.
We found that from theoretical point of view the WW-type approximations receive certain
support, though there is less evidence than in the collinear case. Most importantly, we have
conducted systematic tests of WW approximations with available published or preliminary
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(and soon to be published) SIDIS data from HERMES, COMPASS, and JLab.
We found the following results. The two leading-twist structure functions amenable to

WW-type approximations, F cos(φh−φS)
LT and F sin(2φh)

UL , are well-described (the former) or at
least compatible (the latter) with the data in this approximation. For F sin(2φh)

UL more precise
data are needed, but also in this case the trend is encouraging especially thanks to the recent
preliminary COMPASS data. We have also shown that our approach satisfies positivity
inequalities, which is a non-trivial consistency check considering the crude approximations
(WW-type, Gaussian Ansatz for TMDs) in our approach.

At subleading twist the WW-type approximation for the structure functions F cosφS
LT ,

F
cos(2φh−φS)
LT , F cosφh

LL , F sin(2φh−φS)
UT is compatible with data, too. Some of these asymmetries

are predicted to be very small in the WW-type approximation, sometimes smaller than
a fraction of a percent. This is compatible with the available data in the sense that the
data are consistent with zero within their statistical accuracy. This cannot be considered a
thorough evidence for the applicability of the WW-type approximations, but on the positive
side we also observe no hints that the WW-type approximations fail in these cases.

In the case of the subleading-twist structure functions F cosφh
UU , F sinφh

UL , F sinφh
LU , and

F sinφS
UT the situation is clearer and indicates that here the WW-type approximations do not

work. Incidentally, these asymmetries include the very first non-zero azimuthal asymmetry
measured in unpolarized SIDIS (F cosφh

UU ), the very first non-zero target single-spin asymme-
try measured in SIDIS (F sinφh

UL ), and the beam-spin asymmetry (F sinφh
LU ). The WW-type

prediction for F cos(φh)
UU tends to overshoot the data. In the case of F sinφh

UL the WW-type
approximation undershoots data by a factor of two or so. Most interestingly, in the case of
F sinφh
LU the WW-type approximation predicts exactly a zero asymmetry, but experiments

see small but non-zero effect.
The non-applicability of the WW–type approximation in these cases should not be too

surprising. After all it is a crude method to model TMDs and FFs and an uncontrollable
“expansion” (in nuclear physics the concept of 2–body, 3–body, etc operators is well-justified
and an effective expansion can be conducted; in the case of TMDs, however, it is less
appropriate to speak about a systematic expansion in terms of q̄q, q̄gq, etc correlators).
It will be very interesting to learn whether, e.g., in F sinφh

UL or F sinφh
LU a single q̄gq–term is

anomalously large, or whether it is an accumulative effect of several small terms q̄gq–terms
adding up to the observed asymmetry.

Among all SIDIS structure functions F sinφh
LU emerges as a particularly interesting case:

this asymmetry is due to q̄gq only, without “contamination” from q̄q terms. Thus F sinφh
LU

offers a unique view on the physics of q̄gq correlators, worth exploring for its own sake.
The results presented in this work are of importance for several reasons. To the best of

our knowledge, it is the first complete study of all SIDIS structure functions up to twist-3
using systematically a common theoretical guideline. The results are useful for experiments
prepared in the near term (JLab 12) or proposed in the long term (Electron-Ion Collider),
and provide helpful input for Monte Carlo event generators [33]. Our predictions will help
to pave the way towards a better understanding of the quark-gluon structure of the nucleon
beyond leading twist.
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A The “minimal basis” of TMDs and FFs

This Appendix describes the technical details of the parametrizations used in this work.

A.1 Unpolarized functions fa1 (x, k
2
⊥) and D

a
1(z, P

2
⊥)

In this work we use the leading-order parametrizations from [119] for the unpolarized PDF
fa1 (x) and from [120] for the unpolarized FF Da

1(z). If not otherwise stated the parametriza-
tions are taken at the scale Q2 = 2.4 GeV2 typical for many currently available SIDIS data.
These parametrizations were used in [111] and other works whose extractions we adopt.

To describe the transverse momentum dependence of fa1 (x, k2
⊥) and Da

1(z, P 2
⊥) we use

the Gaussian Ansatz in Eqs. (4.5a, 4.5b). All early [111–114] and some recent [115] analyses
employed flavor and x– or z–independent widths 〈k2

⊥〉 and 〈P 2
⊥〉. In the analysis [116] of

HERMES multiplicities flavor-independence of the widths was assumed. On long run one
may anticipate that new precision data will require to relax these assumptions. However,
one may also expect that the Gaussian Ansatz will remain a useful approximation as long
as one is interested in describing data on transverse hadron momenta PhT � Q.

The parameters resulting from calculations or extractions are presented in Table 1. As
most extractions of TMDs that we will use are done with the choice of 〈k2

⊥〉f1 = 0.25 GeV2,
〈P 2
⊥〉D1 = 0.2 GeV2, for our numerical estimates in this work we will use these fixed widths.

study 〈Q2〉, 〈x〉, 〈z〉 〈k2
⊥〉f1 〈P 2

⊥〉D1 〈k2
⊥〉g1

[GeV2] [GeV2] [GeV2] [GeV2]

fit of [111] 5.0, 0.1, 0.3 ∼ 0.25 ∼ 0.2 –
fit of [114] 2.5, 0.1, 0.4 0.38± 0.06 0.16± 0.01 –
fit of [116] 2.4, 0.1, 0.3 0.57± 0.08 0.12± 0.01 –
fit of [115] 2.4, 0.1, 0.5 ∼ 0.3 ∼ 0.18 –
lattice [68] 4.0, – , – 0.14–0.15 – 0.11-0.15

Table 1. Gaussian model parameters for fa1 (x, k2⊥), Da
1(z, P 2

⊥), ga1 (x, k2⊥) from phenomenological
and lattice QCD studies. The kinematics to which the phenomenological results and the renor-
malization scale of the lattice results are indicated. The range of lattice values indicates flavor
dependence (first number refers to u–flavor, second number to d–flavor).
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Some comments are in order. In [111] no attempt was made to assign an uncertainty of
the best fit result. The uncertainty of the numbers from [114] includes only the statistical
uncertainty, but no systematic uncertainty. For comparison lattice results from [68] are
included whose range indicates flavor-dependence (first number u–flavor, second number d–
flavor). Notice that this is the contribution of the flavor averaged over contributions from
the respective quarks and antiquarks. Chiral theories predict significant differences in the
k⊥–behavior of sea and valence quarks [121]. We will comment more on the lattice results
in the next section. In view of the large (and partly underestimated) uncertainties and the
fact that those parameters are anti-correlated the numbers from the different approaches
quoted in Table 1 can be considered to be in good agreement.

A.2 Helicity distribution ga1(x, k
2
⊥)

For the helicity PDF ga1(x) =
∫
d2k⊥ g

a
1(x, k2

⊥) ≡
∫
d2k⊥ g

a
1L(x, k2

⊥) we use in this work the
leading-order parametrizations from [63]. If not otherwise stated the parametrizations are
taken at the scale Q2 = 2.4 GeV2.

In lack of phenomenological information on the k⊥–dependence of ga1(x, k2
⊥) we explore

lattice QCD results from [68] to constrain the Gaussian width in Eq. (4.5c). On a lattice
with pion and nucleon masses mπ ≈ 500 MeV and MN = 1.291(23) GeV and with an axial
coupling constant g(3)

A = 1.209(36) reasonably close to its physical value 1.2695(29) the
following results were obtained for the mean square transverse parton momenta [68]. For
the unpolarized TMDs it was found 〈k2

⊥〉fu1 = (0.3741 GeV)2 and 〈k2
⊥〉fd1 = (0.3839 GeV)2.

For the helicity TMDs it was found 〈k2
⊥〉gu1 = (0.327 GeV)2 and 〈k2

⊥〉gd1 = (0.385 GeV)2.
These values are quoted in Table 1.

The lattice values for 〈k2
⊥〉f1 consistently underestimate the phenomenological numbers,

see Table 1. The exact reasons for that are unknown, but it is natural to think it might be
related to the fact that the lattice predictions [68] do not refer to TMDs entering in SIDIS (or
Drell–Yan or other process) because a different gauge link was chosen, see Sec. 3.5. Still one
may expect these results to bear considerable information on QCD dynamics.10 To make use
of this information we shall assume that the lattice results [68] provide robust predictions
for the ratios 〈k2

⊥〉gu1 /〈k
2
⊥〉fu1 ≈ 0.76. With the phenomenological value 〈k2

⊥〉f1 = 0.25 GeV2

we then obtain the estimate for the width of the helicity TMD 〈k2
⊥〉g1 = 0.19 GeV2. In our

phenomenological study we use this value for u–quarks and for simplicity also for d–quarks.
Even though the lattice values indicate an interesting flavor dependence, see Table 1, for a
proton target this is a very good approximation due to u–quark dominance. When precision
data for deuterium and especially for 3He from JLab become available, it will be interesting
to re-investigate this point in detail.

10 The results [68] refer also to pion masses above the physical value. This caveat is presumably less
critical and will be overcome as lattice QCD simulations are becoming feasible at physical pion masses.
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Nu = 0.40 αu = 0.35 βu = 2.6

Nd = −0.97 αd = 0.44 βd = 0.90 M2
1 = 0.19 (GeV2)

Table 2. Best values of the fit of the Sivers functions. Table from Ref. [128]

A.3 Sivers function f⊥q1T (x, k2⊥)

The Sivers distribution function was studied in Refs. [45, 46, 128, 136–138, 218–221]. We
will use parametrizations from Refs. [128, 136, 218]:

〈k2
⊥〉f⊥1T ≡

〈k2
⊥〉M2

1

〈k2
⊥〉+M2

1

, (A.1)

f⊥1T (x, k2
⊥) = −M

M1

√
2e Nq(x) fq/p(x,Q)

e
−k2⊥/〈k

2
⊥〉f⊥

1T

π〈k2
⊥〉

, (A.2)

where M1 is a mass parameter, M the proton mass and

Nq(x) = Nq x
α(1− x)β

(α+ β)(α+β)

ααββ
. (A.3)

The first moment of the Sivers function is:

f
⊥(1)q
1T (x) = −

√
e
2 〈k

2
⊥〉M3

1

M(〈k2
⊥〉+M2

1 )2
Nq(x)fq(x,Q)

= −
√
e

2

1

MM1

〈k2
⊥〉2f⊥1T
〈k2
⊥〉

Nq(x)fq(x,Q) . (A.4)

We can rewrite the parametrizations of the Sivers functions as

f⊥q1T (x, k2
⊥) = f

⊥(1)q
1T (x)

2M2

π〈k2
⊥〉2f⊥1T

e
−k2⊥/〈k

2
⊥〉f⊥

1T . (A.5)

The fit the HERMES proton and COMPASS deuteron data from including only Sivers
functions for u and d quarks was done in Ref. [128], corresponding to seven free parameters,
which are shown in Table 2.

A.4 Transversity hq1(x, k
2
⊥) and Collins function H⊥q1 (x, P 2

⊥)

These functions were studied in Refs. [50, 65, 66, 151–153]. The following shape was assumed
for parametrizations in Refs. [65, 66, 151]:

hq1(x, k2
⊥) = hq1(x)

e−k
2
⊥/〈k

2
⊥〉h1

π〈k2
⊥〉h1

, (A.6)

hq1(x) =
1

2
N T
q (x) [f1(x) + g1(x)] , (A.7)

H⊥1h/q(z, P
2
⊥) =

zmh

2P⊥
∆NDh/q↑(z, P

2
⊥) =

zmh

MC
e−p

2
⊥/M

2
C

√
2eH⊥1h/q(z)

e−P
2
⊥/〈P

2
⊥〉

π〈P 2
⊥〉

, (A.8)
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NT
u = 0.46+0.20

−0.14 NT
d = −1.00+1.17

−0.00

α = 1.11+0.89
−0.66 β = 3.64+5.80

−3.37 〈k2
⊥〉h1 = 0.25 (GeV2)

NC
fav = 0.49+0.20

−0.18 NC
dis = −1.00+0.38

−0.00

γ = 1.06+0.45
−0.32 δ = 0.07+0.42

−0.07 M2
C = 1.50+2.00

−1.12 (GeV2)

Table 3. Best values of the 9 free parameters fixing the u and d quark transversity distribution
functions and favored and disfavored Collins fragmentation functions. The table is from Ref. [151].

with mh the mass of the produced hadron and

N T
q (x) = NT

q x
α(1− x)β

(α+ β)(α+β)

ααββ
, (A.9)

H⊥1h/q(z) = N C
q (z)Dh/q(z) , (A.10)

N C
q (z) = NC

q z
γ(1− z)δ (γ + δ)(γ+δ)

γγδδ
, (A.11)

and−1 ≤ NT
q ≤ 1, −1 ≤ NC

q ≤ 1. The helicity distributions g1(x) are taken from Ref. [222],
parton distribution and fragmentation functions are the GRV98LO PDF set [63] and the
DSS fragmentation function set [120]. Notice that with these choices both the transversity
and the Collins function automatically obey their proper positivity bounds. Note that as
in Ref. [151] we use two Collins fragmentation functions, favored and disfavored ones, see
Ref. [151] for details on implementation, and corresponding parameters NC

a are then NC
fav

and NC
dis. For numerical estimates we use parameters extracted in Ref. [151], see Table 3.

According to Eq. (B.8) we obtain the following expression for the first moment of Collins
fragmentation function:

H
⊥(1)
1h/q (z) =

H⊥1h/q(z)
√
e/2〈P 2

⊥〉M3
C

zmh(M2
C + 〈P 2

⊥〉)2
. (A.12)

We also define the following variable:

〈P 2
⊥〉H⊥1 =

〈P 2
⊥〉M2

C

〈P 2
⊥〉+M2

C

. (A.13)

We can rewrite the parametrizations of Collins FF as

H⊥1 (z, P 2
⊥) = H

⊥(1)
1 (z)

2z2m2
h

π〈P 2
⊥〉2H⊥1

e
−P 2
⊥/〈P

2
⊥〉H⊥1 . (A.14)

A.5 Boer–Mulders function h⊥q1 (x, k2⊥)

The Boer–Mulders function h⊥1 [3] measures the transverse polarization asymmetry of
quarks inside an unpolarized nucleon. The Boer–Mulders functions were studied phe-
nomenologically in Refs. [156, 161, 162], we present the parameters of extractions of the
Boer-Mulders function from Ref. [161] in Tablel 4.
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Nu
BM = 2.1± 0.1 Nd

BM = −1.111± 0.001

Nu = 0.35 αu = 0.73 βu = 3.46

Nd = −0.9 αd = 1.08 βd = 3.46 M2
BM = 0.34 (GeV2)

Table 4. Fitted parameters (those with error bars) and fixed parameters (those without error bars)
of the Boer–Mulders quark distributions from Ref. [156].

Ref. [161] used the parametrization in which the Boer–Mulders function is proportional
to the Sivers functions, such that

〈k2
⊥〉h⊥1 =

〈k2
⊥〉M2

BM

〈k2
⊥〉+M2

BM

, (A.15)

h⊥1 (x, k2
⊥) = − M

MBM

√
2e N q

BMNq(x) fq/p(x,Q)
e
−k2⊥/〈k

2
⊥〉h⊥1

π〈k2
⊥〉

, (A.16)

where

Nq(x) = Nq x
α(1− x)β

(α+ β)(α+β)

ααββ
. (A.17)

The first moment of the Boer–Mulders function is

h
⊥(1)q
1 (x) = −

√
e
2 〈k

2
⊥〉M3

BM

M(〈k2
⊥〉+M2

BM )2
Nqfq(x,Q)

= −
√
e

2

1

MMBM

〈k2
⊥〉2h⊥1
〈k2
⊥〉

Nqfq(x,Q) . (A.18)

We can rewrite the parametrizations of Boer–Mulders functions as

h⊥q1 (x, k2
⊥) = h

⊥(1)q
1 (x)

2M2

π〈k2
⊥〉2h⊥1

e
−k2⊥/〈k

2
⊥〉h⊥1 . (A.19)

A.6 Pretzelosity distribution h⊥q1T (x, k
2
⊥)

Pretzelosity distribution function h⊥1T [168] describes transversely polarized quarks inside a
transversely polarized nucleon. We use the following form of h⊥a1T [168]:

h⊥a1T (x, k2
⊥) =

M2

M2
TT

e−k
2
⊥/M

2
TT h⊥a1T (x)

e−k
2
⊥/〈k

2
⊥〉

π〈k2
⊥〉

=
M2

M2
T

h⊥a1T (x)
e
−k2⊥/〈k

2
⊥〉h⊥

1T

π〈k2
⊥〉

, (A.20)

where

h⊥a1T (x) = e N a(x)(fa1 (x,Q)− ga1(x,Q)), (A.21)

N a(x) = Naxα(1− x)β
(α+ β)α+β

ααββ
, (A.22)

〈k2
⊥〉h⊥1T =

〈k2
⊥〉M2

TT

〈k2
⊥〉+M2

TT

, (A.23)
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α = 2.5± 1.5 β = 2 fixed
Nu = 1± 1.4 Nd = −1± 1.3 M2

TT = 0.18± 0.7 GeV2

Table 5. Fitted parameters of the pretzelosity quark distributions. Table from Ref. [168]

and where Na, α, β, and MT are parameters fitted to data and can be found in Table 5.
We use Eq. (B.8) to obtain for the second moment of h⊥a1T (x, k2

⊥) in (A.20) the result
shown below, and use it to rewrite parametrization of pretzelosity functions as

h
⊥(2)a
1T (x) =

h⊥a1T (x)〈k2
⊥〉3h⊥1T

2M2M2
TT 〈k2

⊥〉
, h⊥q1T (x, k2

⊥) = h
⊥(2)q
1T (x)

2M4

π〈k2
⊥〉3h⊥1T

e
−k2⊥/〈k

2
⊥〉h⊥

1T . (A.24)

B Convolution integrals and expressions in Gaussian Ansatz

In this Appendix we explain the notation for convolution integrals of TMDs and FFs and
give the explicit results obtained assuming the Gaussian Ansatz.

B.1 Notation for convolution integrals

Structure functions are expressed as convolutions of TMDs and FFs in the Bjorken limit at
tree level. For reference we quote the convolution integrals in “Amsterdam notation” [5]

C[wfD] = x
∑
a

e2
a

∫
d2pT d

2kT δ
(2)(pT − kT − Ph⊥/z)w(pT ,kT ) fa(x, p2

T )Da(z, z2k2
T ),

(B.1)
where all transverse momenta refer to the virtual photon-proton center-of-mass frame and
ĥ = Ph⊥/Ph⊥. Hereby pT is the transverse momentum of quark with respect to nucleon,
kT is the transverse momentum of the fragmenting quark with respect to produced hadron.
The notation is not unique. The one chosen in this work, in comparison to other works, is

transverse momentum in TMD: [k⊥]our = [k⊥]Ref.[218] = [pT ]Ref.[5] , (B.2)

transverse momentum in FF: [P⊥]our = [p⊥]Ref.[218] = −z [kT ]Ref.[5] , (B.3)

transverse hadron momenta: [PhT ]our= [PT ]Ref.[218] = [Ph⊥]Ref.[5] . (B.4)

Notice that [P⊥]our = −z [kT ]Ref.[5] is the transverse momentum the hadron acquires in the
fragmentation process. The normalization for unpolarized fragmentation functions is

Da
1(z) =

[ ∫
d2P⊥D

a
1(z, P 2

⊥)

]
our

=

[
z2

∫
d2kTD

a
1(z, z2k2

T )

]
Ref. [5]

. (B.5)

The “Amsterdam” convolution integral (B.1) reads in our notation

C[wfD] = x
∑
a

e2
a

∫
d2k⊥ d

2P⊥ δ
(2)(zk⊥+P⊥−PhT )w

(
k⊥,−

P⊥
z

)
fa(x, k2

⊥)Da(z, P 2
⊥).

(B.6)
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B.2 Gaussian Ansatz

For a generic TMD and FF the Gaussian Ansatz is given by

fa(x, k2
⊥) = fa(x)

exp(−k2
⊥/〈k2

⊥〉)
π〈k2
⊥〉

, Da(z, P 2
⊥) = Da(z)

exp(−P 2
⊥/〈P 2

⊥〉)
π〈P 2

⊥〉
(B.7)

where 〈k2
⊥〉 could be x–dependent, and 〈P 2

⊥〉 z–dependent. Both could be flavor-dependent.
The variable P⊥ is convenient because phenomenological experience shows that P⊥ in
D
q/h
1 (z, P 2

⊥) exhibits a Gaussian distribution with weakly z–dependent Gaussian width.
The distribution of transverse momenta in

[
Da(z, z2k2

T )
]
Ref.[5]

would require a strongly z–
dependent Gaussian width. It is a matter of taste which one prefers to use.

It is convenient to work with transverse moments of TMDs and FFs which are defined,
and in the Gaussian model given by

f (n)(x) =

∫
d2k⊥

(
k2
⊥

2M2

)n
f(x, k2

⊥)
Gauss

=
n! 〈k2

⊥〉n

2nM2n
N

f(x),

D(n)(z) =

∫
d2P⊥

(
P 2
⊥

2z2m2
h

)n
D(z, P 2

⊥)
Gauss

=
n! 〈P 2

⊥〉n

2nz2nm2n
h

D(z) . (B.8)

It is important to keep in mind that these objects are well-defined in the Gaussian model.
However, in QCD and even in simple models [86, 121] one faces issues with UV divergences
and has to carefully define how to deal with them.

In Eqs. (B.8) the Gaussian dependence is factorized from x or z dependence and
parametrizations are made with respect to either f(x) or D(z). As we saw in Appendix A
some TMD functions are parametrized with higher moments directly as operator product
expansion of TMDs may start from higher twist matrix element instead of the usual twist-2
one. In those cases equivalent formulas to Eqs. (B.8) can be easily derived.

B.3 Gaussian Ansatz for the derived TMDs used in this work

Having discussed the Gaussian Ansatz for the 8 basis functions in Eqs. (4.5a–4.5h) of Sec. 4.4
and in App. A, we list here the Ansätze for the following derived TMDs:

g⊥q1T (x, k2
⊥) = g

⊥(1)q
1T (x)

2M2
N

π〈k2
⊥〉2g⊥1T

e
−k2⊥/〈k

2
⊥〉g⊥

1T , cf. Sec. 6.1, (B.9a)

h⊥a1L (x, k2
⊥) = h

⊥(1)a
1L (x)

2M2
N

π〈k2
⊥〉2h⊥1L

e
−k2⊥/〈k

2
⊥〉h⊥

1L cf. Sec. 6.2, (B.9b)

gqT (x, k2
⊥) = gqT (x)

1

π〈k2
⊥〉gT

e−k
2
⊥/〈k

2
⊥〉gT , cf. Sec. 7.2, (B.9c)

g⊥qT (x, k2
⊥) = g

⊥(2)q
T (x)

2M4

π〈k2
⊥〉3g⊥T

e
−k2⊥/〈k

2
⊥〉g⊥

T , cf. Sec. 7.3, (B.9d)

g⊥qL (x, k2
⊥) = g

⊥(1)q
L (x)

2M2
N

π〈k2
⊥〉2g⊥L

e
−k2⊥/〈k

2
⊥〉g⊥

L , cf. Sec. 7.4, (B.9e)

hqL(x, k2
⊥) = hqL(x)

1

π〈k2
⊥〉hL

e−k
2
⊥/〈k

2
⊥〉hL , cf. Sec. 7.5, (B.9f)
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h⊥qT (x, k2
⊥) = h

⊥(1)q
T (x)

2M2

π〈k2
⊥〉2h⊥T

e
−k2⊥/〈k

2
⊥〉h⊥

T , cf. Sec. 7.6, (B.9g)

hqT (x, k2
⊥) = h

(1)q
T (x)

2M2

π〈k2
⊥〉2hT

e−k
2
⊥/〈k

2
⊥〉hT , cf. Sec. 7.6, (B.9h)

f⊥qT (x, k2
⊥) = f

⊥(2)q
T (x)

2M4

π〈k2
⊥〉3f⊥T

e
−k2⊥/〈k

2
⊥〉f⊥

T , cf. Sec. 7.7, (B.9i)

f⊥q(x, k2
⊥) = f⊥(1)q(x)

2M2

π〈k2
⊥〉2f⊥

e
−k2⊥/〈k

2
⊥〉f⊥ , cf. Sec. 7.8, (B.9j)

B.4 Comment on TMDs subject to the sum rules (2.13)

In this section we comment on the twist-3 TMDs f qT (x, k2
⊥), hq(x, k2

⊥), eqL(x, k2
⊥), which are

T-odd, appear in the decompositions of the correlator with no explicit kj⊥–prefactors, and
would have collinear PDF counterparts. But T-odd PDFs are forbidden by time-reversal
and parity invariance of strong interactions, which dictate the sum rules (2.13), see Sec. 3.8.
Such TMDs could be described by functions with a node in k⊥11 such that they can integrate
to zero in Eq. (2.13). A single Gaussian has no node and is not adequate for that. However,
one could work with a superposition of Gaussians with different widths,

x f qT (x, k2
⊥) = − f⊥(1)q

1T (x)
n∑
i=1

ai
exp(−k2

⊥/〈k2
⊥〉i)

π〈k2
⊥〉i

, (B.10)

n∑
i=1

ai = 0 , 〈k2
⊥〉i 6= 〈k2

⊥〉j ∀ i 6= j, 1 ≤ i, j ≤ n, n ≥ 2.

Notice that in (B.10) we cannot write “f qT (x)”, which would be zero according to (2.13), and
we explore here the WW-type approximation (3.4g). The minimal choice would be n = 2

with a1 = −a2 = 1 and 〈k2
⊥〉1 = 〈k2

⊥〉f⊥1T to make use of the theoretical guidance provided
by the WW-type approximation (3.4g). The second Gaussian width 〈k2

⊥〉2 could be chosen
very large 〈k2

⊥〉2 � 〈k2
⊥〉f⊥1 to model the Gaussian description of f qT (x, k2

⊥) similar to that

of f⊥(1)q
1T (x, k2

⊥) at intermediate k⊥. A very large parameter 〈k2
⊥〉2 could be thought of as

a relict which enters in the sum rule (2.13) where the k⊥–integration formally extends up
to infinity where the TMD description does not apply. The theoretical understanding of
higher–twist TMDs is too limited at the present stage, but in principle this could be a
pragmatic way of modeling the TMD f qT (x, k2

⊥) and analogously hq(x, k2
⊥), eqL(x, k2

⊥).

B.5 Convolution integrals in Gaussian Ansatz

Solving the convolution integrals relevant for SIDIS in the Gaussian Ansatz yields

C[ ω{0} f D] = u G(PhT ) (B.11a)

11The possibility of TMDs with nodes is not unrealistic. For instance in the covariant parton model the
helicity TMDs exhibit nodes for the u– and d–flavor [97]. We will have to revise our description of gq1(x, k2

⊥)

in Eq. (4.5c) and App. A.2 to something of the type (B.10), if that prediction is confirmed experimentally.
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C[ω{1}A f D] = u G(PhT )

(
zPhT
mh

)
〈P 2
⊥〉

z2λ
(B.11b)

C[ω{1}B f D] = −u G(PhT )

(
zPhT
MN

)
〈k2
⊥〉
λ

(B.11c)

C[ω{2}A f D] = u G(PhT )
〈k2
⊥〉〈P 2

⊥〉
λMNmh

(
−1 +

2P 2
hT

λ

)
(B.11d)

C[ω{2}B f D] = u G(PhT )
〈k2
⊥〉〈P 2

⊥〉
λMNmh

(
1−

P 2
hT

λ

)
(B.11e)

C[ω{2}AB f D] = u G(PhT )

(
zPhT
MN

)(
zPhT
mh

)
〈k2
⊥〉
λ

〈P 2
⊥〉

z2λ
(B.11f)

C[ω{2}C f D] =
u

2
G(PhT )

(
zPhT
MN

)(
zPhT
MN

)
〈k2
⊥〉
λ

〈k2
⊥〉
λ

(B.11g)

C[ω{3} f D] =
u

2
G(PhT )

(
zPhT
MN

)(
zPhT
MN

)(
zPhT
mh

)
〈k2
⊥〉
λ

〈k2
⊥〉
λ

〈P 2
⊥〉

z2λ
(B.11h)

with the ω{n}i as defined in Eq. (2.19), and we introduced the abbreviations

u = x
∑
a

e2
af

a(x)Da(z) , G(PhT ) =
exp(−P 2

hT /λ)

πλ
, λ = z2〈k2

⊥〉+ 〈P 2
⊥〉 , (B.12)

with the normalization
∫
d2PhT G(PhT ) = 1. It is important to keep in mind that strictly

speaking G(PhT ) = G(PhT , x, z) also depends on x and z. The “non-compact” notation in
Eqs. (B.11) was chosen to display the pattern. The masses MN or mh in the denominators
of the PhT indicate the “origins” of the contributions: due to intrinsic k⊥ from target, due
to transverse momenta P⊥ acquired during fragmentation, or both. The weight ω{2}B is the
only which enters cross sections and does not have a homogeneous scaling in PhT .

For practical application it is convenient to absorb as many (Gaussian model) pa-
rameters as possible into expressions that can be more easily fitted to data. One way to
achieve this is to make use of the transverse moments (B.8). We introduce the following
abbreviations

u
{1}
A = x

∑
a

e2
af

a(x)D(1)a(z) , u
{1}
B = x

∑
a

e2
af

(1)a(x)Da(z) , (B.13)

u
{2}
AB = x

∑
a

e2
af

(1)a(x)D(1)a(z) , u
{2}
C = x

∑
a

e2
af

(2)a(x)Da(z) , (B.14)

u
{3}
C = x

∑
a

e2
af

(2)a(x)D(1)a(z) . (B.15)

In this notation the results in Eqs. (B.11) read

C[ω{1}A f D] = u
(1)
A G(PhT )

(
zPhT
mh

)
2m2

h

λ
(B.16a)

C[ω{1}B f D] = −u(1)
B G(PhT )

(
zPhT
MN

)
2M2

N

λ
(B.16b)

C[ω{2}B f D] = u
(2)
B G(PhT )

4z2mhMN

λ

(
1−

P 2
hT

λ

)
(B.16c)
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C[ω{2}AB f D] = u
(2)
AB G(PhT )

(
zPhT
MN

)(
zPhT
mh

)
2M2

N

λ

2m2
h

λ
(B.16d)

C[ω{2}C f D] =
u

(2)
C

2
G(PhT )

(
zPhT
MN

)(
zPhT
MN

)
2M2

N

λ

2M2
N

λ
(B.16e)

C[ω{3} f D] =
u(3)

2
G(PhT )

(
zPhT
MN

)(
zPhT
MN

)(
zPhT
mh

)
2M2

N

λ

2M2
N

λ

2m2
h

λ
(B.16f)

In this notation the results in Eqs. (B.11) read

C[ω{n}i f D] = u
(n)
i G(PhT ) ×

[
δn2 δiB a

(2)
B + b

(n)
i

(
zPhT
λ

)n ]
(B.17)

with

b(0) = 1 , (B.18)

b
(1)
A = 2mh , b

(1)
B = 2MN , (B.19)

a
(2)
B = 4MNmhλ

−1 z2 , b
(2)
AB = − b(2)

B = 4MNmh , b
(2)
C = M2

N , (B.20)

b(3) = 2M2
Nmh . (B.21)

Finally, integrating out transverse hadron momenta yields∫
d2PhT C[ω

{n}
i f D] = u

(n)
i c

(n)
i

(
z

λ1/2

)n
(B.22)

with

c(0) = 1 , (B.23)

c
(1)
A =

√
πmh , c

(1)
B =

√
πMN , (B.24)

c
(2)
AB = 4MNmh , c

(2)
C = M2

N , c
(2)
B = 0 , (B.25)

c(3) = 3
2

√
πM2

Nmh . (B.26)
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