

B decay anomalies at LHCb

Arantza Oyanguren (IFIC – U. Valencia/CSIC)

(On behalf of the LHCb collaboration)

XIIIth Quark Confinement and the hadron Spectrum Maynooth, Ireland - 1st August 2018

Outline

- Introduction
- The LHCb experiment
- Branching fraction measurements in $b \rightarrow s \ell \ell$
- Angular analyses
- Lepton Flavour Universality tests
- Conclusions

Introduction

b→s,d quark transitions are Flavor Changing Neutral Currents (FCNCs),
 → in the SM they only can occur through loops (*penguin and box diagrams*)
 → very sensitive to new physics

Experimentally \rightarrow leptons/photons with high transverse momenta **Theoretically** \rightarrow observables can be calculated by using effective theories

In this talk I will focus on $b \rightarrow s \ell \ell$ transitions

Introduction

• The amplitude of a hadron decay process can be described using OPE:

 \rightarrow a series of effective vertices multiplied by effective coupling constants C_i.

Electroweak scale ~ $1/M_W$ New Physics scale ~ $1/M_{NP}$ $C_{i} = C_{i}^{SM} + C_{i}^{NP}$ $C'_{i} = C_{i}^{SM} + C'_{i}^{NP}$ Primed C'_{i} \rightarrow right handed currents: suppressed in SM

Introduction

• $b \rightarrow s\ell^+\ell^-$ is mainly sensitive to C_7 , C_9 and C_{10} Wilson coefficients

Observables that can be affected:

- Differential branching fractions

 (B⁰→K^{(*)0}μ⁺μ⁻, B⁺→K^{(*)+}μ⁺μ⁻, B_s→φμ⁺μ⁻, B⁺→π⁺μ⁺μ⁻ and Λ_b→Λμ⁺μ⁻)
 → Affected by hadronic uncertainties in the theory predictions
- Angular distributions

 $(B^0 \rightarrow K^{(*)0} \mu^+ \mu^-, B_s \rightarrow \phi \mu^+ \mu^- B^0 \rightarrow K^{*0} e^+ e^- and \Lambda_b \rightarrow \Lambda \mu^+ \mu^-)$ $\rightarrow Observables with smaller theory uncertainties$

• Ratios testing Lepton Flavour Universality

 $(B^+ \rightarrow K^+ \ell^+ \ell^- \text{ and } B^0 \rightarrow K^{*0} \ell^+ \ell^-)$

 \rightarrow Hadronic uncertainties in theory predictions cancel in ratios

The LHCb experiment

• The LHCb idea: to build a single-arm forward spectrometer: ~ 4% of the solid angle (2 < η < 5), ~ 30% of the *b* hadron production

The LHCb experiment

The LHCb experiment

Very good performace: 3 fb⁻¹ in Run1, more than 5fb⁻¹ in Run2

Analysis of $b \rightarrow s \ell \ell$ events

- *b*-hadron mass is reconstructed from final hadron decays and two energetic leptons
- Background events suppressed by requiring displaced vertices
- The decay width is expressed in terms of q² = invariant mass of the dilepton system (differential BR, ratios of BRs) and **decay angles** (angular analysis)
- Tree level decays involving J/ ψ and ψ (2S) resonances are used as control samples and the q² regions are generally removed from the analyses of b \rightarrow s $\ell\ell$ decays

Analysis of $b \rightarrow s\ell\ell$ events

Decays involving electrons:

- LHCb is far better with muons than electrons
- *Trigger*, reconstruction, selection and particle identification are harder with electrons
- Mass resolution affected by *e bremsstrahlung* → need energy recovery
- Mass shape modelled according to the number of *bremsstrahlung* recovered

Analysis of $b \rightarrow s \ell \ell$ events

B mass vesus q^2 for $B^+ \rightarrow K^+ \ell^+ \ell^-$

Differential branching fraction: $d\Gamma/dq^2$ Each q^2 region probes different processes

 $B \to K^* \,\ell^- \ell^+$

SM values (μ =m _b):	C ₇ ~ - 0.33
	C ₉ ~4.27
	C ₁₀ ~-4.17

(Everything else small or negligible)

In a q² range, the differential branching fraction can be obtained:

$$\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}q^2} = \frac{R_{\epsilon}}{(q_{\mathrm{max}}^2 - q_{\mathrm{min}}^2)} \frac{(1 - F_{\mathrm{S}}|_{644}^{1200}) n_{K^{*0}\mu^+\mu^-}}{(1 - F_{\mathrm{S}}^{J/\psi \, K^{*0}}) n_{J/\psi \, K^{*0}}} \mathcal{B}(B^0 \to J/\psi \, K^{*0}) \mathcal{B}(J/\psi \to \mu^+\mu^-)$$

- \rightarrow Normalized to the J/ ψ mode
- \rightarrow n_{channel} is the yield for the signal and normalization decay modes
- $\rightarrow R_{\epsilon}$ is the ratio of efficiencies for signal and normalization decay modes
- \rightarrow **F**_s is the fraction of a S-Wave interfering with the P-wave (for signal and normalization), in a specific m_{Kπ} range (use LASS parameterization to describe the S-wave)

 \rightarrow S-wave contribution found to be small, < 10%

• Differential decay width as function of $q^2 = m_{\mu\mu}^2$ at LHCb, using 3fb⁻¹

 \rightarrow Smaller branching fractions than the SM predictions

• Also measured by other experiments in the $B \rightarrow K^* \ell^+ \ell^-$ channel:

 \rightarrow Smaller branching fractions than the SM predictions?

- → Results dominated by statistical uncertainties (including the BR of the normalization channels)
- → Caveat: theory affected by hadronic uncertainties (LQCD +LCSR)
- → And what about the charm resonances contribution?

Understanding effects from charm at LHCb:

• Phase difference between short- and long-distance amplitudes in the $B^+ \rightarrow K^+ \mu^+ \mu^-$ decay LHCb, [EPJ C(2017) 77]

- $\rightarrow\,d\Gamma/dm_{\mu\mu}\,\text{is}$ a function of form factors and \textbf{C}_{i}
- → C_i^{eff} expressed as a sum of relativistic Breit-Wigner amplitudes: magnitudes and phases extracted from data
- \rightarrow Form factors from FNAL & MILC [PRD 93(2016)025026]

→ Small effect of hadronic resonances in Wilson coefficients

• Angular distribution in $B \rightarrow K^* \ell^- \ell^+$: q² and three angles

→ In the lepton massless limit there are **eight** independent observables:

 F_L = fraction of the longitudinal polarization of the K* $S_6 = 4/3 A_{FB}$, the forward-backward asymmetry of the dimuon system $S_{3,4,5,7,8,9}$ are the remaining CP-averaged observables

SM predictions based on

[Altmannshofer & Straub, EPJC 75 (2015) 382] [LCSR f.f. from Bharucha, Straub & Zwicky, JHEP 08 (2016) 98] [Lattice f.f. from Horgan, Liu, Meinel & Wingate arXiv:1501.00367]

- These observables are also affected by hadronic uncertainties
- A new set of "optimized observables", with form factor cancellations can be defined: [Descotes-Genon et al, JHEP 05 (2013) 137]

$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

• These observable are functions of q² and the Wilson coefficients C_i

 \rightarrow New: results from LHCb in the $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ decay channel Run1 + Run2 data: 5fb⁻¹

What about electrons? (sensitive to $C_7^{(')}$)

Angular observables of the $B^0 \rightarrow K^*e^-e^+$ at **LHCb** in the low $q^2 < 1 \text{GeV}^2$

- \rightarrow Virtual γ decaying in an observable $\ell^- \ell^+$ pair
- \rightarrow Requires to go very low in the q² region

Data Model

5000

events ($\gamma \rightarrow e^-e^+$, with bremsstrahlung

Candidates / (30 MeV/c²)

30

25

20⊢

15

10

5

4800

emission)

 \rightarrow Compatible with the SM predictions*

[Adapted from Jäger and Camalich arXiv:1412.3183]

 $\overline{u}/\overline{c}/\overline{t}$

 \overline{s}

*leading order estimation, 5% accuracy for SM value

21

• In the SM all leptons are expected to behave in the same way:

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})} = 1.000 + O(m_{\mu}^{2}/m_{b}^{2}) \text{ (SM)}$$
[PRL 113 (2014) 151601]

- Experimentally, use the $B^+ \rightarrow K^+ J/\psi(\rightarrow e^+e^-)$ and $B^+ \rightarrow K^+ J/\psi(\rightarrow \mu^+\mu^-)$ to perform a double ratio
- Precise theory prediction due to cancellation of hadronic form factor uncertainties

$$R_K = 0.745^{+0.090}_{-0.074} \,(\text{stat}) \pm 0.036 \,(\text{syst})$$

ightarrow Consistent, but lower, than the SM at 2.6 σ

• Measurement in the $B \rightarrow K^* \mu^+ \mu^-$ channel, R_{K^*} :

LHCb, JHEP08(2017)055

4500

5000

5500

6000

23

 $m(K^{+}\pi^{-}e^{+}e^{-})$ [MeV/ c^{2}]

 Blinded analysis, many checks performed before unblinding:

$$\rightarrow r_{J/\psi} = B(B \rightarrow K^* J/\psi(\rightarrow \mu^+ \mu))/B(B \rightarrow K^* J/\psi(\rightarrow e^+ e^-)) = 1.04 (0.05) \rightarrow R\psi_{(2S)} = muon/electron ratio for $B(B \rightarrow K^* \psi(2S)/B(B \rightarrow K^* J/\psi) = 1 (0.02) \rightarrow B(B \rightarrow K^* \mu^+ \mu^-) \checkmark; B(B \rightarrow K^* \gamma (\rightarrow e^+ e^-)) \checkmark$$$

LHCb, JHEP08(2017)055

• Decay mode with electrons:

LHCb, JHEP08(2017)055

• Results:

LHCb, JHEP08(2017)055

 $R_{K^{*0}} = 0.69 \stackrel{+ 0.11}{_{- 0.07}} (\text{stat}) \pm 0.05 (\text{syst})$

26

Interpretation

• Global fits (some cases with more than 100 observables)

New Physics hypothesis preferred over SM by more than 4 - 5σ Main effect on the C_{9µ} coefficient: 4.27SM -1.1^{NP}

Triggered models with Z', leptoquarks (LQ), and composite Higgs

Conclusions

• Measurements on rare b \rightarrow s $\ell\ell$ decays present a consistent pattern of anomalies in some observables, observed by several experiments:

- * Differential branching fractions: $B^0 \rightarrow K^{(*)0}\mu^+\mu^-$, $B^+ \rightarrow K^{(*)+}\mu^+\mu^-$, $B_s \rightarrow \phi\mu^+\mu^-$, and $\Lambda_b \rightarrow \Lambda\mu^+\mu^-$
- * **Angular analyses:** $B^0 \rightarrow K^{(*)0}\mu^+\mu^-$, $B^0 \rightarrow K^{*0}e^+e^-$ and $\Lambda_b \rightarrow \Lambda\mu^+\mu^-$
- * <u>Test of Lepton Flavour Universality</u>: $B^+ \rightarrow K^+ \ell^+ \ell^-$ and $B^0 \rightarrow K^{*0} \ell^+ \ell^-$

• Particular interest is in ratios testing LFV since they are not affected by hadronic uncertainties

• These deviations from SM predictions point to new physics in the Wilson coefficient $C_{9\mu}$, affecting differently to lepton families.

→ Difficult to be explained by just experimental effects.
→ Difficult to be explained by just QCD effects...

• Most of results here are from Run1 and are limited by statistics... measurements on Run2 data ongoing!

Thanks !