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We discuss PT -symmetric Abelian gauge field theories, as well as their extension to the

Englert-Brout-Higgs mechanism for generating a mass for a vector boson. Gauge invariance is not

straightforward, and we discuss the different related problems, as well as a solution which consists

in coupling the gauge field to a current that is not conserved. Non-Hermiticity then necessarily

precludes the Lorenz gauge condition but nevertheless allows for a consistent formulation of

the theory. We therefore generalise the Englert-Brout-Higgs mechanism to PT -symmetric field

theories, opening the way to constructing non-Hermitian extensions of the Standard Model and

new scenarios for particle model-building.
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I. INTRODUCTION

There has been much work in recent years on quantum-mechanical models with non-

Hermitian, PT -symmetric Hamiltonians [1–3], which have become an important area of

research in integrated photonics and other fields [4–6] — see Ref. [7] for a review of relations

to conventional models with Hermitian Hamiltonians. Quantum field theories (QFTs) with

non-Hermitian Hamiltonians have also attracted interest, including a model with an iφ3

scalar interaction [8–12], which was shown in the framework of PT -symmetric QFT to have

a physically meaningful effective potential despite its being unbounded from below [13], and

a PT -symmetric −φ4 model featuring asymptotic freedom [14]. A PT -symmetric theory

with a non-Hermitian fermion mass term µψ̄γ5ψ was considered in Ref. [15], and it was

shown in Ref. [16] that this model possesses a conserved current and that its PT symmetry

is consistent with unitarity.

Among applications to particle physics, the possibility of using the non-Hermitian term

µψ̄γ5ψ to describe neutrino masses was considered in Refs. [17–19], and the application of

non-Hermitian QFT to neutrino oscillations was considered in Ref. [20]. A lattice version

of a non-Hermitian fermionic model was studied in Ref. [21], where it was shown that this

model could accommodate different numbers of left-handed and right-handed excitations,

consistent with the fermionic symmetry current found in Ref. [16]. There have also been

applications of non-Hermitian QFT to dark matter [22] and to decays of the Higgs boson [23],

and it was argued in Ref. [24] that the PT -symmetry properties of ghost fields are relevant

for the confinement phase transition in QCD. Effective non-Hermitian Hamiltonians with

complex spectra are also known to play a role in the description of unstable systems with

particle mixing (see, e.g., Ref. [25]).

In this work, we show how the gauge symmetries of non-Hermitian and PT -symmetric

theories may be broken via a generalisation of the Englert-Brout-Higgs mechanism [26, 27],

opening the way to significant extensions of the Standard Model and other particle physics

theories.

This extension is non-trivial, as it was discovered in Ref. [28] (for a summary, see Ref. [29])

that the existence of a conserved current in a PT -symmetric QFT does not correspond to

a symmetry of the Lagrangian L. Instead, it corresponds to a non-trivial transformation of

the non-Hermitian part of L, thereby evading Noether’s theorem [30], in that symmetries
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of a PT -symmetric Lagrangian are not related to conserved currents. We emphasise that

conserved currents do exist though, as in the Hermitian case. This striking observation

raised the interesting question whether PT -symmetric QFTs exhibit an analogue of the

spontaneous breaking of a global symmetry that is familiar in Hermitian QFTs and, if

so, whether this spontaneous symmetry breaking is accompanied by a massless Goldstone

mode [31–33].

The answers to both questions are yes [34]. One can define consistently a saddle point

of the potential in a PT -symmetric QFT with a quartic scalar potential in which the scalar

fields have symmetry-breaking vacuum expectation values (vev’s) that are accompanied by

a massless Goldstone mode. The existence of the latter follows from current conservation,

even though the Lagrangian is not invariant under the corresponding field transformations.

The existence of this Goldstone mode was confirmed by an explicit calculation of the effec-

tive potential at the tree and one-loop levels. Our analysis of these questions was based on

a formulation of a non-Hermitian QFT that included a consistent quantisation of the path

integral. This is possible because the PT -symmetric theory possesses a complete set of real

energy eigenstates, which allow for saddle points about which the integration of quantum

fluctuations is well-defined. The conventional quantisation of the path integral for a Her-

mitian scalar Lagrangian can be extended consistently to the non-Hermitian case by using

PT conjugation instead of Hermitian conjugation [34].

These developments have opened the way to exploring whether the Englert-Brout-Higgs

mechanism [26, 27] for generating masses for gauge bosons also has a generalisation to the

non-Hermitian case. As we show in this paper, the answer is again yes. This might seem

surprising, since coupling the gauge field to the conserved current does not lead to a gauge-

invariant Lagrangian. However, we show how a consistent model can be obtained when

coupling the gauge field to a non-conserved current, provided a covariant gauge fixing term

is present in the Lagrangian.

The layout of this paper is as follows. In Sec. II, we begin by setting up the PT -symmetric

QFT that we use for our analysis. After reviewing symmetries and conservation laws in this

context, we then discuss spontaneous symmetry breaking and the Goldstone mode in this

theory in Sec. III. The gauging of this PT -symmetric model is described in Sec. IV, and the

associated Englert-Brout-Higgs mechanism in Sec. V. Finally, we summarise our conclusions

and discuss perspectives for possible future research in Sec. VI.
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II. SYMMETRIES AND CONSERVATION LAWS

We start by considering a theory with two complex scalar fields φ1,2 described by the

Lagrangian density first studied in Refs. [28, 29]

L = ∂αφ
⋆
1∂

αφ1 + ∂αφ
⋆
2∂

αφ2 −m2
1|φ1|2 −m2

2|φ2|2 − µ2
(

φ⋆
1φ2 − φ⋆

2φ1

)

, (1)

whose squared mass eigenvalues are given by

M2
± =

1

2
(m2

1 +m2
2)±

1

2

√

(m2
1 −m2

2)
2 − 4µ4 . (2)

These are real as long as

η ≡ 2µ2

|m2
1 −m2

2|
≤ 1 . (3)

The Lagrangian (1) is left invariant by the PT transformation

PT : Φ =





φ1

φ2



 →





φ⋆
1

−φ⋆
2



 . (4)

The field φ1 transforms as a scalar under parity, i.e. P : φ1 → +φ1, and the field φ2

transforms as a pseudoscalar, i.e. P : φ2 → −φ2. Time-reversal T is taken to be the usual

anti-linear operator, whose action is equivalent to complex conjugation on the c-number

fields φ1 and φ2. (We do not consider the discrete symmetries of this theory in Fock space.)

Since the Lagrangian (1) is not Hermitian, the corresponding action S has the imaginary

part

ImS = iµ2

∫

d4x
(

φ⋆
1φ2 − φ⋆

2φ1

)

, (5)

implying that the following equations of motion are not equivalent:

δS

δΦ†
≡ ∂L
∂Φ†

− ∂α
∂L

∂(∂αΦ†)
= 0 <

δS

δΦ
≡ ∂L
∂Φ

− ∂α
∂L

∂(∂αΦ)
= 0 . (6)

(We emphasise that the functional variation δS/δΦ(†) is understood here and in what follows

as a shorthand for the “naive” variation of the action that yields the usual Euler-Lagrange

equations.) It would appear, therefore, that there is some ambiguity in the definition of

the equations of motion. This ambiguity can be resolved, however, by carefully defining the

states (and their inner product) and considering the variational procedure in detail [28, 29],

as we outline below.
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If we neglect surface terms, we can write the Lagrangian (1) in the symmetric form

L = Φ‡





−�−m2
1 −µ2

−µ2
�+m2

2



Φ , (7)

where Φ‡ = (φ⋆
1 , − φ⋆

2), which shows that the conjugate variables (and states) to consider

here are the PT -conjugate fields {Φ,Φ‡}, instead of the Hermitian-conjugate fields {Φ,Φ†}.
It nevertheless remains the case that we have a choice to define the equations of motion

by varying Eq. (7) with respect to Φ‡ or Φ. Taking the former variation, the equations of

motion are given by

δS

δΦ‡
≡ ∂L
∂Φ‡

− ∂α
∂L

∂(∂αΦ‡)
= 0 and

(

δS

δΦ

)‡

≡
(

∂L
∂Φ

− ∂α
∂L

∂(∂αΦ)

)‡

= 0 . (8)

This implies, however, that

δS

δΦ
≡ ∂L
∂Φ

− ∂α
∂L

∂(∂αΦ)
6= 0 , (9)

except when we have the trivial solution φ1 = φ2 = 0. For non-trivial solutions, the

non-vanishing of the complementary variation in Eq. (9) is necessarily supported by non-

vanishing surface terms or external sources, as explained in detail in references [28, 29, 34].

The equations of motion defined by Eq. (8) are equivalent to those obtained from

δS

δΦ⋆
= 0 and

δS⋆

δΦ
= 0 . (10)

This choice places the zero mode in the right eigenspectrum of the non-Hermitian Klein-

Gordon operator. The alternative choice

δS

δΦ
= 0 and

δS⋆

δΦ⋆
= 0 (11)

corresponds to switching the coupling µ2 ↔ −µ2 and choosing the zero mode to lie instead

in the left eigenspectrum. However [28, 29], this does not change the physical observables,

since they depend only on (±µ2)2. We are therefore free to choose the equations of motion

as in Eqs. (8) and (10). This reflects the fact that, as in the Hermitian case, physical

observables are invariant under transformations of the discrete Z2 × Z2 group, i.e. we can

absorb a change in the sign of µ2 by an appropriate field redefinition.

We remark that this freedom to choose the defining equations of motion persists in the

Hamiltonian formulation. Specifically, the Legendre transform relating the Lagrangian and
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Hamiltonian descriptions is unaffected by the non-Hermiticity of the potential, since the

definition of the conjugate momenta is unchanged from the Hermitian case. Of Hamilton’s

equations, only those for the time-derivatives of the conjugate momenta are affected, and

we may freely choose to define the equations of motion with respect to

∂tΠ
† = − ∂H

∂Φ†
, (12)

or, alternatively,

∂tΠ = − ∂H
∂Φ

6= (∂tΠ
†)† . (13)

We emphasise that Eqs. (12) and Eq. (13) are not related by Hermitian conjugation since the

Hamiltonian density H 6= H† is not Hermitian — the operations of Hermitian conjugation

and derivation with respect to time do not commute (i.e. ∂tΠ 6= ∂†tΠ, where the meaning of

∂†t follows from the Hamilton equations of motion). As in the case of the Euler-Lagrange

equations, however, the two choices are related by the transformation µ2 → −µ2, under

which physical observables remain unchanged.

As discussed in Refs. [28, 29], the eigenvectors e± of the mass matrix, appearing in the

Lagrangian (1) and corresponding to the eigenvalues M2
±, are not orthogonal with respect

to Hermitian conjugation, i.e. (e+)
† · e− 6= 0, but they are orthogonal with respect to PT

conjugation, i.e. (e+)
‡ ·e− = 0. The inner product of states (in flavour space) must therefore

be defined with PT -conjugate fields, and the time evolution of the system is then derived in

the usual way by expanding the fields on the basis vectors e±, with the corresponding creation

operators evolving with the factor exp[itE±(p)], where E2
±(p) = p

2 +M2
±. Note that the

canonical equal-time commutation relations, for each field φi and its conjugate momentum

πi = φ̇i

⋆
, are not modified by the non-Hermiticity, in accordance with the discussion of

the Hamiltonian description above. Once the equations of motion are chosen according to

either Eqs. (10) or Eqs. (11), quantisation therefore follows the usual steps and, as stated

in Ref. [35], the Heisenberg picture holds since the Hamiltonian, although non-Hermitian,

remains the generator for time evolution.

To elaborate further on the consistency of the choice of equations of motion, it is conve-

nient to define new field variables (Ξ, Ξ̄), for which the mass matrix is diagonal:

Ξ ≡ RΦ and Ξ̄ ≡ Φ†R−1 , (14)
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where (for m2
1 > m2

2)

R = N





η 1−
√

1− η2

1−
√

1− η2 η



 (15)

and

N−1 ≡
√

2η2 − 2 + 2
√

1 − η2 . (16)

Notice that this is a similarity rather than a unitary transformation, and it is defined only

away from the exceptional point η = 1.

In this basis, the Lagrangian in Eq. (1) takes the form

L = Ξ̄





−�−M2
+ 0

0 −�−M2
−



Ξ . (17)

The variable Ξ̄ 6= Ξ† is the C′PT -conjugate of Ξ: Ξ̄ = Ξ‡C ′, where the matrix C ′ =

RPR−1. The C′PT conjugation is the involution with respect to which the positive-definite

inner product is defined for non-Hermitian, PT -symmetric QFTs [2], and it is in terms of

these C′PT -conjugate variables that the partition function can be defined consistently, as

explained in Ref. [34]. The equations of motion, consistent with either Eqs. (10) or (11),

follow straightforwardly from the variations

δS

δΞ̄
= 0 or

δS

δΞ
= 0 , (18)

which still correspond to two distinct choices.

Returning to the Lagrangian in Eq. (1), we have invariance under the global phase trans-

formation Φ → e−iθΦ. However, the corresponding Noether current

jα+ ≡ i (φ⋆
1∂

αφ1 − φ1∂
αφ⋆

1) + i (φ⋆
2∂

αφ2 − φ2∂
αφ⋆

2) (19)

is not conserved when the equations of motion, obtained as described above, are applied.

On the other hand, the current corresponding to the transformations

Φ → e−iθPΦ =





e−iθφ1

eiθφ2



 (20)

is conserved, and it is given by

jα− = i (φ⋆
1∂

αφ1 − φ1∂
αφ⋆

1)− i (φ⋆
2∂

αφ2 − φ2∂
αφ⋆

2) . (21)
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We note that the transformation (20) does not leave the Lagrangian invariant: δL =

δS
δφi

δφi 6= 0 (see Ref. [28]). Instead, the Lagrangian transforms into

Lθ = ∂αφ
⋆
1∂

αφ1 + ∂αφ
⋆
2∂

αφ2 −m2
1|φ1|2 −m2

2|φ2|2 − µ2
(

e+2iθφ⋆
1φ2 − e−2iθφ⋆

2φ1

)

. (22)

However, even though the Lagrangian is different from (1), the physical observables remain

unchanged and describe the same physical system [34]. This implies that there is a one-

parameter family of non-Hermitian Lagrangians that describe the same physics [34]. As we

will see, however, the situation is quite different in the case of local symmetries.

III. SPONTANEOUS SYMMETRY BREAKING AND THE GOLDSTONE MODE

Before considering the case of local symmetries, we first review how the Goldstone the-

orem can be extended [34] from the standard Hermitian case to that of a non-Hermitian,

PT -symmetric system, the only requirement being the existence of a conserved current jα

and a non-trivial vacuum v for which ϕ(v) 6= v, where ϕ is the transformation correspond-

ing to the current jα. A simple example of such a non-Hermitian, PT -symmetric system is

given by the Lagrangian

L = ∂αφ
⋆
1∂

αφ1 + ∂αφ
⋆
2∂

αφ2 +m2
1|φ1|2 −m2

2|φ2|2 − µ2 (φ⋆
1φ2 − φ⋆

2φ1)−
g

4
|φ1|4 . (23)

Using the equations of motion, we find a non-trivial vacuum that is a solution of the equations

0 =
(

g|φ1|2 − 2m2
1

)

φ1 + 2µ2φ2 , (24a)

0 = m2
2φ2 − µ2φ1 . (24b)

This vacuum is given by





v1

v2



 =

√

2
m2

1m
2
2 − µ4

gm2
2





1

µ2

m2

2



 , (25)

up to an overall complex phase.

The potential for the fluctuations can be written in the form

U(φ̂1, φ̂2) = −2µ4

m2
2

v1φ̂1 + 2m2
2v2φ̂2 + m̃2

1|φ̂1|2 +
g

4
v21
(

φ̂2
1 + (φ̂⋆

1)
2
)

+ m2
2|φ̂2|2 + µ2

(

φ̂⋆
1φ̂2 − φ̂⋆

2φ̂1

)

+
g

2
v1
(

φ̂1 + φ̂⋆
1

)

|φ1|2 +
g

4
|φ1|4 , (26)
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where m̃2
1 ≡ gv21 − m2

1 and we have shifted the fields: φ1 ≡ v1 + φ̂1 and φ2 ≡ v2 + φ̂2.

The linear terms in this potential are a consequence of our non-Hermitian behaviour. Note

that they are not symmetric under PT , such that the non-trivial vacuum breaks the PT
symmetry of the action. Even so, there remains a region of parameter space in which the

eigenspectrum of the fluctuations is real and positive semi-definite and, though present in

the potential, they play no role in the equations of motion, nor their complex conjugates,

which are given by

(

−�− m̃2
1

)

φ̂1 = +µ2φ̂2 +
g

2
v21φ̂

⋆
1 +

g

2

(

v1φ̂
2
1 + 2v1|φ̂1|2 + |φ̂1|2φ̂1

)

, (27a)
(

−�−m2
2

)

φ̂2 = −µ2φ̂1 . (27b)

The mass squared matrix is given by the linear terms in these equations and takes the

form

M2 =















m̃2
1

g

2
v21 µ2 0

g

2
v21 m̃2

1 0 µ2

−µ2 0 m2
2 0

0 −µ2 0 m2
2















. (28)

This matrix has an eigenmode

G1 =

√

2m4
2

m4
2 − µ4

[

Im
(

φ̂1

)

− µ2

m2
2

Im
(

φ̂2

)

]

, (29)

with eigenvalue λ1 = 0, which is the Goldstone mode in this model.1 We gave in Ref. [34]

a general proof that such a mode must appear whenever there is a non-trivial vacuum for

which ϕ(v) 6= v holds and verified the persistence of the Goldstone mode (29) at the one-loop

level.

The other modes of this model have eigenvalues

λ2 = m2
2 −

µ4

m2
2

, (30a)

λ± =
1

2m2
2

(

2m2
1m

2
2 − 3µ4 +m4

2 ±
√

(2m2
1m

2
2 − 3µ4 −m4

2)
2 − 4µ4m4

2

)

, (30b)

1 Notice that the normalisation of the Goldstone mode (with respect to PT conjugation) diverges in the

limit µ2 = ±m2

2
(see the note added).
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and are given by

G2 =

√

2m4
2

m4
2 − µ4

[

Im
(

φ̂2

)

− µ2

m2
2

Im
(

φ̂1

)

]

, (31a)

G± =

√
2

√

(λ± −m2
2)

2 − µ4

[

(λ± −m2
2)Re

(

φ̂1

)

+ µ2Re
(

φ̂2

)

]

, (31b)

respectively. We note that the masses of these physical modes depend in different ways on the

mass parameter µ that characterises the amount of non-Hermiticity in the Lagrangian (23).

IV. GAUGING THE PT -SYMMETRIC MODEL

A. Naive approach

We may seek to promote the above global transformations to local transformations by

introducing a gauge field Aα and minimally coupling it to the scalar fields via the gauge

covariant derivatives. For the Maxwell equations to have the usual canonical form though,

∂αF
αβ = jβA,−, we must couple the gauge field to a conserved current with ∂βj

β
A,− = 0, since

∂α∂βF
αβ = 0 identically. The Lagrangian then takes the form

L = [D+
αφ1]

⋆Dα
+φ1+[D−

αφ2]
⋆Dα

−φ2−m2
1|φ1|2−m2

2|φ2|2−µ2 (φ⋆
1φ2 − φ⋆

2φ1)−
1

4
FαβF

αβ , (32)

where the covariant derivatives are Dα
± = ∂α ± iqAα. The conserved current is

jαA,− = iq
(

φ⋆
1D

α
+φ1 − φ1[D

α
+φ1]

⋆
)

− iq
(

φ⋆
2D

α
−φ2 − φ2[D

α
−φ2]

⋆
)

, (33)

and the kinetic terms in the Lagrangian are invariant under the transformations

φ1(x) → φ1(x)e
−iqf(x) , (34a)

φ2(x) → φ2(x)e
+iqf(x) , (34b)

Aα(x) → Aα(x) + ∂αf(x) . (34c)

The kinetic term could also be written in terms of DαΦ with Dα = I2∂α + iqPAα, making

manifest the role played by the parity matrix P in the definition of the conserved current.

However, with this form of coupling, we see that the non-Hermitian mass term explicitly

breaks gauge invariance. Specifically, the gauge transformation yields a local mass squared

matrix

M2(x) =





m2
1 µ2e+2iqf(x)

− µ2e−2iqf(x) m2
2



 ≡





m2
1 µ̃2(x)

[−µ̃2(x)]
⋆

m2
2



 . (35)
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The eigenspectrum is unaffected by the additional phases in the off-diagonal elements of

Eq. (35), and the squared mass eigenvalues remain real and independent of the gauge function

f , since they involve µ̃2(x)[µ̃2(x)]⋆ = µ4. Rotating to the mass eigenbasis via the similarity

transformation in Eq. (14), the gauge dependence is shifted to the gauge interactions, since

the matrix R, which is modified to the local form

R(x) = N





η e− 2iqf(x) 1−
√

1− η2

1−
√

1− η2 η e+2iqf(x)



 , (36)

does not commute with the P matrix appearing in the gauge coupling, i.e. R−1PR 6= P . As

a result, and while the eigenspectrum is gauge invariant, we find that the photon acquires

a mass beyond tree-level; namely, at the one-loop level, we find that the polarisation tensor

is not transverse:

kαΠ
αβ(k2 = 0) =

q2

8π2

kβµ4

(M2
+ −M2

−)
3

[

M4
+ −M4

− + 2M2
+M

2
− ln

(

M2
−

M2
+

)]

. (37)

The above observations indicate that the non-Hermitian deformation of massless gauge

theories is problematic, due to the necessary violation of gauge invariance.

One could modify the naive Lagrangian (32) though, if one wishes to maintain a coupling

to the conserved current as well as gauge invariance. One might be tempted to introduce a

non-minimal coupling, with the Lagrangian

LW = [D+
αφ1]

⋆Dα
+φ1 + [D−

αφ2]
⋆Dα

−φ2 −m2
1|φ1|2 −m2

2|φ2|2

−µ2
(

W ⋆2(x)φ⋆
1φ2 −W 2(x)φ⋆

2φ1

)

− 1

4
FαβF

αβ , (38)

where

W (x) = exp

[

iq

∫ x

Aαdy
α

]

(39)

is a Wilson line [36], running along a path from the boundary (at infinity) to the spacetime

point x. Under a gauge transformation (chosen to vanish at infinity), we have

W (x) = W (x)eiqf(x) , (40)

and the Lagrangian is invariant. However, we have traded the problem of gauge invariance

for the path-dependence of the Wilson line. Moreover, we see that the gauge field now

couples to the non-Hermitian term, such that the equation of motion for the gauge field

obtains an imaginary part, potentially violating the reality of the gauge field.
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B. Modification of charge allocation

In order to keep gauge invariance, we can instead couple the gauge field to the non-

conserved current

jαA,+ = iq
(

φ⋆
1D

αφ1 − φ1[D
αφ1]

⋆
)

+ iq
(

φ⋆
2D

αφ2 − φ2[D
αφ2]

⋆
)

, (41)

where Dα = ∂α + iqAα, with divergence

∂αj
α
A,+ = 2iqµ2(φ⋆

2φ1 − φ⋆
1φ2) . (42)

In this case, φ1 and φ2 are assigned identical charges, and the non-Hermitian mass term

is gauge invariant. However, in order to ensure that the Maxwell equations are consistent,

since ∂βj
β
A,+ 6= 0, we need to add to the Lagrangian the term

− 1

2ξ
(∂αA

α)2 , (43)

which would, in the Hermitian case, correspond to fixing a covariant gauge that satisfies the

Lorenz gauge condition ∂αA
α = 0. Notice that, with the addition of this term, and as in the

Hermitian case, the gauge functions must satisfy the constraint �f = 0, such that we only

have a restricted gauge invariance.

The equation of motion for the gauge field becomes

�Aα − (1− 1/ξ)∂α∂βA
β = jαA,+ , (44)

and its divergence yields

1

ξ
�∂αA

α = 2iqµ2(φ⋆
2φ1 − φ⋆

1φ2) . (45)

We see that the non-Hermiticity precludes the Lorenz gauge condition, and the consistency

of the Maxwell equation instead leads to the constraint

�π0 = 2iqµ2(φ⋆
1φ2 − φ⋆

2φ1) , (46)

where π0 = − ∂αA
α/ξ is the momentum conjugate to A0.

As a last remark, we note that the above formulation arises naturally from the Stückelberg

mechanism [37] (see, e.g., Ref. [38]), in the limit where the vector mass goes to zero. To see

this, we introduce an extra real scalar field ρ, and consider the Lagrangian

Lρ = [Dαφ1]
⋆Dαφ1 + [Dαφ2]

⋆Dαφ2 −m2
1|φ1|2 −m2

2|φ2|2 − µ2 (φ⋆
1φ2 − φ⋆

2φ1)

−1

4
FαβF

αβ +
1

2

(

m0Aα − ∂αρ
)(

m0A
α − ∂αρ

)

− 1

2ξ

(

∂αA
α + ξm0ρ

)2
. (47)
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This Lagrangian is invariant under the gauge transformations

φ1,2(x) → φ1,2(x)e
−iqf(x) , (48a)

Aα(x) → Aα(x) + ∂αf(x) , (48b)

ρ(x) → ρ(x) +m0f(x) , (48c)

where the gauge function satisfies (� + ξm2
0)f = 0. The equation of motion for Aα then

yields Eq. (44) in the limit m0 → 0, where the scalar ρ decouples from the system, and the

constraint (45) necessarily arises.

C. Reality of the background gauge field

We discuss here the reality of the background gauge field Aα
b after quantum corrections.

Aα
b is defined as

Aα
b =

1

Z

δZ

δJα
, (49)

where Z is the Euclidean partition function and Jα is the corresponding source. Z is PT -

symmetric and can defined as

Z =

∫

D[Aα,Φ,Φ
‡] exp

(

−SE +

∫

d4x
(

JαA
α + χPT

1 φ1 + φPT
1 χ1 + χPT

2 φ2 + φPT
2 χ2

)

)

,

(50)

where χk and χPT
k are the sources for φPT

k and φk, respectively.

For Aα
b to be real, it is enough to find a condition for the Euclidean partition function to

be real, although the Euclidean action SE has an imaginary part, which is opposite in sign

to ImS, given in Eq. (5). This condition can be achieved by choosing the transformation of

the sources χk under PT appropriately. For this, we note that the partition function can

also be written

Z =

∫

D[Aα,Φ,Φ
‡] exp

(

−SE +

∫

d4x
(

JαA
α + χPT

1 φ1 + φ⋆
1χ1 + χPT

2 φ2 − φ⋆
2χ2

)

)

,

(51)

such that

Z⋆ =

∫

D[Aα,Φ,Φ
‡] exp

(

−S⋆
E +

∫

d4x
(

JαA
α + (χPT

1 )⋆φ⋆
1 + φ1χ

⋆
1 + (χPT

2 )⋆φ⋆
2 − φ2χ

⋆
2

)

)

,

(52)
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which, after the change of variable φ2 → −φ2, leads to

Z⋆ =

∫

D[Aα,Φ,Φ
‡] exp

(

−SE +

∫

d4x
(

JαA
α + (χPT

1 )⋆φ⋆
1 + φ1χ

⋆
1 − (χPT

2 )⋆φ⋆
2 + φ2χ

⋆
2

)

)

.

(53)

Imposing Z⋆ = Z implies then χPT
1 = χ⋆

1 and χPT
2 = χ⋆

2. Note that this is consistent with

the PT properties of the scalar background field φb
2, defined as

φb
2 =

1

Z

δZ

δχPT
2

, (54)

since

(φb
2)

PT =
1

Z

δZ

δχ2

= −(φb
2)

⋆ . (55)

As a consequence, PT symmetry ensures that the gauge field remains real after quantum

corrections, even though it is coupled to a non-Hermitian scalar sector.

Finally, one can also conclude from the reality of the partition function that physical

observables depend on µ4 only. Indeed, for Z to be real, the imaginary part of the action,

cf. Eq. (5), must contribute to the calculation of Z with even powers, and thus with (±µ2)2.

This property, predicted at the tree level, can thus be extended to the full quantum system.

V. ENGLERT-BROUT-HIGGS MECHANISM

In this section, we show that a gauge-invariant mass can be generated at tree-level by

the Englert-Brout-Higgs mechanism. Given the considerations in Sec. IV, we consider the

Lagrangian

L = [Dαφ1]
⋆Dαφ1 + [Dαφ2]

⋆Dαφ2 +m2
1|φ1|2 −m2

2|φ2|2 − µ2 (φ⋆
1φ2 − φ⋆

2φ1)

−g
4
|φ1|4 −

1

4
FαβF

αβ − 1

2ξ
(∂αA

α)2 , (56)

where we emphasise that the would-be gauge-fixing term −(∂αA
α)2/(2ξ) is necessary for

consistency of the model.

The vacuum expectation value for the scalar fields is the same as in the global model

(25), and we can express the Lagrangian (56) in terms of the shifted fields:

L = ∂αφ̂
⋆
1∂

αφ̂1 + ∂αφ̂
⋆
2∂

αφ̂2 − U(φ̂1, φ̂2)−
1

4
FαβF

αβ − 1

2ξ
(∂αA

α)2

+q2AαA
α
(

|v1 + φ̂1|2 + |v2 + φ̂2|2
)

−Aαj
α
+ , (57)
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where U(φ̂1, φ̂2) is defined in Eq. (26) and jα+ is the current in Eq. (19). We then obtain the

equations of motion

(

−D2 − m̃2
1

)

φ̂1 = +µ2φ̂2 − q2v1A
2 + iqv1∂αA

α

+
g

2
v21φ̂

⋆
1 +

g

2

(

v1φ̂
2
1 + 2v1|φ̂1|2 + |φ̂1|2φ̂1

)

, (58a)

(

−D2 −m2
2

)

φ̂2 = −µ2φ̂1 − q2v2A
2 + iqv2∂αA

α , (58b)
(

−�−M2
A

)

Aα + (1− 1/ξ)∂α∂βA
β = 2q2

(

v⋆1 φ̂1 + v1φ̂
⋆
1 + v⋆2φ̂2 + v2φ̂

⋆
2

)

Aα

+ 2q2
(

|φ̂1|2 + |φ̂2|2
)

Aα − jα+ , (58c)

where

M2
A = 2q2

(

|v1|2 + |v2|2
)

(59)

is the gauge-invariant squared-mass of the gauge boson. Therefore, although the non-

Hermitian model has non-trivial features related to gauge invariance, the usual Englert-

Brout-Higgs mechanism still holds.

VI. CONCLUSIONS AND PERSPECTIVES

We have shown in this paper how the Englert-Brout-Higgs mechanism [26, 27] for gener-

ating masses for gauge bosons can be generalised from the familiar case of Hermitian QFTs

to the more general framework of PT -symmetric field theories. However, we have seen that

to preserve gauge invariance in the non-Hermitian gauge theories described here, it is neces-

sary to couple the gauge field to the non-conserved current. The consistency of the Maxwell

equations then requires the inclusion of the would-be gauge fixing term but precludes the

Lorenz gauge and leads to a particular constraint on the gauge field that depends on the

non-Hermitian structure of the theory.

We have restricted our attention in this work to the Abelian case, and it would clearly

be interesting to explore the possible extension to the non-Abelian case [39], which will

require a careful re-examination of the quantisation procedure for non-Abelian gauge fields

in the context of PT -symmetric field theories. Such an analysis should be completed by

a study of renormalisation and unitarity, including the possibility of non-Hermitian gauge

anomalies. We note that the scalar fields in the PT -symmetric model we have studied

could in principle be elevated to doublets of an SU(2) gauge group so, if these issues can be
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resolved, one might consider using this model as the basis for the possible construction of a

non-Hermitian extension of the Standard Model, as well as other new scenarios in particle

modeling that might also incorporate non-Hermitian extensions of the Yukawa sector [18, 19].

Note added: While this work was being prepared, we saw Ref. [40], in which Goldstone

bosons and the Englert-Brout-Higgs mechanism in non-Hermitian theories are discussed from

a complementary perspective. We thank Philip Mannheim for kindly drawing our attention

to his interesting paper. This also made us aware of a consistent error in the normalisation

of the Goldstone modes in our previous work [34] (corrected herein), which obscured the

behaviour of the exceptional point µ2 = ±m2
2, as discussed in detail in Ref. [40].

ACKNOWLEDGEMENTS

We thank the Referee for pointing out the need to address ambiguities related to gauge

invariance. The work of JA and JE was supported by the United Kingdom STFC Grant

ST/P000258/1, and that of JE also by the Estonian Research Council via a Mobilitas Pluss

grant. The work of PM was supported by a Leverhulme Trust Leadership Award.

[1] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians having PT

Symmetry, Phys. Rev. Lett. 80 (1998) 5243 [physics/9712001].

[2] C. M. Bender, D. C. Brody and H. F. Jones, Complex Extension of Quantum Mechanics, Phys.

Rev. Lett. 89 (2002) 270401 [Erratum: Phys. Rev. Lett. 92 (2004) 119902] [quant-ph/0208076].

[3] C. M. Bender, Introduction to PT -symmetric quantum theory, Contemp. Phys. 46 (2005) 277

[quant-ph/0501052].

[4] S. Longhi, Optical Realization of Relativistic Non-Hermitian Quantum Mechanics, Phys. Rev.

Lett. 105, 013903 (2010); Parity-time symmetry meets photonics: A new twist in non-

Hermitian optics, Europhys. Lett. 120 (2017) no. 6, 64001, and references therein.

[5] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter and

D. N. Christodoulides, Non-Hermitian physics and PT symmetry, Nat. Phys. 14 (2017) 11.

16

http://arxiv.org/abs/physics/9712001
http://arxiv.org/abs/quant-ph/0208076
http://arxiv.org/abs/quant-ph/0501052


[6] Y. Ashida, S. Furukawa and M. Ueda, Parity-time-symmetric quantum critical phenomena,

Nat. Commun. 8 (2017) 15791.

[7] M. Znojil, Hermitian–Non-Hermitian Interfaces in Quantum Theory, Adv. High Energy Phys.

2018 (2018) 7906536 [arXiv:1710.03470 [quant-ph]].

[8] M. P. Blencowe, H. F. Jones and A. P. Korte, Applying the linear δ expansion to the iϕ3

interaction, Phys. Rev. D 57 (1998) no. 8, 5092 [hep-th/9710173].

[9] C. M. Bender, D. C. Brody and H. F. Jones, Scalar Quantum Field Theory with a Complex

Cubic Interaction, Phys. Rev. Lett. 93 (2004) 251601 [hep-th/0402011].

[10] H. F. Jones, The C operator in iϕ3 field theory, Czech. J. Phys. 54 (2004) 1107.

[11] C. M. Bender, V. Branchina and E. Messina, Critical behavior of the PT -symmetric iφ3 quan-

tum field theory, Phys. Rev. D 87 (2013) no. 8, 085029 [arXiv:1301.6207 [hep-th]].

[12] A. M. Shalaby, Vacuum structure and PT -symmetry breaking of the non-Hermetian (iφ3)

theory, Phys. Rev. D 96 (2017) no. 2, 025015.

[13] C. M. Bender, D. W. Hook, N. E. Mavromatos and S. Sarkar, PT -symmetric interpreta-

tion of unstable effective potentials, J. Phys. A: Math. Theor. 49 (2016) no. 45, 45LT01

[arXiv:1506.01970 [hep-th]].

[14] A. Shalaby and S. S. Al-Thoyaib, Non-perturbative tests for asymptotic freedom in the PT -

symmetric (−φ4)3+1 theory, Phys. Rev. D 82 (2010) no. 8, 085013 [arXiv:0901.3919 [hep-th]].

[15] C. M. Bender, H. F. Jones and R. J. Rivers, Dual PT -symmetric quantum field theories, Phys.

Lett. B 625 (2005) 333 [hep-th/0508105].

[16] J. Alexandre and C. M. Bender, Foldy-Wouthuysen transformation for non-Hermitian Hamil-

tonians, J. Phys. A: Math. Theor. 48 (2015) no. 18, 185403 [arXiv:1501.01232 [hep-th]].

[17] K. Jones-Smith and H. Mathur, Relativistic Non-Hermitian quantum mechanics, Phys. Rev.

D 89 (2014) no. 12, 125014 [arXiv:0908.4257 [hep-th]].

[18] J. Alexandre, C. M. Bender and P. Millington, Non-Hermitian extension of gauge theories and

implications for neutrino physics, JHEP 1511 (2015) 111 [arXiv:1509.01203 [hep-th]].

[19] J. Alexandre, C. M. Bender and P. Millington, Light neutrino masses from a non-Hermitian

Yukawa theory, J. Phys.: Conf. Ser. 873 (2017) no. 1, 012047 [arXiv:1703.05251 [hep-th]].

[20] T. Ohlsson, Non-Hermitian neutrino oscillations in matter with PT symmetric Hamiltonians,

Europhys. Lett. 113 (2016) no. 6, 61001 [arXiv:1509.06452 [hep-ph]].

17

http://arxiv.org/abs/1710.03470
http://arxiv.org/abs/hep-th/9710173
http://arxiv.org/abs/hep-th/0402011
http://arxiv.org/abs/1301.6207
http://arxiv.org/abs/1506.01970
http://arxiv.org/abs/0901.3919
http://arxiv.org/abs/hep-th/0508105
http://arxiv.org/abs/1501.01232
http://arxiv.org/abs/0908.4257
http://arxiv.org/abs/1509.01203
http://arxiv.org/abs/1703.05251
http://arxiv.org/abs/1509.06452


[21] M. N. Chernodub, The Nielsen-Ninomiya theorem, PT -invariant non-Hermiticity and single

8-shaped Dirac cone, J. Phys. A: Math. Theor. 50 (2017) no. 38, 385001 [arXiv:1701.07426

[cond-mat.mes-hall]].

[22] V. N. Rodionov and A. M. Mandel, An upper limit on fermion mass spectrum in non-Hermitian

models and its implications for studying of dark matter, arXiv:1708.08394 [hep-ph].

[23] A. Y. Korchin and V. A. Kovalchuk, Decay of the Higgs boson to τ−τ+ and non-Hermiticy of

the Yukawa interaction, Phys. Rev. D 94 (2016) no. 7, 076003 [arXiv:1607.02827 [hep-ph]].

[24] H. Raval and B. P. Mandal, Deconfinement to confinement as PT phase transition,

arXiv:1805.02510 [hep-th].

[25] A. Pilaftsis, Resonant CP violation induced by particle mixing in transition amplitudes, Nucl.

Phys. B 504 (1997) 61 [hep-ph/9702393].

[26] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev.

Lett. 13 (1964) 321.

[27] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964)

132; Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508.

[28] J. Alexandre, P. Millington and D. Seynaeve, Symmetries and conservation laws in non-

Hermitian field theories, Phys. Rev. D 96 (2017) no. 6, 065027 [arXiv:1707.01057 [hep-th]].

[29] J. Alexandre, P. Millington and D. Seynaeve, Consistent description of field theories with

non-Hermitian mass terms, J. Phys.: Conf. Ser. 952 (2018) no. 1, 012012 [arXiv:1710.01076

[hep-th]].

[30] E. Noether, Invariante Variationsprobleme, Nachrichten von der Gesellschaft der Wis-

senschaften zu Göttingen, Mathematisch-Physikalische Klasse (1918) 235–257.

[31] Y. Nambu, Axial Vector Current Conservation in Weak Interactions, Phys. Rev. Lett. 4 (1960)

380.

[32] J. Goldstone, Field theories with «superconductor» solutions, Nuovo Cim. 19 (1961) 154.

[33] J. Goldstone, A. Salam and S. Weinberg, Broken Symmetries, Phys. Rev. 127 (1962) 965.

[34] J. Alexandre, J. Ellis, P. Millington and D. Seynaeve, Spontaneous symmetry breaking and

the Goldstone theorem in non-Hermitian field theories, Phys. Rev. D 98 (2018) no. 4, 045001

[arXiv:1805.06380 [hep-th]].

[35] C. M. Bender and P. D. Mannheim, Exactly solvable PT -symmetric Hamiltonian having no

Hermitian counterpart, Phys. Rev. D 78 (2008) no. 2, 025022 [arXiv:0804.4190 [hep-th]].

18

http://arxiv.org/abs/1701.07426
http://arxiv.org/abs/1708.08394
http://arxiv.org/abs/1607.02827
http://arxiv.org/abs/1805.02510
http://arxiv.org/abs/hep-ph/9702393
http://arxiv.org/abs/1707.01057
http://arxiv.org/abs/1710.01076
http://arxiv.org/abs/1805.06380
http://arxiv.org/abs/0804.4190


[36] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) no. 8, 2445.

[37] E. C. G. Stueckelberg, Interaction energy in electrodynamics and in the field theory of nuclear

forces, Helv. Phys. Acta 11 (1938) 225.

[38] H. Ruegg and M. Ruiz-Altaba, The Stueckelberg field, Int. J. Mod. Phys. A 19 (2004) 3265

[hep-th/0304245].

[39] T. W. B. Kibble, Symmetry Breaking in Non-Abelian Gauge Theories, Phys. Rev. 155 (1967)

1554.

[40] P. D. Mannheim, Goldstone bosons and the Englert-Brout-Higgs mechanism in non-Hermitian

theories, Phys. Rev. D 99 (2019) no. 4, 045006 [arXiv:1808.00437 [hep-th]].

19

http://arxiv.org/abs/hep-th/0304245
http://arxiv.org/abs/1808.00437

	Gauge invariance and the Englert-Brout-Higgs mechanism in non-Hermitian field theories
	Abstract
	I Introduction
	II Symmetries and conservation laws
	III Spontaneous symmetry breaking and the Goldstone mode
	IV Gauging the PT-symmetric model
	A Naive approach
	B Modification of charge allocation
	C Reality of the background gauge field

	V Englert-Brout-Higgs mechanism
	VI Conclusions and perspectives
	 Acknowledgements
	 References


