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1 Introduction

The selection of as pure as possible subsamples of hadronic decays of the Z° in which
the primary branching is into bb pairs is of primary interest in LEP physics. Methods so far
explored to achieve this are based on:

1. the shape of the multihadronic events {1];

2. the presence of leptons with large transverse momentum with respect to the event
axis [2};

3. the presence of tracks with large impact parameter with respect to the primary
vertex [3].

Method 2. is limited by low efficiency, since the branching ratio of b into muons is of the
order of 10%. Method 1. is generally limited by low efficiency, and by a large systematic error in
estimating the performance. The systematic error has usually been estimated using simulations,
and the results are sensitive to the models assumed for the description of the hadronization
process. §

In this paper, we discuss the possibility to extract a discriminant variable from many
variables related to the shape of a multihadronic event, and to evaluate its performance in an
almost simulation independent way, using a feed-forward Neural Network as a2 multidimensional
classifier. ’

In the past three years many attempts have been done to use Neural Networks as a tool
for classification of jet events according to the flavour of the parent quarks (for a review of the
results recently obtained see Ref. {6] [7] [8]). These methods achieved performances which are
competitive with standard analysis in terms of efficiency and purity; they share, however, a
weakness in the dependence on Monte Carlo, that makes the estimation of systematic errors
particularly tricky.

This motivated us to explore a strategy (see for example [5] for a previous application of
this method) based on the independent tagging of suitably defined emispheres in which events
are divided. In this way, an almost Monte Carlo independent tagging can be obtained, paying
the price of a worsening of the performances.

We report here on preliminary results obtained in this direction.

2 Experimental Procedure and Event Selection

The sample of events used in the analysis was collected during 1991 by the DELPHI
detector at the LEP e*e~ collider, operating at centre of mass energies around the Z° peak.

A description of the apparatus can be found in Ref. [9]. Features of the apparatus
relevant for the analysis of multi-hadronic final states (with emphasis on the detection of charged
particles) are outlined in Ref. [10]. The present analysis relied on the information provided by
the central tracking detectors.

The central tracking system of DELPHI covers the region between 25° and 155° in polar
angle, #, with reconstruction efficiency near 100%. The average momentum resolution for the
charged particles in hadronic final states is in the range Ap/p = 0.001p to 0.01p (p in GeV/c),
depending on which detectors are included in the track fit.

Charged particles were used in the analysis if they had:

() momentum larger than 0.1 GeV/¢;

(b) measured track length in the TPC greater than 30 cm;

(c) 8 between 25° and 155°%;

(d) relative error on the measured momentum smaller than 100%.

Hadronic events were then selected by requiring that:
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() the total energy of the charged particles in each hemisphere (6 above and below 90°)
exceeded 3 GeV; '

(B) the total energy of the charged particles exceeded 15 GeV;

(7) there were at least 5 charged particles with momenta above 0.2 GeV/c.

In the calculation of the energies, all charged particles have been assumed to have the
pion mass. :

A total of 166K events satisfied these cuts. Events due to beam-gas scattering and to v
interactions have been estimated to be less than 0.1% of the sample; background from 77~
events was calculated to be less than 0.2%.

" The influence of the detector on the analysis was studied with the simulation program
DELSIM [11]. Events were generated with the JETSET 7.3 Parton Shower Monte Carlo pro-
gram [12] (JETSET PS in the following) with parameters tuned as in [13]. The particles were
followed through the detailed geometry of DELPHI giving simulated digitizations in each de-
tector. These data were processed with the same reconstruction and analysis programs as the
real data.

3 The Double Tagging Method

The major drawback of multidimensional methods is that the dependence on the sim-
ulation introduces on the physical observable a systematic error which is harder to estimate
compared to the single variable case.

In order to overcome this problem, a double tagging method was used in the present
analysis. 2 .

Hadronic events were split into two hemispheres according to the plane perpendicular
to the thrust axis, then only hemisphere-defined variables were considered. Let ¢, be the
probability of tagging a hemisphere in a b event, and ¢ the same probability in u, d, s, ¢ events.
In the hypothesis in which the two hemispheres are statistically uncorrelated the following
equations hold:

i = eRy+ea(l-Ry) (1)
fr = Ry +€(1—Ry) 2

where f; is the fraction of tagged hemispheres and f; is the fraction of events in which both
hemispheres atre tagged. The quantities €, and ¢ can be determined from the equations above,
by assuming R, = 0.217 as predicted by the Standard Model.

. It would be possibile to estimate R, using a third equation coming from a lepton tagged
sample but this possibility will not be considered here.

N The correlations between hemispheres, and possible differences in efficiency between the
4, d, ¢, s quarks, modify equation (2) in such a way that

fz = Ez(L-I'- Cb)Rb + 6,2(1 + C[)(l - Rb) (2')

- The coefficients ¢, and ¢; have to be determined by simulation:

o=z ©
it
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where j = bor L.

The purity 7 of a selected sample of b-tagged events (i.e., of events in which both hemi-
spheres are tagged as b) can be obtained from ¢, and ¢ through

.= (14 c3)Ry @
€z(1 + Cb)Rb + 6?(1 + C[)(l - Rb) :

4 Variables Used for the Classification

Among many variables which have been considered for feeding the network, we have
chosen ten variables on the basis of their discriminating power according to the F test. Impact
parameter has been excluded because our intention is to combine the forthcoming results with
the one obtained Ref [4] using impact parameter variables.

This procedure resulted in the following list of input variables:

The sphericity S$? calculated after a boost 8 = 0.96 along the thrust axis.

The aplanarity A® calculated after a boost § = 0.96 along the thrust axis.

The sum of the momenta parallel to the event axis, after the boost.

The sum of the products of the momentum components parallel to the event axis,
times the perpendicular components.

The sum of the pZ.

The longitudinal momentum of the most energetic particle. '

The invariant mass Mj34 of the four most energetic particles.

The directed sphericity S)234 of the four most energetic particles. For a set Q of
tracks in a jet, this variable is defined as

_ Yo P
5= e

where the p’s are the momenta in the rest frame of the set Q and the p,’s are their

components perpendicular to the thrust direction in the laboratory frame.
9. The directed sphericity S;23.

10. The directed sphericity S;a4.
The values of their F-test from the simulation, where

Fe | < zp > = < Tudse > |
Vo3 + 04,

are listed in Table 1.

5 The Neural Network

We adopted a feed-forward Neural Network architecture trained with Backpropagation.
Both the architecture and the learning procedure have become by now quite well known, so we

Variable] F
210.259
1{0.236
810.215

0.209

0.207

0.128

0.071

0.061

0.051

0.013

Table 1: Value of the F-{est for the variables used as an input to the maultidimensional
classifiers.

sefer to the literature for details (see [14]), just giving here a brief sketch of them and a list of
the choices made for the parameters. )

The Neural Network we used has 10 input variables, strictly coming from the shape of
the event. . . .

Each node in the input layer was associated with one of the input variables listed above.
There were 2 hidden layers of 10 and 8 nodes and one output node. Each unit gives as output
a sigmoid function of the weighted sum of its inputs. o ) ]

The training procedure performs a gradient descent in the space of the weights \.mth
tespect to a quadratic cost function quantifying the discrepancy between the value obtained
at the output for each training event and the one conventionally fixed as the target value for
the corresponding class (in our case 1 for b and -1 for udsc). The process is controlled by the
“learning strength parameter” 5 and the “momentum” o [14]. Each updating step in 'the space
of weights, computed by gradient descent, is multiplied by % and added to the previous gtep, ,
multiplied’ by a.

The !weights were updated every 10 events, chosen at random from the two classes
ui+d¢i+s§' +cc and 65, in such a way that, on average, there was an equal number of events
from each of the two classes. ) ‘

Changing the parameters 7 and a during the training is convenient in order to allow for a
fast movement in the space of weights-in the early stage of training, and to obtain a controlled
approach to the minimum at the later stage. For this reason, the learning and momentu’x’n
parameters were decreased and increased respectively after every 3,000 updates (an “epoch )
according to the rule: v

. o
e = Me—1 X (ﬂmin/ﬂt—l)

o = 01 X (Qmat/at—l)k.'

where i, and Omes are the minimum (maximum) allowed values for the parameters, and
subscript ¢ (t — 1) refers to the epoch number. Exponents k, and k, were set to 0.05 and 0.14,
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respectively. Given the finite value of the weight change, the gradient descent might lead to an
occasional increase of the error value. In this case, the parameters were reset to their initial
values. .

The architecture of the network is summarized in Table 2, together with the parameters
used in the training phase.

Nodes in the hidden layers 10,8
« (training) 04-09
7 (training) 0.05 - 0.0001

Table 2: Characteristics of the NN.

After training, the network was exposed to a new ’test’ set of events; the behaviour of the
error function with respect to this new set shows the error the network makes in generalizing
to new data.

It is relevant to monitor the generalization error for trainings of increasing lenghts; when
the generalization error starts to increase while the training error is still decreasing, the NN
has ‘overlearned’ the training sample and its ability to generalize is degraded.

The system was trained on a set of 20,000 simulated events, generated with the JETSET
Parton Shower Monte Carlo model (JETSET PS), where each event is described using variables
related to a single hemisphere. By monitoring the behaviour of the generalization error, the
training was stopped after 400,000 updates. After the network has been trained, its performance
can be assessed in terms of signal efficiency ¢, (number of events correctly classified as belonging
to a given class over the total number of events in that class ), and purity p (number of correctly
classified events in a given class over all the events classified as belonging to that class ). The
test sample consisted of about 50,000 simulated events, generated by using JETSET PS and
50,000 real data taken during 1991 using the DELPHI detector.

The distribution of the output of the network is plotted in Figure 1(2) for b and udsc
events. In Figure 1(b), the distribution of the network output on single hemispheres is shown
for simulated and real data. In Figure 1(c), the fraction of events for which the network output
is larger than a given cut in both hemispheres is plotted for real and simulated data.

The calculation of the coefficients defined in Eq. (3) gave the results plotted in Figure 2.
Each event is classified testing the Network separately on both the hemispheres and considering
an event as bb only if it is classified as b on both the hemispheres. The number of events
generated in each class corresponded to the Z° hadronic branching fractions in the Standard
Model.

The curve giving purity of the selected sample versus efficiency for the selection of b quark
pairs is given in Figure 3. The shape plotted as black markers refers to real data, while the
solid line is for the simulation. Purity and Efficiency are computed using the solutions of the
equations (1) and (2’) described in Section 3. The error bars are computed allowing a 100%
variation of the c;. :

6 Summary and Conclusions

Using the independent information coming from suitably def‘ined emispheres in jet ;yen:
proves to be a viable strategy to obtain a multidimensio?al tagging mgthod based oxt:l e;:l“l;
Networks, which is less sensitive to Monte Carlo assumptions than prevnf)usly aclu?va e, ) l:—
ther analysis is required to better quantify the inﬂuence. of the corrleatlon coefficients onf t'he
classification in terms of efficiency and purity; this work is pr&en.tly in progress. As one ‘c;: the
developments planned for the near future, we also expect to oblzam bettel: perfornfa.ncf ase)"l :
combined use of this method together with an independent, single particle tagging ol

impact parameter ([4]).
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