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The observation by the IceCube Collaboration of a high-energy (E � 200 TeV) neutrino from the direction 
of the blazar TXS 0506+056 and the coincident observations of enhanced γ -ray emissions from the same 
object by MAGIC and other experiments can be used to set stringent constraints on Lorentz violation 
in the propagation of neutrinos that is linear in the neutrino energy: �v = −E/M1, where �v is 
the deviation from the velocity of light, and M1 is an unknown high energy scale to be constrained 
by experiment. Allowing for a difference in neutrino and photon propagation times of ∼ 10 days, we 
find that M1 � 3 × 1016 GeV. This improves on previous limits on linear Lorentz violation in neutrino 
propagation by many orders of magnitude, and the same is true for quadratic Lorentz violation.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
It is desirable to probe fundamental physical principles as sen-
sitively as possible, and Lorentz invariance is no exception. Specif-
ically, one may ask how accurately we know that different species 
of massless particles travel at the speed of light, and how accu-
rately we know that massive particles travel at the same speed 
in the high-energy limit. Over the past two decades, since the 
publication of [1], considerable effort has been put by many exper-
imental collaborations into constraining different forms of Lorentz 
violation, and specifically a linear coefficient M1 in the velocity v
of energetic photons: �v = −E/M1, using distant time-dependent 
astrophysical sources of energetic photons such as pulsars, gamma-
ray bursts (GRBs) and active galactic nuclei (AGNs). However, anal-
yses of possible Lorentz violation in photon propagation have been 
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beset by difficulties in disentangling intrinsic time delays in the 
sources from time delays accumulated during propagation, and we 
consider that the strongest robust limit on M1 for photons is be-
tween 1017 and 1018 GeV [2]. There have also been analyses of 
possible Lorentz violation in neutrino propagation from Supernova 
1987A and in a terrestrial neutrino beam, but these are sensitive 
only to M1 ∼ 2 × 1011 GeV and potentially ∼ 4 × 108 GeV, re-
spectively [3]. More recently, data on the first observed black-hole 
binary merger [5] were used to set the much weaker limit M1 �
100 keV for graviton propagation [6], and the near-coincidence of 
gravitational waves and γ -rays from a neutron-star binary merger 
has been used to establish that their velocities are the same to 
within ∼ 10−17 [7].

Very recently, the IceCube Collaboration has reported the ob-
servation of an ultra-high-energy neutrino from the direction of 
the blazar TXS 0506+056, and together with a number of other 
groups, most notably the MAGIC Collaboration, have reported [8]
an enhanced level of activity in γ -ray and photon emission from 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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this source, which is located at a distance ∼ 4 × 109 ly. As we dis-
cuss in this paper, the great distance of TXS 0506+056 and the 
high energy � 200 TeV of the observed high-energy neutrino, in 
conjunction with the γ -ray observations, provides unique sensi-
tivity to Lorentz violation in neutrino propagation, which almost 
rivals that to linear Lorentz violation in photon propagation.1 The 
sensitivity to linear Lorentz violation in neutrino propagation is to 
M1 � 3 ×1016 GeV, approaching the Planck energy scale that might 
be characteristic of the possible quantum-gravity effects that were 
the original motivation for [1].

We first review the observations of TXS 0506+056 reported 
by the IceCube Collaboration and the teams studying its electro-
magnetic emissions [8]. The primary observation by IceCube was 
that of a single neutrino with energy ∼ 290 TeV (90% CL lower 
limit 183 TeV) on 22 September 2017, dubbed IceCube-170922A, 
coming from a direction within 0.1o of the catalogued γ -ray 
source TXS 0506+056, whose redshift z = 0.3365 ± 0.0010. Sev-
eral γ -ray experiments, notably MAGIC, VERITAS, HESS, Fermi-LAT,
AGILE and Swift made observations showing that TXS 0506+056 
was in a flaring state over a period within about 10 days of 
IceCube-170922A [8]. In particular, MAGIC reported a 6.2-σ ex-
cess within this time frame. The IceCube Collaboration has also 
reported an excess of neutrinos observed earlier from the direc-
tion of TXS 0506+056, confirming this as the source of IceCube-
170922A [13], and analyses have supported the hypothesis that 
a single astrophysical mechanism is responsible for emitting both 
the neutrino and the γ -rays [14].

The similarity in arrival times of IceCube-170922A and the elec-
tromagnetic emissions can be used immediately to estimate the 
corresponding sensitivity to a difference �vνγ in the propaga-
tion speeds in vacuo of the neutrino and photons, assuming that 
both speeds are independent of energy. We assume a distance of 
4 × 109 ly and an illustrative time difference of 10 days,2 so that 
�vνγ /c ∼ 10 days/4 × 109 years ∼ 10−11.3 This is six orders of 
magnitude worse than the corresponding constraint on the dif-
ference in propagation speeds of gravitational waves and photons 
derived from the near-simultaneous observations of the binary 
neutron-star merger: �vGW γ � 10−17 [7]. However, it is much 
better than the corresponding sensitivity to an energy-independent 
�vνγ from the observations of neutrinos emitted during the col-
lapse of supernova 1987A: �vνγ � 4 hours/1.5 × 105 years ∼
3 × 10−9.4

An energy-independent difference between the velocities of 
neutrinos (or gravitational waves) and photons would require the 
extremely radical step of abandoning the framework of special 
relativity. A less radical hypothesis would be that Lorentz invari-
ance is an emergent symmetry in the low-energy limit, but is 
subject to modification that increases with energy. This is indeed 

1 For a previous test of Lorentz violation assuming that IceCube neutrino IC 35 [9]
was emitted by a flare of the AGN PKS B1424-418 [10], see [11]. In that case, the 
chance coincidence probability was ∼ 5%, so the identification could not be consid-
ered conclusive. We note also that a correlation between a flaring γ -ray source and 
the IceCube-160731 neutrino event was reported in [12], but it was not possible to 
identify the potential counterpart and make a quantitative analysis.

2 The redshift of TXS 0506+056 is not very large, and the estimates of �t and the 
energy of the neutrino are not very accurate, so this estimate does not include the 
small effects associated with the expansion of the Universe during propagation.

3 Henceforth, we use natural units in which the conventional velocity of light 
c = 1.

4 We note that a Fermi all-sky variability analysis reported significant brightening 
of TXS 0506+056 in the GeV band some five months previous to the observation of 
IceCube-170922A [8]. A conservative approach would be to allow for a time differ-
ence of 150 days between the photon and neutrino propagation times, which would 
relax our bound on �vνγ by a factor � 15. However, it would still be over an order 
of magnitude stronger than the bound from supernova 1987A.
the suggestion that has been made in a number of different the-
oretical frameworks, including the ‘space–time foam’ expected in 
models of quantum gravity [15], phenomenological models sug-
gested by features of cosmic-ray physics [16] and other consid-
erations [17], the suggestion that Lorentz invariance may be bro-
ken spontaneously [18,19], models of loop quantum gravity [20], 
doubly-special relativity theories [21] and quantum field theories 
of the Lifshitz type [22]. In such frameworks, Lorentz invariance 
is a good symmetry in the low-energy limit, but is violated in-
creasingly at high energies. As discussed in [24], the interactions 
of particles with space–time foam are not represented by an ef-
fective field theory (EFT) with higher-dimensional operators such 
as the standard model extension [18], since they correspond to 
time-space uncertainty effects. Since other models of Lorentz vi-
olation may also not fall within an EFT framework, we take here 
a phenomenological approach in which the energy dependence of 
Lorentz violation is kept free, and the magnitude is allowed to be 
different for different particle species.

The first such possibility that we consider is that �vνγ in-
creases linearly with energy: �vνγ = −E/M1.5 The possibility of 
such a linear violation of Lorentz invariance was raised in [1,
24] on the basis of intuition about the properties of space–time 
foam suggested by a heuristic string-inspired model of quantum-
gravitational fluctuations in space–time. In such a case, one’s first 
guess could be that M1 would be comparable to the Planck mass: 
M1 ∼ M P � 1019 GeV. However, the value of M1 would depend in 
a string-inspired model on unknown quantities such as the string 
coupling, the density of defects in space–time, and the strength of 
particle interactions with such defects, which may not be univer-
sal between different particle species [25], so we maintain phe-
nomenological open minds about the possible magnitude of M1. 
The model of space–time foam proposed in [24] would suggest 
that the velocities of neutrinos would deviate from the low-energy 
velocity of light less than photons, so that (in an obvious nota-
tion) M1,ν � M1,γ , because the photon would have stronger in-
teractions with the space–time defects. This is because, in such 
a stringy model of space–time foam, only species that carry no 
non-trivial quantum numbers under the standard model group 
have unsuppressed interactions with the foam, in which case the 
fact that neutrinos are fermions with non-trivial SU(2)L properties 
renders space–time foamy effects invisible to them. However, ini-
tially we will be agnostic whether the photon velocity or the neu-
trino velocity deviates more from the low-energy velocity of light. 
When they are comparable, M1 = (M1,γ × M1,ν)/(M1,γ − M1,ν ), 
but when there is a hierarchy between them, M1 → the smaller of 
M1,γ and M1,ν .

We recall that a difference in velocity �v = −E/M1 induces a 
difference in arrival time �t = �v × D = (E × D)/M1, where D
is the propagation distance. For our numerical purposes, we as-
sume the value Eν = 200 TeV for the energy of the event IceCube-
170922A [8], and note that the energies of the γ -rays measured by 
MAGIC and other experiments are negligible in comparison. A sim-
ple order-of-magnitude estimate then yields a sensitivity to

M1 �
H−1

0

�t
E

zsrc∫

0

(1 + z)√
�� + �M(1 + z)3

dz ≈ 3 × 1016 GeV , (1)

which is over 6 orders of magnitude stronger than the limit ob-
tained previously [3] from an analysis of the neutrino signal from 

5 Constraints on e+e− pair production in vacuo require �v < 0 [23], as expected 
in the model of [24].
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supernova 1987A.6 The sensitivity (1) is, nevertheless, an order of 
magnitude weaker than the robust limit on photon Lorentz viola-
tion [2], so refers directly to the neutrino.

It is instructive also to compare the sensitivity (1) to the pos-
sible improvement in the supernova limit, should another core-
collapse supernova be observed in our galaxy. Multi-dimensional 
simulations of such events suggest that their neutrino emissions 
might exhibit time variations in the millisecond range, in which 
case measurements might attain a sensitivity to
M1 ∼ 2 × 1013 GeV [26], still 3 orders of magnitude less than 
the IceCube-170922A/MAGIC sensitivity (1). This sensitivity is 
also far beyond that we can envisage using a terrestrial neu-
trino beam. It was estimated using the timing capabilities of 
the OPERA detector and assuming that timing information could 
be available for neutrino events upstream in rock that a sen-
sitivity to M1 ∼ 4 × 108 GeV could be attained [3].7 Thus the
IceCube-170922A/MAGIC sensitivity seems to outclass the capabil-
ities of terrestrial experiments as well as possible future supernova 
observations.

One can also consider a possible quadratic violation of Lorentz 
invariance: �v = −E2/M2

2, which would be an option in some of 
the alternative models of Lorentz violation mentioned above [16–20,
22]. In this case, the IceCube-170922A/MAGIC sensitivity would be 
to

M2 �

⎡
⎣3

2

H−1
0

�t
E2

zsrc∫

0

(1 + z)2√
�� + �M(1 + z)3

dz

⎤
⎦

1/2

≈ 1011 GeV ,

(2)

which is over 5 orders of magnitude stronger than the corre-
sponding limit from supernova 1987A [3]. In the case of quadratic 
Lorentz violation, the supernova 1987A limit was estimated to be 
to M2 ∼ 4 × 104 GeV, the possible sensitivity of a future galactic 
supernova event was estimated to be to M2 ∼ 106, and the poten-
tial sensitivity of a terrestrial experiment was estimated to be to 
M2 ∼ 7 × 105 GeV.8 Again, the large distance of TXS 0506+056 and 
the high energy of the IceCube-170922A event enable it to outclass 
the competition.

For completeness, before closing we comment briefly on pre-
vious discussions of neutrino Lorentz violation in the context of 
EFT and the Standard Model Extension (SME) [18]. This has been 
mentioned [31] as an explanation of a possible drop in PeV neu-
trinos suggested by IceCube data [32], which might correspond to 
a SME dimension-6 term with coefficient ≥ −5.2 × 10−35 GeV−2

(see also [33] for a review). However, we regard the existence of 
this drop and its interpretation as questionable. An overview of 
this and other aspects of SME applications to neutrinos is given 
in [34], though without a quantitative discussion.

We conclude that the advent of multimessenger neutrino/pho-
ton astronomy [8,13] has not only launched a new era in the study 
of the origins of high-energy cosmic rays, but also made possi-
ble a breakthrough in the exploration of Lorentz symmetry us-
ing neutrinos. We may anticipate that more coincidences between 
high-energy neutrino events and electromagnetic emissions will be 

6 In calculating (1) we used the standard cosmological �CDM model with dark 
energy and dark matter contributions �� = 0.7 and �M = 0.3, respectively, and 
Hubble expansion rate H0 = 68 km/s/Mpc. See [2] for detailed derivation of (1).

7 In fact, we are unaware of neutrino experiments that have sought to test 
Lorentz invariance in the way proposed here. For alternative searches for Lorentz 
violation using neutrinos, see [27–29], see also [30,31]. We are grateful to Francesca 
Di Lodovico, Brian Rebel and Jenny Thomas for discussions on this subject.

8 For the most sensitive terrestrial measurement of neutrino propagation speed, 
see [4].
observed, enabling the rough estimates made here to be refined 
and improved. Such coincidences would contribute to fundamental 
physics as well as resolving important issues in astrophysics.
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