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A new swampland criterion has recently been proposed. As a consequence, it forbids the existence of 
de Sitter solutions in a low energy effective theory of a quantum gravity. However, there exist classical 
de Sitter solutions of ten-dimensional (10d) type II supergravities, even though they are unstable. This 
appears at first sight in contradiction with the criterion. Beyond possible doubts on the validity of these 
solutions, we propose two answers to this apparent puzzle. A first possibility is that the known 10d 
solutions always exhibit an energy scale of order or higher than a Kaluza–Klein scale, as we argue. 
A corresponding 4d low energy effective theory would then differ from the usual consistent truncations, 
and as we explain, would not admit a de Sitter solution. This would reconcile the existence of these 10d 
de Sitter solutions with the 4d criterion. A second, alternative possibility is to have a refined swampland 
criterion, that we propose. It forbids to have both the existence and the stability of a de Sitter solution, 
while unstable solutions are still allowed.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Despite remarkable improvements in recent cosmological mea-
surements in terms of precision and data, a plethora of different 
models remain compatible with observations. Having theoretical 
criteria assigning a quantum gravity origin to few models while 
discarding the others would provide a new helpful manner to dis-
tinguish between these models. In this paper, we focus on a new 
proposal for such a criterion. We provide important clarifications 
on its interpretation, give tools and ideas to test it, and present a 
refined version of this criterion.

1.1. Context

Consider a four-dimensional (4d) gravitational theory, mini-
mally coupled to scalar fields φi , governed by a potential V (φi)

S =
∫

d4x
√|g4| (R4 + kin. terms − V ) , (1)

where kin. terms denote the scalars kinetic terms, and we choose 
for convenience units where the 4d Planck mass is set to 1. To 
simplify the discussion, we do not include extra content in (1), 
even though the results could easily be adapted. Solutions of this 
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theory (1) with constant scalar fields would be determined by the 
following equations of motion

Rμν − gμν

2
R4 = − gμν

2
V ⇒ R4 = 2V , ∂φi V = 0 . (2)

Such extrema of the potential, where we denote the value V |0, 
can then provide solutions with a maximally symmetric 4d space–
time, with cosmological constant � = 1

2 V |0. In particular, de Sitter 
solutions would have V |0 > 0.

Recently, it has been proposed [1] that any theory of the form 
(1), not lying in the swampland, should verify the criterion

|∇V | ≥ c V , (3)

where c > 0 and we understand |∇V | as |∇V | =
√

gij∂φi V ∂φ j V , 
with the field space metric gij(φ), readable from the kinetic terms. 
In other words, any theory (1) that is a low energy effective theory 
for a consistent quantum gravity theory should verify the criterion 
(3). This has the crucial implication that the 4d theory would not 
admit a de Sitter solution, meaning an extremum of the potential 
where the 4d space–time is de Sitter. Indeed, the criterion implies 
at an extremum that V |0 ≤ 0, i.e. it only allows for a Minkowski or 
anti-de Sitter space–time among maximally symmetric ones.

This “de Sitter swampland criterion” (3) is motivated by many 
examples in string theory constructions where similar conditions 
to (3) have been found. It is well-known that many (supersym-
metric) Minkowski or anti-de Sitter solutions have been found in 
string theory, but de Sitter ones are difficult to obtain (we refer to 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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[2,3] for recent reviews on this topic). For de Sitter, two (possibly 
related) approaches have been followed. The first one consists in 
looking directly for 10d solutions where the space–time is a prod-
uct of 4d de Sitter and 6 compact space dimensions. This approach 
is usually pursued in the framework of ten-dimensional (type II) 
supergravities, viewed as low energy approximations of string the-
ory, and the solutions then correspond to classical (perturbative) 
string backgrounds. The compactness of the extra dimensions al-
low in principle to connect, through dimensional reduction, to a 
4d effective theory of the form (1), where de Sitter extrema should 
match the 10d solutions. The second approach is purely 4d: one 
considers a 4d theory of the form (1), argued to come from string 
theory, and one looks directly for de Sitter solutions at this 4d 
level. The difficulty of finding solutions in either approach has 
often been described by conditions analogous to (3), hence the 
motivation for such a swampland criterion [1].

1.2. Puzzle

What has been notoriously difficult in string theory is actually 
to obtain de Sitter vacua. There is an important distinction to be 
made with an extremum or solution: a vacuum is a (local) mini-
mum of V , i.e. a (meta)stable solution. Requiring stability adds a 
further constraint which appears often incompatible with the ex-
istence of solutions, already difficult by itself.

Concretely, stability means that the diagonalised mass matrix 
has only strictly positive entries; there is in particular no tachyon. 
Provided gij is positive definite, one should study the sign of the 
eigenvalues of ∂φi ∂φ j V |0. Sylvester’s criterion (see e.g. [4]), applied 
multiple times when reshuffling lines and columns of the ma-
trix ∂φi ∂φ j V |0, provides a necessary condition for stability, that is 
∂2
φi

V |0 > 0; we will use this in Section 4.
The reason why de Sitter vacua of string theory are so much de-

bated is two-fold: first, there is up-to-date no known example of 
a 10d classical de Sitter solution that is also metastable. Such so-
lutions have been shown to be very constrained, but at the same 
time, it has not been possible to fully exclude them. Secondly, de 
Sitter vacua obtained in the purely 4d approach are under debate, 
because of the difficulty in lifting them to a controlled string the-
ory construction [3].

Given this situation, the criterion (3) may look surprising be-
cause it forbids de Sitter solutions or extrema, instead of forbid-
ding (only) de Sitter vacua. This may even be problematic because 
there exist 10d classical de Sitter solutions, which are however 
tachyonic (we describe them in Section 2). If we were arguing on 
4d tachyonic de Sitter solutions, one could just question the va-
lidity of the 4d theory and classify it as being in the swampland: 
this is the point of the criterion. On the contrary, classical 10d so-
lutions are, comparatively, much easier to connect to string theory, 
their embedding in a consistent quantum gravity is harder to ques-
tion.

The existence of these de Sitter solutions thus appears to be 
in contradiction with the de Sitter swampland criterion (3). In the 
remainder of this paper, we propose three different answers to this 
puzzle, none of them being however definite.

2. Answer 1: the 10d de Sitter solutions are not trustable

Classical 10d de Sitter solutions have been found in type II su-
pergravities, allowing for all fluxes and including D p-branes and 
orientifold O p-planes. The 6d compact manifolds on which those 
solutions have been found are group manifolds, meaning mani-
folds built out of a 6d Lie group, sometimes divided by a discrete 
subgroup providing compactness (the lattice). Almost all solutions 
[5–9] have been found in type IIA with intersecting O 6 (and possi-
bly D6), also viewed as orbifold actions: these solutions are sum-
marised in [9]. The only exception is a solution in type IIB [10]
with intersecting O 5 and O 7. Overall, these solutions are non-
trivial as they are obtained on non-Ricci flat compact manifolds, 
and include many fluxes as well as intersecting D p/O p sources. It 
is however at this complexity cost that classical de Sitter solutions 
can be found, and pass all constraints and no-go theorems [11].

A first way to enforce the de Sitter swampland criterion (3)
is to doubt on the validity of these solutions. Several arguments 
against them have been pointed out [3]. Let us discuss here only 
one, often put forward, that is the presence of intersecting O p . 
The fact they intersect prevents one from describing their backre-
action properly, contrary to parallel or even single sources. For the 
latter, one typically has a warp factor in the metric that accounts 
for the backreaction; the Laplacian of this warp factor gives rise 
to a δ-function localising the source in its transverse directions. In 
the intersecting case, it is hard to include any such function in the 
metric that would verify the equations of motion and Bianchi iden-
tities (see e.g. [12,13]). Functions are then traded for constants, and 
as a consequence, the δ-function is replaced by its integrated value 
over the transverse directions. This is often viewed as “smearing” 
the sources over those directions. Smearing an orientifold is cer-
tainly problematic as it should remain at a fixed locus.

This smearing interpretation can however be discussed. The 
sources are still considered to be along some specific directions, 
since for instance, the orientifold projection is used. Technically, 
what is done is integrating equations along some (or all) the 6d 
directions (see e.g. [14] for trading the integration over transverse 
directions to that on 6d, better defined). This integration erases any 
dependence on internal coordinates and replaces the δ-function by 
a constant. One then looks for solutions with constant coefficients, 
actually very suited to group manifolds. Instead of the smearing 
interpretation, one may rather view this as studying the integrated 
equations. In addition, those would typically match the 4d equa-
tions obtained from the potential, precisely because the potential 
is also derived by integrating over the 6d space.

If one finds such a solution with constant coefficients, it is of 
course not guaranteed to have a “localized” version [15,16]. For 
single or parallel sources, it remains remarkable that the warp 
factor dependence, together with that of the dilaton, can be com-
pletely removed from the equations, leaving only terms without 
derivatives of those functions [14], as if one had integrated. But 
the same does not have to hold for the intersecting case. What is 
rather believed is that the localized supergravity description is im-
possible in that case, but the problem would be cured by string 
theory. Intersecting branes or orientifolds certainly appear in dif-
ferent contexts, such as particle physics models or holographic su-
pergravity backgrounds, where a stringy treatment is sometimes 
provided. The fact that intersecting O 6 can be viewed as orb-
ifolds is also in favour of a more stringy description. It could still 
happen that a properly treated backreaction would eventually de-
stroy completely the supergravity-approximated solution, but this 
remains to be checked. In the following, we rather trust these 
solutions and move on to other possibilities regarding our initial 
puzzle.

3. Answer 2: the corresponding 4d low energy effective theories 
do not admit de Sitter solutions

We present here a new point that could interestingly reconcile 
the de Sitter swampland criterion (3) with the existence of the 
10d classical de Sitter solutions. To actually compare those two, 
one should first fill a gap: what is the 4d theory corresponding to 
the 10d solutions?
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To study the stability of these solutions (and conclude on 
tachyons), a 4d theory has been needed in the first place, and 
the one used is a 4d N = 1 gauged supergravity (see e.g. [9]). As 
first proposed by Scherk and Schwarz [17], group manifolds pro-
vide an interesting truncation of the 10d fields to a finite set of 
modes, given by the left-invariant forms, i.e. essentially Maurer–
Cartan forms with constant coefficients. Since the 10d classical de 
Sitter solutions are obtained on group manifolds with fields having 
constant coefficients, this truncation is perfectly suited. The 4d the-
ory resulting from this Scherk–Schwarz truncation is known and 
given by a 4d gauged supergravity, where the gaugings are in par-
ticular the structure constants of the underlying Lie algebra. The 
Scherk–Schwarz truncation is thought to be a consistent trunca-
tion: this means that a solution to the 4d theory can be lifted to a 
solution of the 10d theory. One way to view this is to say that the 
finite set of modes is “independent” or decoupled from the rest of 
the 10d modes, and so one can study its physics independently. In 
addition, because the 10d solutions are only expressed in terms of 
the same finite set of modes, they will appear as solutions to the 
4d theory. In short, thanks to the consistent truncation, the result-
ing 4d N = 1 gauged supergravity will admit the same de Sitter 
solution when solving the extrema conditions (2). This is certainly 
the point in conflict with the criterion (3).

There is however another important ingredient: the notion of 
swampland, or in other words, that of having a low energy effec-
tive theory. The 4d N = 1 gauged supergravities are derived by a 
well-defined procedure (a consistent truncation) from a quantum 
gravity theory, but as we will argue, they are very unlikely to be low 
energy effective theories. Indeed, what usually happens in consistent 
truncations is that one truncates some light modes, or keeps heav-
ier modes than those truncated. We now argue that this should 
always be the case for the 10d classical de Sitter solutions: they 
always exhibit an energy scale of order or higher than a Kaluza–
Klein scale, while you need to truncate the latter at low energy. 
We describe the theory one would rather obtain after a low en-
ergy truncation.

In recent works [18,19], we determined and studied the spec-
trum of the Laplacian on a specific group manifold, the 3d Heisen-
berg nilmanifold. This manifold is built out of the Heisenberg al-
gebra and therefore has only one structure constant, f 3

12. This 
constant should be quantised for geometric reasons [18], related 
to compactness and the lattice action. In the basis where the in-
ternal metric is δab , the radii rm=1,2,3 > 0 of the three directions 
enter the structure constant, then given by

f 3
12 = r3N

r1r2
, N ∈ Z

∗ . (4)

The structure constant is also generically related to the Levi–Civita 
spin connection through e.g. f a

bc = 2ω[ba
c] . The Ricci scalar can 

then be expressed purely in terms of f a
bc . We then understand 

that there are typically two energy scales on group manifolds: 
those given by the radii, 1/rm , and the scales given by the curva-
ture or structure constants. In [19], we proposed a small fiber/large 
base approximation given by

r3 ≤ |N|r3 � r1, r2 ⇒ | f 3
12| � 1

r1 ,
1

r2
� 1

r3
. (5)

This approximation generates an interesting hierarchy between the 
curvature scale and the radii scale, or in supergravity terms, be-
tween the geometric flux and the Kaluza–Klein scale. Having the 
explicit Laplacian spectrum, we could show that truncating, thanks 
to this approximation, the modes heavier than | f 3

12|, one would 
be left with only a finite set of light modes: this is then a low en-
ergy truncation. Remarkably, this finite set of light modes turned 
out to correspond to the left-invariant forms, i.e. the set of modes 
one would keep in the Scherk–Schwarz truncation. On a nilmani-
fold, there is therefore a chance, rare otherwise, that the consistent 
truncation is also a low energy truncation, and the 4d gauged 
supergravity a low energy effective theory. As discussed in [19], 
few more steps have to be taken before proving this, in particular 
because the geometric scales are not the only ones entering the 
game: a concrete background with other fluxes could modify the 
hierarchy. The fact that the Kaluza–Klein towers of the Laplacian 
spectrum are truncated in this way is still a good start.

However, no classical de Sitter solution is known on a nilmanifold. 
And turning to the other group manifolds will completely change 
the situation. Nilpotent algebras are such that there exists a ba-
sis where for a 	= b, if f a

bc 	= 0, then f b
ad = 0 ∀d (see e.g. the list 

of 6d algebras in [20]). This property is related to the topology of 
these manifolds, made of an ordered succession of circle fibrations. 
On the contrary, any other Lie algebra would have, at least in some 
basis, some structure constant for which the contrary would hold: 
they would admit for instance both f 3

12 	= 0 and f 1
32 	= 0. It is 

clear for semi-simple algebras that can always be written in a ba-
sis where structure constants are fully antisymmetric, and one can 
also verify on the examples of solvable Lie algebras in [21]. Because 
the Maurer–Cartan one-forms are such that dea = − 1

2 f a
bceb ∧ ec

and ea = ea
mdym where ea

m is the vielbein and ym the internal 
coordinates, the scaling of f a

bc with the radii is then always the 
same. We obtain

f 3
12 = r3N

r1r2
, f 1

32 = r1N ′

r3r2
, (6)

for any group manifold being not a nilmanifold. The numbers N
and N ′ need not be integers but are quantised in different man-
ners, depending on the algebra and the lattice (see e.g. [21–23]
for solvmanifolds). We now see that the low energy approximation 
(5) will not work here: if r3 � r1, | f 3

12| is small but | f 1
32| be-

comes large, compared to 1/r2. This is problematic, because one 
typically needs to truncate at the Kaluza–Klein scale, here 1/r2, to 
avoid an infinite tower of modes. Doing so, one would truncate the 
modes of energy scale given by | f 1

32|, thus effectively erasing that 
structure constant. Another option is to set all radii to be of the 
same order, but there is then no internal scale separation anymore: 
the structure constants are of the same order as the Kaluza–Klein 
scale, and may as well be truncated, leaving only massless modes. 
We conclude that any group manifold, different than a nilmani-
fold, provides energy scales of order or higher than a Kaluza–Klein 
scale. Equivalently, the Scherk–Schwarz truncation, that keeps all 
left-invariant forms and thus all structure constants contributions, 
cannot be a low energy truncation away from a nilmanifold (ex-
plicit reductions of [24] support this claim). As a consequence, the 
4d gauged supergravities, having all structure constants in the po-
tential, cannot be low energy effective theories. Furthermore, the 
low energy effective theory on a group manifold is necessarily the same 
as one obtained on a nilmanifold, i.e. in the above example, where 
f 1

32 is truncated and f 3
12 remains alone as in a nilpotent alge-

bra, or where both are truncated.
This claim, that remains to be checked by explicit dimen-

sional reductions on concrete backgrounds, reconciles the de Sit-
ter swampland criterion (3) with the existence of 10d classical 
de Sitter solutions on group manifolds. As observed in [9] after 
an important search, there is no known de Sitter solution on a nil-
manifold. In [25], we will provide more analytical evidence of this 
statement. We now combine the two claims: the string 4d low en-
ergy effective theory on any group manifold is that obtained on 
a nilmanifold, and there is no de Sitter solution on a nilmanifold. 
We conclude that one cannot have a de Sitter extremum in a 4d 
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low energy effective theory obtained from string theory on a group 
manifold, despite the existence of 10d solutions on such manifolds: 
the two are now compatible.

The above reasoning implies that the physics of 10d classical 
de Sitter solutions cannot be described at a 4d level, because their 
internal geometry exhibits energy scales which are too high. The 
value of the cosmological constant in these solutions is however 
not necessarily big, as it could be fixed by different ingredients, 
such as the fluxes or even the string coupling constant, potentially 
providing smaller energy scales. This value should be checked on 
explicit solutions. Still, if their physics can only be described at a 
10d level, it is challenging but also interesting and new to build 
cosmological models using such solutions.

4. Answer 3: we require a refined de Sitter swampland criterion

As recalled in Section 1.2, the issue with string theory and de 
Sitter space–time is not about the existence of solutions, i.e. an ex-
tremum of V (even though this remains difficult) but about having 
solutions which are (meta)stable, i.e. a vacuum. One could infer 
that a criterion inspired by this situation should not be (3), but 
rather one that involves both difficulties, the existence and the 
stability, so V > 0 for de Sitter, ∂φi V = 0 for the existence and 
∂2
φi

V > 0 for the stability (a necessary condition, as argued in Sec-
tion 1.2). A natural combination is then given by the following 
criterion, to be satisfied by any low energy effective theory of a 
quantum gravity theory

∃ bi ∈R, ci ∈R+ such that (7)

V +
∑

i

bi φi∂φi V +
∑

i

ci φ2
i ∂2

φi
V ≤ 0 ,

where by ci ∈ R+ , we mean ci ≥ 0. On a solution, the condition 
boils down to

Solution: V |0 +
∑

i

ci (φ2
i ∂2

φi
V )|0 ≤ 0 , (8)

which forbids the possibility of having both a stable solution and 
a de Sitter solution; it however leaves room for tachyonic de Sit-
ter solutions. Regarding Minkowski or anti-de Sitter solutions, they 
can be accommodated by this criterion in various cases, for in-
stance if one can choose ci = 0, i.e. prove in general that the theory 
only allows for V |0 ≤ 0: this is for instance the case of supersym-
metric solutions in N = 1 supergravity without D-term.

This new “de Sitter vacua swampland criterion” (7) should cer-
tainly be checked on examples (see e.g. [26] for a realisation) and 
may find further refinements. For instance, the first derivative term 
can be replaced by a power of |∇V | or any other vanishing combi-
nation. For V > 0, it could then be refined in terms of single field 
inflation slow-roll parameters towards

√
εV − a ηV ≥ c , with a ≥ 0 , c > 0 , (9)

by redefining the scalar field and fixing b1 < 0; this is a simple 
and interesting extension of the original criterion (3). Studying the 
cosmological implications of condition (7) would also be interest-
ing, similarly to [27], in particular for multi-field inflation. But the 
aim for now is simply to indicate that if one wants to propose 
a swampland criterion related to the current de Sitter situation 
in string theory, a natural one would look like (7). At the same 
time, we presented in Section 3 an explanation that could rec-
oncile both the de Sitter swampland criterion (3) of [1] and the 
existence of 10d classical de Sitter solutions. We hope that this 
work will motivate further checks of either possibility, or stimu-
late new proposals.
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