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A new swampland criterion has recently been proposed. As a consequence, it forbids the existence
of de Sitter solutions in a low energy effective theory of a quantum gravity. However, there exist
classical de Sitter solutions of ten-dimensional (10d) type II supergravities, even though they are
unstable. This appears at first sight in contradiction with the criterion. Beyond possible doubts on
the validity of these solutions, we propose two answers to this apparent puzzle. A first possibility is
that the known 10d solutions always exhibit an energy scale of order or higher than a Kaluza–Klein
scale, as we argue. A corresponding 4d low energy effective theory would then differ from the usual
consistent truncations, and as we explain, would not admit a de Sitter solution. This would reconcile
the existence of these 10d de Sitter solutions with the 4d criterion. A second, alternative possibility
is to have a refined swampland criterion, that we propose. It forbids to have both the existence and
the stability of a de Sitter solution, while unstable solutions are still allowed.

PACS numbers: 11.25.Mj, 11.25.Wx, 04.65.+e, 04.20.Ex

I. INTRODUCTION

Despite remarkable improvements in recent cosmolog-
ical measurements in terms of precision and data, a
plethora of different models remain compatible with ob-
servations. Having theoretical criteria assigning a quan-
tum gravity origin to few models while discarding the
others would provide a new helpful manner to distin-
guish between these models. In this paper, we focus on a
new proposal for such a criterion. We provide important
clarifications on its interpretation, give tools and ideas to
test it, and present a refined version of this criterion.

A. Context

Consider a four-dimensional (4d) gravitational theory,
minimally coupled to scalar fields φi, governed by a po-
tential V (φi)

S =

∫

d4x
√

|g4| (R4 + kin. terms− V ) , (1)

where kin. terms denote the scalars kinetic terms, and we
choose for convenience units where the 4d Planck mass
is set to 1. To simplify the discussion, we do not include
extra content in (1), even though the results could easily
be adapted. Solutions of this theory (1) with constant
scalar fields would be determined by the following equa-
tions of motion

Rµν −
gµν
2

R4 = −
gµν
2

V ⇒ R4 = 2V , ∂φi
V = 0 . (2)

Such extrema of the potential, where we denote the
value V |0, can then provide solutions with a maximally

symmetric 4d space-time, with cosmological constant
Λ = 1

2V |0. In particular, de Sitter solutions would have
V |0 > 0.
Recently, it has been proposed [1] that any theory of

the form (1), not lying in the swampland, should verify
the criterion

|∇V | ≥ c V , (3)

where c > 0 and we understand |∇V | as |∇V | =
√

gij∂φi
V ∂φj

V , with the field space metric gij(φ), read-
able from the kinetic terms. In other words, any theory
(1) that is a low energy effective theory for a consistent
quantum gravity theory should verify the criterion (3).
This has the crucial implication that the 4d theory would
not admit a de Sitter solution, meaning an extremum of
the potential where the 4d space-time is de Sitter. In-
deed, the criterion implies at an extremum that V |0 ≤ 0,
i.e. it only allows for a Minkowski or anti-de Sitter space-
time among maximally symmetric ones.
This “de Sitter swampland criterion” (3) is motivated

by many examples in string theory constructions where
similar conditions to (3) have been found. It is well-
known that many (supersymmetric) Minkowski or anti-
de Sitter solutions have been found in string theory, but
de Sitter ones are difficult to obtain (we refer to [2, 3]
for recent reviews on this topic). For de Sitter, two (pos-
sibly related) approaches have been followed. The first
one consists in looking directly for 10d solutions where
the space-time is a product of 4d de Sitter and 6 com-
pact space dimensions. This approach is usually pursued
in the framework of ten-dimensional (type II) supergrav-
ities, viewed as low energy approximations of string the-
ory, and the solutions then correspond to classical (per-
turbative) string backgrounds. The compactness of the
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extra dimensions allow in principle to connect, through
dimensional reduction, to a 4d effective theory of the form
(1), where de Sitter extrema should match the 10d solu-
tions. The second approach is purely 4d: one considers
a 4d theory of the form (1), argued to come from string
theory, and one looks directly for de Sitter solutions at
this 4d level. The difficulty of finding solutions in either
approach has often been described by conditions analo-
gous to (3), hence the motivation for such a swampland
criterion [1].

B. Puzzle

What has been notoriously difficult in string theory is
actually to obtain de Sitter vacua. There is an important
distinction to be made with an extremum or solution: a
vacuum is a (local) minimum of V , i.e. a (meta)stable
solution. Requiring stability adds a further constraint
which appears often incompatible with the existence of
solutions, already difficult by itself.

Concretely, stability means that the diagonalised mass
matrix has only strictly positive entries; there is in
particular no tachyon. Provided gij is positive defi-
nite, one should study the sign of the eigenvalues of
∂φi

∂φj
V |0. Sylvester’s criterion (see e.g. [4]), applied

multiple times when reshuffling lines and columns of the
matrix ∂φi

∂φj
V |0, provides a necessary condition for sta-

bility, that is ∂2
φi
V |0 > 0; we will use this in Section IV.

The reason why de Sitter vacua of string theory are
so much debated is two-fold: first, there is up-to-date no
known example of a 10d classical de Sitter solution that
is also metastable. Such solutions have been shown to be
very constrained, but at the same time, it has not been
possible to fully exclude them. Secondly, de Sitter vacua
obtained in the purely 4d approach are under debate,
because of the difficulty in lifting them to a controlled
string theory construction [3].

Given this situation, the criterion (3) may look surpris-
ing because it forbids de Sitter solutions or extrema, in-
stead of forbidding (only) de Sitter vacua. This may even
be problematic because there exist 10d classical de Sit-
ter solutions, which are however tachyonic (we describe
them in Section II). If we were arguing on 4d tachyonic
de Sitter solutions, one could just question the validity
of the 4d theory and classify it as being in the swamp-
land: this is the point of the criterion. On the contrary,
classical 10d solutions are, comparatively, much easier to
connect to string theory, their embedding in a consistent
quantum gravity is harder to question.

The existence of these de Sitter solutions thus appears
to be in contradiction with the de Sitter swampland cri-
terion (3). In the remainder of this paper, we propose
three different answers to this puzzle, none of them be-
ing however definite.

II. ANSWER 1: THE 10D DE SITTER

SOLUTIONS ARE NOT TRUSTABLE

Classical 10d de Sitter solutions have been found in
type II supergravities, allowing for all fluxes and includ-
ing Dp-branes and orientifold Op-planes. The 6d com-
pact manifolds on which those solutions have been found
are group manifolds, meaning manifolds built out of a
6d Lie group, sometimes divided by a discrete subgroup
providing compactness (the lattice). Almost all solutions
[5–9] have been found in type IIA with intersecting O6

(and possibly D6), also viewed as orbifold actions: these
solutions are summarized in [9]. The only exception is
a solution in type IIB [10] with intersecting O5 and O7.
Overall, these solutions are non-trivial as they are ob-
tained on non-Ricci flat compact manifolds, and include
many fluxes as well as intersecting Dp/Op sources. It is
however at this complexity cost that classical de Sitter
solutions can be found, and pass all constraints and no-go
theorems [11].
A first way to enforce the de Sitter swampland crite-

rion (3) is to doubt on the validity of these solutions.
Several arguments against them have been pointed out
[3]. Let us discuss here only one, often put forward, that
is the presence of intersecting Op. The fact they intersect
prevents one from describing their backreaction properly,
contrary to parallel or even single sources. For the lat-
ter, one typically has a warp factor in the metric that
accounts for the backreaction; the Laplacian of this warp
factor gives rise to a δ-function localizing the source in its
transverse directions. In the intersecting case, it is hard
to include any such function in the metric that would ver-
ify the equations of motion and Bianchi identities (see
e.g. [12, 13]). Functions are then traded for constants,
and as a consequence, the δ-function is replaced by its
integrated value over the transverse directions. This is
often viewed as “smearing” the sources over those direc-
tions. Smearing an orientifold is certainly problematic as
it should remain at a fixed locus.
This smearing interpretation can however be discussed.

The sources are still considered to be along some specific
directions, since for instance, the orientifold projection
is used. Technically, what is done is integrating equa-
tions along some (or all) the 6d directions (see e.g. [14]
for trading the integration over transverse directions to
that on 6d, better defined). This integration erases any
dependence on internal coordinates and replaces the δ-
function by a constant. One then looks for solutions with
constant coefficients, actually very suited to group man-
ifolds. Instead of the smearing interpretation, one may
rather view this as studying the integrated equations. In
addition, those would typically match the 4d equations
obtained from the potential, precisely because the poten-
tial is also derived by integrating over the 6d space.
If one finds such a solution with constant coefficients,

it is of course not guaranteed to have a “localized” ver-
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sion [15, 16]. For single or parallel sources, it remains re-
markable that the warp factor dependence, together with
that of the dilaton, can be completely removed from the
equations, leaving only terms without derivatives of those
functions [14], as if one had integrated. But the same
does not have to hold for the intersecting case. What is
rather believed is that the localized supergravity descrip-
tion is impossible in that case, but the problem would be
cured by string theory. Intersecting branes or orientifolds
certainly appear in different contexts, such as particle
physics models or holographic supergravity backgrounds,
where a stringy treatment is sometimes provided. The
fact that intersecting O6 can be viewed as orbifolds is
also in favour of a more stringy description. It could still
happen that a properly treated backreaction would even-
tually destroy completely the supergravity-approximated
solution, but this remains to be checked. In the follow-
ing, we rather trust these solutions and move on to other
possibilities regarding our initial puzzle.

III. ANSWER 2: THE CORRESPONDING 4D

LOW ENERGY EFFECTIVE THEORIES DO NOT

ADMIT DE SITTER SOLUTIONS

We present here a new point that could interestingly
reconcile the de Sitter swampland criterion (3) with the
existence of the 10d classical de Sitter solutions. To actu-
ally compare those two, one should first fill a gap: what
is the 4d theory corresponding to the 10d solutions?

To study the stability of these solutions (and conclude
on tachyons), a 4d theory has been needed in the first
place, and the one used is a 4d N = 1 gauged supergrav-
ity (see e.g. [9]). As first proposed by Scherk and Schwarz
[17], group manifolds provide an interesting truncation
of the 10d fields to a finite set of modes, given by the
left-invariant forms, i.e. essentially Maurer-Cartan forms
with constant coefficients. Since the 10d classical de Sit-
ter solutions are obtained on group manifolds with fields
having constant coefficients, this truncation is perfectly
suited. The 4d theory resulting from this Scherk–Schwarz
truncation is known and given by a 4d gauged supergrav-
ity, where the gaugings are in particular the structure
constants of the underlying Lie algebra. The Scherk–
Schwarz truncation is thought to be a consistent trunca-
tion: this means that a solution to the 4d theory can be
lifted to a solution of the 10d theory. One way to view
this is to say that the finite set of modes is “independent”
or decoupled from the rest of the 10d modes, and so one
can study its physics independently. In addition, because
the 10d solutions are only expressed in terms of the same
finite set of modes, they will appear as solutions to the 4d
theory. In short, thanks to the consistent truncation, the
resulting 4d N = 1 gauged supergravity will admit the
same de Sitter solution when solving the extrema condi-
tions (2). This is certainly the point in conflict with the

criterion (3).
There is however another important ingredient: the

notion of swampland, or in other words, that of having
a low energy effective theory. The 4d N = 1 gauged
supergravity are derived by a well-defined procedure (a
consistent truncation) from a quantum gravity theory,
but as we will argue, they are very unlikely to be low

energy effective theories. Indeed, what usually happens
in consistent truncations is that one truncates some light
modes, or keeps heavier modes than those truncated.
We now argue that this should always be the case for
the 10d classical de Sitter solutions: they always exhibit
an energy scale of order or higher than a Kaluza–Klein
scale, while you need to truncate the latter at low
energy. We describe the theory one would rather obtain
after a low energy truncation.

In recent works [18, 19], we determined and studied the
spectrum of the Laplacian on a specific group manifold,
the 3d Heisenberg nilmanifold. This manifold is built
out of the Heisenberg algebra and therefore has only one
structure constant, f3

12. This constant should be quan-
tized for geometric reasons [18], related to compactness
and the lattice action. In the basis where the internal
metric is δab, the radii rm=1,2,3 > 0 of the three direc-
tions enter the structure constant, then given by

f3
12 =

r3N

r1r2
, N ∈ Z

∗ . (4)

The structure constant is also generically related to the
Levi-Civita spin connection through e.g. fa

bc = 2ω[b
a
c].

The Ricci scalar can then be expressed purely in terms of
fa

bc. We then understand that there are typically two en-
ergy scales on group manifolds: those given by the radii,
1/rm, and the scales given by the curvature or structure
constants. In [19], we proposed a small fiber/large base
approximation given by

r3 ≤ |N |r3 ≪ r1, r2 ⇒ |f3
12| ≪

1

r1
,
1

r2
≪

1

r3
. (5)

This approximation generates an interesting hierarchy
between the curvature scale and the radii scale, or in
supergravity terms, between the geometric flux and the
Kaluza–Klein scale. Having the explicit Laplacian spec-
trum, we could show that truncating, thanks to this ap-
proximation, the modes heavier than |f3

12|, one would
be left with only a finite set of light modes: this is then
a low energy truncation. Remarkably, this finite set of
light modes turned out to correspond to the left-invariant
forms, i.e. the set of modes one would keep in the Scherk–
Schwarz truncation. On a nilmanifold, there is therefore
a chance, rare otherwise, that the consistent truncation
is also a low energy truncation, and the 4d gauged su-
pergravity a low energy effective theory. As discussed
in [19], few more steps have to be taken before proving
this, in particular because the geometric scales are not
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the only ones entering the game: a concrete background
with other fluxes could modify the hierarchy. The fact
that the Kaluza–Klein towers of the Laplacian spectrum
are truncated in this way is still a good start.
However, no classical de Sitter solution is known on a

nilmanifold. And turning to the other group manifolds
will completely change the situation. Nilpotent algebras
are such that there exists a basis where for a 6= b, if
fa

bc 6= 0, then f b
ad = 0 ∀d (see e.g. the list of 6d alge-

bras in [20]). This property is related to the topology of
these manifolds, made of an ordered succession of circle
fibrations. On the contrary, any other Lie algebra would
have, at least in some basis, some structure constant for
which the contrary would hold: they would admit for
instance both f3

12 6= 0 and f1
32 6= 0. It is clear for semi-

simple algebras that can always be written in a basis
where structure constants are fully antisymmetric, and
one can also verify on the examples of solvable Lie alge-
bras in [21]. Because the Maurer-Cartan one-forms are
such that dea = − 1

2f
a
bce

b ∧ ec and ea = eamdym where
eam is the vielbein and ym the internal coordinates, the
scaling of fa

bc with the radii is then always the same.
We obtain

f3
12 =

r3N

r1r2
, f1

32 =
r1N ′

r3r2
, (6)

for any group manifold being not a nilmanifold. The
numbers N and N ′ need not be integers but are quan-
tized in different manners, depending on the algebra
and the lattice (see e.g. [21–23] for solvmanifolds). We
now see that the low energy approximation (5) will not
work here: if r3 ≪ r1, |f3

12| is small but |f1
32| becomes

large, compared to 1/r2. This is problematic, because
one typically needs to truncate at the Kaluza–Klein
scale, here 1/r2, to avoid an infinite tower of modes.
Doing so, one would truncate the modes of energy scale
given by |f1

32|, thus effectively erasing that structure
constant. Another option is to set all radii to be of the
same order, but there is then no internal scale separation
anymore: the structure constants are of the same order
as the Kaluza–Klein scale, and may as well be truncated,
leaving only massless modes. We conclude that any
group manifold, different than a nilmanifold, provides
energy scales of order or higher than a Kaluza–Klein
scale. Equivalently, the Scherk–Schwarz truncation,
that keeps all left-invariant forms and thus all structure
constants contributions, cannot be a low energy trunca-
tion away from a nilmanifold. As a consequence, the 4d
gauged supergravities, having all structure constants in
the potential, cannot be low energy effective theories.
Furthermore, the low energy effective theory on a group

manifold is necessarily the same as one obtained on

a nilmanifold, i.e. in the above example, where f1
32

is truncated and f3
12 remains alone as in a nilpotent

algebra, or where both are truncated.

This claim, that remains to be checked by explicit di-
mensional reductions on concrete backgrounds, reconciles
the de Sitter swampland criterion (3) with the existence
of 10d classical de Sitter solutions on group manifolds.
As observed in [9] after an important search, there is no

known de Sitter solution on a nilmanifold. In [24], we
will provide more analytical evidence of this statement.
We now combine the two claims: the string 4d low energy
effective theory on any group manifold is that obtained
on a nilmanifold, and there is no de Sitter solution on
a nilmanifold. We conclude that one cannot have a de
Sitter extremum in a 4d low energy effective theory ob-
tained from string theory on a group manifold, despite
the existence of 10d solutions on such manifolds: the two
are now compatible.
The above reasoning implies that the physics of 10d

classical de Sitter solutions cannot be described at a 4d
level, because their internal geometry exhibits energy
scales which are too high. The value of the cosmolog-
ical constant in these solutions is however not necessarily
big, as it could be fixed by different ingredients, such as
the fluxes or even the string coupling constant, poten-
tially providing smaller energy scales. This value should
be checked on explicit solutions. Still, if their physics can
only be described at a 10d level, it is challenging but also
interesting and new to build cosmological models using
such solutions.

IV. ANSWER 3: WE REQUIRE A REFINED DE

SITTER SWAMPLAND CRITERION

As recalled in Section I.B., the issue with string the-
ory and de Sitter space-time is not about the existence
of solutions, i.e. an extremum of V (even though this
remains difficult) but about having solutions which are
(meta)stable, i.e. a vacuum. One could infer that a cri-
terion inspired by this situation should not be (3), but
rather one that involves both difficulties, the existence
and the stability, so V > 0 for de Sitter, ∂φi

V = 0 for
the existence and ∂2

φi
V > 0 for the stability (a necessary

condition, as argued in Section I. B.). A natural com-
bination is then given by the following criterion, to be
satisfied by any low energy effective theory of a quantum
gravity theory

∃ bi ∈ R, ci ∈ R+ such that (7)

V +
∑

i

bi φi∂φi
V +

∑

i

ci φ
2
i ∂

2
φi
V ≤ 0 ,

where by ci ∈ R+, we mean ci ≥ 0. On a solution, the
condition boils down to

Solution: V |0 +
∑

i

ci (φ
2
i ∂

2
φi
V )|0 ≤ 0 , (8)

which forbids the possibility of having both a stable so-
lution and a de Sitter solution; it however leaves room
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for tachyonic de Sitter solutions. Regarding Minkowski
or anti-de Sitter solutions, they can be accommodated
by this criterion in various cases, for instance if one can
choose ci = 0, i.e. prove in general that the theory only
allows for V |0 ≤ 0: this is for instance the case of su-
persymmetric solutions in N = 1 supergravity without
D-term.

This new “de Sitter vacua swampland criterion” (7)
should certainly be checked on examples (see e.g. [25]
for a realisation) and may find further refinements. For
instance, the first derivative term can be replaced by a
power of |∇V | or any other vanishing combination. Also,
studying the cosmological implications of the condition
(7) would be interesting, similarly to [26], in particular
for multi-field inflation. But the aim for now is simply to
indicate that if one wants to propose a swampland cri-
terion related to the current de Sitter situation in string
theory, a natural one would look like (7). At the same
time, we presented in Section III an explanation that
could reconcile both the de Sitter swampland criterion
(3) of [1] and the existence of 10d classical de Sitter so-
lutions. We hope that this work will motivate further
checks of either possibility, or stimulate new proposals.
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